一、Python中的线程使用:

Python中使用线程有两种方式:函数或者用类来包装线程对象。

1、  函数式:调用thread模块中的start_new_thread()函数来产生新线程。如下例:

  1. import time
  2. import thread
  3. def timer(no, interval):
  4. cnt = 0
  5. while cnt<10:
  6. print 'Thread:(%d) Time:%s\n'%(no, time.ctime())
  7. time.sleep(interval)
  8. cnt+=1
  9. thread.exit_thread()
  10. def test(): #Use thread.start_new_thread() to create 2 new threads
  11. thread.start_new_thread(timer, (1,1))
  12. thread.start_new_thread(timer, (2,2))
  13. if __name__=='__main__':
  14. test()

上面的例子定义了一个线程函数timer,它打印出10条时间记录后退出,每次打印的间隔由interval参数决定。thread.start_new_thread(function, args[, kwargs])的第一个参数是线程函数(本例中的timer方法),第二个参数是传递给线程函数的参数,它必须是tuple类型,kwargs是可选参数。

线程的结束可以等待线程自然结束,也可以在线程函数中调用thread.exit()或thread.exit_thread()方法。

2、  创建threading.Thread的子类来包装一个线程对象,如下例:

  1. import threading
  2. import time
  3. class timer(threading.Thread): #The timer class is derived from the class threading.Thread
  4. def __init__(self, num, interval):
  5. threading.Thread.__init__(self)
  6. self.thread_num = num
  7. self.interval = interval
  8. self.thread_stop = False
  9. def run(self): #Overwrite run() method, put what you want the thread do here
  10. while not self.thread_stop:
  11. print 'Thread Object(%d), Time:%s\n' %(self.thread_num, time.ctime())
  12. time.sleep(self.interval)
  13. def stop(self):
  14. self.thread_stop = True
  15. def test():
  16. thread1 = timer(1, 1)
  17. thread2 = timer(2, 2)
  18. thread1.start()
  19. thread2.start()
  20. time.sleep(10)
  21. thread1.stop()
  22. thread2.stop()
  23. return
  24. if __name__ == '__main__':
  25. test()

就我个人而言,比较喜欢第二种方式,即创建自己的线程类,必要时重写threading.Thread类的方法,线程的控制可以由自己定制。

threading.Thread类的使用:

1,在自己的线程类的__init__里调用threading.Thread.__init__(self, name = threadname)

Threadname为线程的名字

2, run(),通常需要重写,编写代码实现做需要的功能。

3,getName(),获得线程对象名称

4,setName(),设置线程对象名称

5,start(),启动线程

6,jion([timeout]),等待另一线程结束后再运行。

7,setDaemon(bool),设置子线程是否随主线程一起结束,必须在start()之前调用。默认为False。

8,isDaemon(),判断线程是否随主线程一起结束。

9,isAlive(),检查线程是否在运行中。

此外threading模块本身也提供了很多方法和其他的类,可以帮助我们更好的使用和管理线程。可以参看http://www.python.org/doc/2.5.2/lib/module-threading.html。

假设两个线程对象t1和t2都要对num=0进行增1运算,t1和t2都各对num修改10次,num的最终的结果应该为20。但是由于是多线程访问,有可能出现下面情况:在num=0时,t1取得num=0。系统此时把t1调度为”sleeping”状态,把t2转换为”running”状态,t2页获得num=0。然后t2对得到的值进行加1并赋给num,使得num=1。然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给num。这样,明明t1和t2都完成了1次加1工作,但结果仍然是num=1。

上面的case描述了多线程情况下最常见的问题之一:数据共享。当多个线程都要去修改某一个共享数据的时候,我们需要对数据访问进行同步。

1、  简单的同步

最简单的同步机制就是“锁”。锁对象由threading.RLock类创建。线程可以使用锁的acquire()方法获得锁,这样锁就进入“locked”状态。每次只有一个线程可以获得锁。如果当另一个线程试图获得这个锁的时候,就会被系统变为“blocked”状态,直到那个拥有锁的线程调用锁的release()方法来释放锁,这样锁就会进入“unlocked”状态。“blocked”状态的线程就会收到一个通知,并有权利获得锁。如果多个线程处于“blocked”状态,所有线程都会先解除“blocked”状态,然后系统选择一个线程来获得锁,其他的线程继续沉默(“blocked”)。

Python中的thread模块和Lock对象是Python提供的低级线程控制工具,使用起来非常简单。如下例所示:

  1. import thread
  2. import time
  3. mylock = thread.allocate_lock()  #Allocate a lock
  4. num=0  #Shared resource
  5. def add_num(name):
  6. global num
  7. while True:
  8. mylock.acquire() #Get the lock
  9. # Do something to the shared resource
  10. print 'Thread %s locked! num=%s'%(name,str(num))
  11. if num >= 5:
  12. print 'Thread %s released! num=%s'%(name,str(num))
  13. mylock.release()
  14. thread.exit_thread()
  15. num+=1
  16. print 'Thread %s released! num=%s'%(name,str(num))
  17. mylock.release()  #Release the lock.
  18. def test():
  19. thread.start_new_thread(add_num, ('A',))
  20. thread.start_new_thread(add_num, ('B',))
  21. if __name__== '__main__':
  22. test()

Python 在thread的基础上还提供了一个高级的线程控制库,就是之前提到过的threading。Python的threading module是在建立在thread module基础之上的一个module,在threading module中,暴露了许多thread module中的属性。在thread module中,python提供了用户级的线程同步工具“Lock”对象。而在threading module中,python又提供了Lock对象的变种: RLock对象。RLock对象内部维护着一个Lock对象,它是一种可重入的对象。对于Lock对象而言,如果一个线程连续两次进行acquire操作,那么由于第一次acquire之后没有release,第二次acquire将挂起线程。这会导致Lock对象永远不会release,使得线程死锁。RLock对象允许一个线程多次对其进行acquire操作,因为在其内部通过一个counter变量维护着线程acquire的次数。而且每一次的acquire操作必须有一个release操作与之对应,在所有的release操作完成之后,别的线程才能申请该RLock对象。

下面来看看如何使用threading的RLock对象实现同步。

  1. import threading
  2. mylock = threading.RLock()
  3. num=0
  4. class myThread(threading.Thread):
  5. def __init__(self, name):
  6. threading.Thread.__init__(self)
  7. self.t_name = name
  8. def run(self):
  9. global num
  10. while True:
  11. mylock.acquire()
  12. print '\nThread(%s) locked, Number: %d'%(self.t_name, num)
  13. if num>=4:
  14. mylock.release()
  15. print '\nThread(%s) released, Number: %d'%(self.t_name, num)
  16. break
  17. num+=1
  18. print '\nThread(%s) released, Number: %d'%(self.t_name, num)
  19. mylock.release()
  20. def test():
  21. thread1 = myThread('A')
  22. thread2 = myThread('B')
  23. thread1.start()
  24. thread2.start()
  25. if __name__== '__main__':
  26. test()

我们把修改共享数据的代码成为“临界区”。必须将所有“临界区”都封闭在同一个锁对象的acquire和release之间。

2、  条件同步

锁只能提供最基本的同步。假如只在发生某些事件时才访问一个“临界区”,这时需要使用条件变量Condition。

Condition对象是对Lock对象的包装,在创建Condition对象时,其构造函数需要一个Lock对象作为参数,如果没有这个Lock对象参数,Condition将在内部自行创建一个Rlock对象。在Condition对象上,当然也可以调用acquire和release操作,因为内部的Lock对象本身就支持这些操作。但是Condition的价值在于其提供的wait和notify的语义。

条件变量是如何工作的呢?首先一个线程成功获得一个条件变量后,调用此条件变量的wait()方法会导致这个线程释放这个锁,并进入“blocked”状态,直到另一个线程调用同一个条件变量的notify()方法来唤醒那个进入“blocked”状态的线程。如果调用这个条件变量的notifyAll()方法的话就会唤醒所有的在等待的线程。

如果程序或者线程永远处于“blocked”状态的话,就会发生死锁。所以如果使用了锁、条件变量等同步机制的话,一定要注意仔细检查,防止死锁情况的发生。对于可能产生异常的临界区要使用异常处理机制中的finally子句来保证释放锁。等待一个条件变量的线程必须用notify()方法显式的唤醒,否则就永远沉默。保证每一个wait()方法调用都有一个相对应的notify()调用,当然也可以调用notifyAll()方法以防万一。

生产者与消费者问题是典型的同步问题。这里简单介绍两种不同的实现方法。

1,  条件变量

  1. import threading
  2. import time
  3. class Producer(threading.Thread):
  4. def __init__(self, t_name):
  5. threading.Thread.__init__(self, name=t_name)
  6. def run(self):
  7. global x
  8. con.acquire()
  9. if x > 0:
  10. con.wait()
  11. else:
  12. for i in range(5):
  13. x=x+1
  14. print "producing..." + str(x)
  15. con.notify()
  16. print x
  17. con.release()
  18. class Consumer(threading.Thread):
  19. def __init__(self, t_name):
  20. threading.Thread.__init__(self, name=t_name)
  21. def run(self):
  22. global x
  23. con.acquire()
  24. if x == 0:
  25. print 'consumer wait1'
  26. con.wait()
  27. else:
  28. for i in range(5):
  29. x=x-1
  30. print "consuming..." + str(x)
  31. con.notify()
  32. print x
  33. con.release()
  34. con = threading.Condition()
  35. x=0
  36. print 'start consumer'
  37. c=Consumer('consumer')
  38. print 'start producer'
  39. p=Producer('producer')
  40. p.start()
  41. c.start()
  42. p.join()
  43. c.join()
  44. print x

上面的例子中,在初始状态下,Consumer处于wait状态,Producer连续生产(对x执行增1操作)5次后,notify正在等待的Consumer。Consumer被唤醒开始消费(对x执行减1操作)

2,  同步队列

Python中的Queue对象也提供了对线程同步的支持。使用Queue对象可以实现多个生产者和多个消费者形成的FIFO的队列。

生产者将数据依次存入队列,消费者依次从队列中取出数据。

  1. # producer_consumer_queue
  2. from Queue import Queue
  3. import random
  4. import threading
  5. import time
  6. #Producer thread
  7. class Producer(threading.Thread):
  8. def __init__(self, t_name, queue):
  9. threading.Thread.__init__(self, name=t_name)
  10. self.data=queue
  11. def run(self):
  12. for i in range(5):
  13. print "%s: %s is producing %d to the queue!\n" %(time.ctime(), self.getName(), i)
  14. self.data.put(i)
  15. time.sleep(random.randrange(10)/5)
  16. print "%s: %s finished!" %(time.ctime(), self.getName())
  17. #Consumer thread
  18. class Consumer(threading.Thread):
  19. def __init__(self, t_name, queue):
  20. threading.Thread.__init__(self, name=t_name)
  21. self.data=queue
  22. def run(self):
  23. for i in range(5):
  24. val = self.data.get()
  25. print "%s: %s is consuming. %d in the queue is consumed!\n" %(time.ctime(), self.getName(), val)
  26. time.sleep(random.randrange(10))
  27. print "%s: %s finished!" %(time.ctime(), self.getName())
  28. #Main thread
  29. def main():
  30. queue = Queue()
  31. producer = Producer('Pro.', queue)
  32. consumer = Consumer('Con.', queue)
  33. producer.start()
  34. consumer.start()
  35. producer.join()
  36. consumer.join()
  37. print 'All threads terminate!'
  38. if __name__ == '__main__':
  39. main()

在上面的例子中,Producer在随机的时间内生产一个“产品”,放入队列中。Consumer发现队列中有了“产品”,就去消费它。本例中,由于Producer生产的速度快于Consumer消费的速度,所以往往Producer生产好几个“产品”后,Consumer才消费一个产品。

Queue模块实现了一个支持多producer和多consumer的FIFO队列。当共享信息需要安全的在多线程之间交换时,Queue非常有用。Queue的默认长度是无限的,但是可以设置其构造函数的maxsize参数来设定其长度。Queue的put方法在队尾插入,该方法的原型是:

put( item[, block[, timeout]])

如果可选参数block为true并且timeout为None(缺省值),线程被block,直到队列空出一个数据单元。如果timeout大于0,在timeout的时间内,仍然没有可用的数据单元,Full exception被抛出。反之,如果block参数为false(忽略timeout参数),item被立即加入到空闲数据单元中,如果没有空闲数据单元,Full exception被抛出。

Queue的get方法是从队首取数据,其参数和put方法一样。如果block参数为true且timeout为None(缺省值),线程被block,直到队列中有数据。如果timeout大于0,在timeout时间内,仍然没有可取数据,Empty exception被抛出。反之,如果block参数为false(忽略timeout参数),队列中的数据被立即取出。如果此时没有可取数据,Empty exception也会被抛出。

转载于:https://www.cnblogs.com/imhurley/p/3803271.html

Python多线程学习相关推荐

  1. Python多线程学习(上)

    最近在学习python多线程,写一下随笔就当复习了.另外强烈推荐大家看一下<Python核心编程>这本书,这本书里面可以帮你学习python进阶. 一.基本概念: 1.线程: 线程又称为轻 ...

  2. Python 多线程学习

    前言 在爬虫学习的过程中,一旦爬取的数量过大,很容易带来效率问题,为了能够快速爬取我们想要的内容.为此我们可以使用多线程或者多进程来处理. 多线程和多进程是不一样的!一个是 threading 库,一 ...

  3. python多线程学习-多线程下载图片

    目录 开发工具 知识点 代码 总结 开发工具 python版本: python-3.8.1-amd64 python开发工具: JetBrains PyCharm 2018.3.6 x64 知识点 多 ...

  4. Python多线程学习(下)

    今天介绍用Queue进行线程间的信息共享,具体就是创建一个类似队列,将数据存进去,供不同的线程之间进行利用数据.例:消费者和生产者问题,生产的产品存入队列,有消费者进行对产品消费,生产者向队列放入产品 ...

  5. Python多线程学习教程

    首先我们来解释一下多线程:多线程我们可以理解为多个进程/多个程序同时运行,多线程最大的好处就是帮助我们提高效率,平常我们1小时完成的任务,通过多线程10分钟就可以完成,甚至更短,这个就取决于你的线程数 ...

  6. python多线程执行_python多线程实现同时执行两个while循环

    如果想同时执行两个while True循环,可以使用多线程threading来实现. 完整代码 #coding=gbk from time import sleep, ctime import thr ...

  7. 【Python爬虫学习实践】多线程爬取Bing每日壁纸

    在本节实践中,我们将借助Python多线程编程并采用生产者消费者模式来编写爬取Bing每日壁纸的爬虫.在正式编程前,我们还是一样地先来分析一下我们的需求及大体实现的过程. 总体设计预览 首先,我们先来 ...

  8. 【Python基础学习】—多线程

    前言 我们知道,每个独立的进程有一个程序运行的入口.顺序执行序列和程序的出口.进程里面的任务由线程执行,线程必须依存在应用程序中,多个线程执行能够提高应用程序的执行效率,多个线程之间共用进程的寄存器数 ...

  9. python多线程并发学习

    1.python多线程适用于什么场景? 举个��:当我们想从网页上下载信息,或者从ftp服务器上下载版本时,若是版本太大,那么顺序的执行下载N个(N>1)版本就会耗费许多时间,若是可以并发地下载 ...

最新文章

  1. 漫画:大学教师暑期真实生活图鉴
  2. 并发编程实战-读书笔记
  3. Zookeeper服务器集群的搭建与操作
  4. Centos添加supervisor为服务,启动/关闭,设置开机启动服务
  5. vs2017 js cordova + dotnet core 开发app
  6. bigdecimal divide四舍五入_BigDecimal 四则运算
  7. 织梦DedeCms技术资料
  8. 作为学生,我是怎么半年赚到人生第一个三十万的
  9. Neo4j【有与无】【N4】构建图形数据库应用程序
  10. The nested type test2 cannot hide an enclosing type
  11. 海淀区国际学校排名计算机,海淀区近80所中学实力大排名,你的目标校在第几层?...
  12. 二级java有题库吗_计算机等级考试题库:你get二级Java试题了吗?
  13. java-randomAccessFile
  14. 详细说明光敏电阻的工作原理
  15. 10个定时器精选电路方案带你学习时钟脉冲的工作方式
  16. Wireshark数据抓包分析之HTTP协议
  17. 上门足疗按摩预约系统开发
  18. 做软文营销,有哪些方面的优势?
  19. 零食类电商如何差异化竞争
  20. 司法考试常用法律术语

热门文章

  1. Guava包学习---Maps
  2. tq2440实验手册qt编译问题
  3. 网络工程师的职业发展路线
  4. Jmeter(六)关联之XPath提取器
  5. 云安全趋势下脚踏实地力拼网络危胁
  6. Beyond Compare进行内容替换的方法有哪些
  7. 基于easyui开发Web版Activiti流程定制器详解(四)——页面结构(下)
  8. 【原译】简单的Malloc实现
  9. [CTO札记]从生活来看‘服务心态’
  10. 《PSP游戏下载 国际象棋大师:学习的艺术》(Chessmaster : The Art Of Learning)