目录

  • EEGNet论文
    • EEGNet简介
  • EEGNet代码实现

本分享为脑机学习者Rose整理发表于公众号:脑机接口社区 .QQ交流群:903290195

EEGNet论文

EEGNet简介


脑机接口(BCI)使用神经活动作为控制信号,实现与计算机的直接通信。这种神经信号通常是从各种研究透彻的脑电图(EEG)信号中挑选出来的。卷积神经网络(CNN)主要用来自动特征提取和分类,其在计算机视觉和语音识别领域中的使用已经很广泛。CNN已成功应用于基于EEG的BCI;但是,CNN主要应用于单个BCI范式,在其他范式中的使用比较少,论文作者提出是否可以设计一个CNN架构来准确分类来自不同BCI范式的EEG信号,同时尽可能地紧凑(定义为模型中的参数数量)。该论文介绍了EEGNet,这是一种用于基于EEG的BCI的紧凑型卷积神经网络。论文介绍了使用深度和可分离卷积来构建特定于EEG的模型,该模型封装了脑机接口中常见的EEG特征提取概念。论文通过四种BCI范式(P300视觉诱发电位、错误相关负性反应(ERN)、运动相关皮层电位(MRCP)和感觉运动节律(SMR)),将EEGNet在主体内和跨主体分类方面与目前最先进的方法进行了比较。结果显示,在训练数据有限的情况下,EEGNet比参考算法具有更强的泛化能力和更高的性能。同时论文也证明了EEGNet可以有效地推广到ERP和基于振荡的BCI。
网络结构图如下:

实验结果如下图,P300数据集的所有CNN模型之间的差异非常小,但是MRCP数据集却存在显著的差异,两个EEGNet模型的性能都优于所有其他模型。对于ERN数据集来说,两个EEGNet模型的性能都优于其他所有模型(p < 0.05)。

如下图每个模型的P300,ERN和MRCP数据集的分类性能平均为30倍。对于P300和MRCP数据集,DeepConvNet和EEGNet模型之间的差异很小,两个模型的性能均优于ShallowConvNet。对于ERN数据集,参考算法(xDAWN + RG)明显优于所有其他模型。

下图是对EEGNet-4,1模型配置获得的特征进行可视化,
(A)每个空间过滤器的空间拓扑。
(B)每个滤波器的目标试验和非目标试验之间的平均小波时频差。

下图中第一排是使用DeepLIFT针对MRCP数据集的三个不同测试试验,对使用cross-subject训练的EEGNet-8,2模型进行的单次试验脑电特征相关性:
(A)高可信度,正确预测左手运动;
(B)高可信度,正确预测右手运动;
(C)低可信度,错误预测左手运动。
标题包括真实的类别标签和该标签的预测概率。

第二排是在两个时间点的相关性空间分布图:按钮按下后大约50毫秒和150毫秒。与预期的一样,高可信度试验显示出分别对应左(A)和右(B)按钮对应的对侧运动皮层的正确相关性。对于低置信度的试验,可以看到相关性更加混杂且分布广泛,而运动皮质没有明确的空间定位。

EEGNet代码实现

作者提供的代码用的是旧版本的Pytorch,所以有一些错误。Rose小哥基于作者提供的代码在Pytorch 1.3.1(only cpu)版本下修改,经测试,在Rose小哥环境下可以运行[不排除在其他环境可能会存在不兼容的问题]

# 导入工具包
import numpy as np
from sklearn.metrics import roc_auc_score, precision_score, recall_score, accuracy_score
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F
import torch.optim as optim

EEGNet网络模型参数如下:

定义网络模型:

class EEGNet(nn.Module):def __init__(self):super(EEGNet, self).__init__()self.T = 120# Layer 1self.conv1 = nn.Conv2d(1, 16, (1, 64), padding = 0)self.batchnorm1 = nn.BatchNorm2d(16, False)# Layer 2self.padding1 = nn.ZeroPad2d((16, 17, 0, 1))self.conv2 = nn.Conv2d(1, 4, (2, 32))self.batchnorm2 = nn.BatchNorm2d(4, False)self.pooling2 = nn.MaxPool2d(2, 4)# Layer 3self.padding2 = nn.ZeroPad2d((2, 1, 4, 3))self.conv3 = nn.Conv2d(4, 4, (8, 4))self.batchnorm3 = nn.BatchNorm2d(4, False)self.pooling3 = nn.MaxPool2d((2, 4))# 全连接层# 此维度将取决于数据中每个样本的时间戳数。# I have 120 timepoints. self.fc1 = nn.Linear(4*2*7, 1)def forward(self, x):# Layer 1x = F.elu(self.conv1(x))x = self.batchnorm1(x)x = F.dropout(x, 0.25)x = x.permute(0, 3, 1, 2)# Layer 2x = self.padding1(x)x = F.elu(self.conv2(x))x = self.batchnorm2(x)x = F.dropout(x, 0.25)x = self.pooling2(x)# Layer 3x = self.padding2(x)x = F.elu(self.conv3(x))x = self.batchnorm3(x)x = F.dropout(x, 0.25)x = self.pooling3(x)# 全连接层x = x.view(-1, 4*2*7)x = F.sigmoid(self.fc1(x))return x

定义评估指标:
acc:准确率
auc:AUC 即 ROC 曲线对应的面积
recall:召回率
precision:精确率
fmeasure:F值

def evaluate(model, X, Y, params = ["acc"]):results = []batch_size = 100predicted = []for i in range(len(X)//batch_size):s = i*batch_sizee = i*batch_size+batch_sizeinputs = Variable(torch.from_numpy(X[s:e]))pred = model(inputs)predicted.append(pred.data.cpu().numpy())inputs = Variable(torch.from_numpy(X))predicted = model(inputs)predicted = predicted.data.cpu().numpy()"""设置评估指标:acc:准确率auc:AUC 即 ROC 曲线对应的面积recall:召回率precision:精确率fmeasure:F值"""for param in params:if param == 'acc':results.append(accuracy_score(Y, np.round(predicted)))if param == "auc":results.append(roc_auc_score(Y, predicted))if param == "recall":results.append(recall_score(Y, np.round(predicted)))if param == "precision":results.append(precision_score(Y, np.round(predicted)))if param == "fmeasure":precision = precision_score(Y, np.round(predicted))recall = recall_score(Y, np.round(predicted))results.append(2*precision*recall/ (precision+recall))return results

构建网络EEGNet,并设置二分类交叉熵和Adam优化器

# 定义网络
net = EEGNet()
# 定义二分类交叉熵 (Binary Cross Entropy)
criterion = nn.BCELoss()
# 定义Adam优化器
optimizer = optim.Adam(net.parameters())

创建数据集

"""
生成训练数据集,数据集有100个样本
训练数据X_train:为[0,1)之间的随机数;
标签数据y_train:为0或1
"""
X_train = np.random.rand(100, 1, 120, 64).astype('float32')
y_train = np.round(np.random.rand(100).astype('float32'))
"""
生成验证数据集,数据集有100个样本
验证数据X_val:为[0,1)之间的随机数;
标签数据y_val:为0或1
"""
X_val = np.random.rand(100, 1, 120, 64).astype('float32')
y_val = np.round(np.random.rand(100).astype('float32'))
"""
生成测试数据集,数据集有100个样本
测试数据X_test:为[0,1)之间的随机数;
标签数据y_test:为0或1
"""
X_test = np.random.rand(100, 1, 120, 64).astype('float32')
y_test = np.round(np.random.rand(100).astype('float32'))

训练并验证

batch_size = 32
# 训练 循环
for epoch in range(10): print("\nEpoch ", epoch)running_loss = 0.0for i in range(len(X_train)//batch_size-1):s = i*batch_sizee = i*batch_size+batch_sizeinputs = torch.from_numpy(X_train[s:e])labels = torch.FloatTensor(np.array([y_train[s:e]]).T*1.0)# wrap them in Variableinputs, labels = Variable(inputs), Variable(labels)# zero the parameter gradientsoptimizer.zero_grad()# forward + backward + optimizeoutputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()# 验证params = ["acc", "auc", "fmeasure"]print(params)print("Training Loss ", running_loss)print("Train - ", evaluate(net, X_train, y_train, params))print("Validation - ", evaluate(net, X_val, y_val, params))print("Test - ", evaluate(net, X_test, y_test, params))

Epoch 0
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.6107637286186218
Train - [0.52, 0.5280448717948718, 0.6470588235294118]
Validation - [0.55, 0.450328407224959, 0.693877551020408]
Test - [0.54, 0.578926282051282, 0.6617647058823529]

Epoch 1
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.5536684393882751
Train - [0.45, 0.41145833333333337, 0.5454545454545454]
Validation - [0.55, 0.4823481116584565, 0.6564885496183207]
Test - [0.65, 0.6530448717948717, 0.7107438016528926]

Epoch 2
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.5197088718414307
Train - [0.49, 0.5524839743589743, 0.5565217391304348]
Validation - [0.53, 0.5870279146141215, 0.5436893203883495]
Test - [0.57, 0.5428685897435898, 0.5567010309278351]

Epoch 3
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.4534167051315308
Train - [0.53, 0.5228365384615385, 0.4597701149425287]
Validation - [0.5, 0.48152709359605916, 0.46808510638297873]
Test - [0.61, 0.6502403846153847, 0.5517241379310345]

Epoch 4
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.3821702003479004
Train - [0.46, 0.4651442307692308, 0.3076923076923077]
Validation - [0.47, 0.5977011494252874, 0.29333333333333333]
Test - [0.52, 0.5268429487179488, 0.35135135135135137]

Epoch 5
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.440490186214447
Train - [0.56, 0.516025641025641, 0.35294117647058826]
Validation - [0.36, 0.3801313628899836, 0.2]
Test - [0.53, 0.6113782051282052, 0.27692307692307694]

Epoch 6
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.4722238183021545
Train - [0.47, 0.4194711538461539, 0.13114754098360656]
Validation - [0.46, 0.5648604269293925, 0.2285714285714286]
Test - [0.5, 0.5348557692307693, 0.10714285714285714]

Epoch 7
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.3460421562194824
Train - [0.51, 0.44871794871794873, 0.1694915254237288]
Validation - [0.44, 0.4490968801313629, 0.2]
Test - [0.53, 0.4803685897435898, 0.14545454545454545]

Epoch 8
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.3336675763130188
Train - [0.54, 0.4130608974358974, 0.20689655172413793]
Validation - [0.39, 0.40394088669950734, 0.14084507042253522]
Test - [0.51, 0.5400641025641025, 0.19672131147540983]

Epoch 9
[‘acc’, ‘auc’, ‘fmeasure’]
Training Loss 1.438510239124298
Train - [0.53, 0.5392628205128205, 0.22950819672131148]
Validation - [0.42, 0.4848111658456486, 0.09375]
Test - [0.56, 0.5420673076923076, 0.2413793103448276]

参考
应用深度学习EEGNet来处理脑电信号

本文章由脑机学习者Rose笔记分享,QQ交流群:903290195
更多分享,请关注公众号

应用深度学习EEGNet来处理脑电信号相关推荐

  1. 脑电信号特征提取算法c语言_应用深度学习EEGNet来处理脑电信号

    文章来源于"脑机接口社区" 应用深度学习EEGNet来处理脑电信号​mp.weixin.qq.com 本篇文章内容主要包括: EEGNet论文: EEGNet的实现. EEGNet ...

  2. arduino eeg脑电模块_应用深度学习EEGNet来处理脑电信号

    本分享为脑机学习者Rose整理发表于公众号:脑机接口社区(微信号:Brain_Computer).QQ交流群:903290195 EEGNet论文 EEGNet简介 脑机接口(BCI)使用神经活动作为 ...

  3. 阅读笔记3:基于深度学习的运动想象脑电信号分类算法研究

    1.论文信息 题目:基于深度学习的运动想象脑电信号分类算法研究 作者佟歌 单位:哈尔滨工程大学控制科学与工程 发表时间:201803 2.笔记 2.1 脑电信号采集及预处理 2.1.1脑电信号分析方法 ...

  4. 深度学习基于DEAP的脑电情绪识别情感分类(附代码)

    DEAP数据集: DEAP数据集来源: DEAP: A Dataset for Emotion Analysis using Physiological and Audiovisual Signals ...

  5. 一种基于深度学习的单导联心电信号睡眠呼吸暂停检测方法

    在R峰识别的基础上,加入S峰的识别,并论正了该策略对检测结果的有效性. 1.大致方法 将数据集(ECG信号)划分为每五分钟的一个片段,为了减少噪声和信号伪影,首先对信号应用了一个有限脉冲响应(FIR) ...

  6. 深度学习应用于脑电信号分析处理的相关论文,更新了......

    分享脑机学习论文,欢迎一起讨论 1.(综述性质论文)Deep learning-based electroencephalography analysis: a systematic review 论 ...

  7. [深度学习论文学习笔记]多模态融合的深度学习脑肿瘤检测方法

    多模态融合的深度学习脑肿瘤检测方法 论文:http://www.photon.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id ...

  8. Python 深度学习架构实用指南:第一、二部分

    原文:Hands-On Deep Learning Architectures with Python 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自[ApacheCN 深度学习 译文集] ...

  9. 真的能从脑电信号识别出我的情绪吗?

    关注"心仪脑"查看更多脑科学知识的分享. 提到情绪,我们脑海中可能会浮现出各种各样的场景,可能是"哭着,叫着,像个孩子在胡闹"的悲痛. (图片来源于网络) 抑或 ...

最新文章

  1. Android的数据存储方式
  2. 科大讯飞拟募资36亿,要搞什么大事?
  3. 升级将至,BCH各开发组已推出兼容新版本
  4. 数组遍历 map()、forEach() 及 字符串切割 split() / 字符串截取 slice()、substring()、substr()...
  5. salmap绕waf
  6. MM模块在做GR的时候几个需要注意的地方
  7. iPhone在华智能机市场份额首次下滑
  8. 这个为生信学习打造的开源Bash教程真香!!(目录更新)!
  9. OkHttp3详细使用教程(2)
  10. dotween unity 延时_3D俯视角射击——用Unity还原东方弹幕(上)
  11. 字符串连接符(Java)
  12. 计算机组成与体系结构之Flynn分类法
  13. 小小一款代码编辑器竟然也可以有程序运行之功能——Sublime Text3运行各种语言程序的总结
  14. 服务器显示灰色怎么办,服务器远程桌面显示灰色
  15. LeetCode-618. 学生地理信息报告(困难)行转列
  16. 微信小程序开发 uniapp【bug修复】点击事件 传值 数据结构错误 $orig
  17. UGUI Canvas(画布)详解
  18. 概率论第六章——矩估计
  19. python经典实例应用_《Python经典实例(图灵出品)》([美]史蒂文·F.洛特)【摘要 书评 试读】- 京东图书...
  20. 基于单片机超声波视力保护系统设计-基于51单片机8音键电子琴仿真设计-基于8086八路模拟信号采集均值显示系统设计-基于8086八路数据电压温度采集系统-基于8086波形发生器仿真设计【毕设课设分享】

热门文章

  1. styled-components解决全局样式‘injectGlobal‘ 废除的问题
  2. 解决html5 audio iphone,ipd,safari不能自动播放问题
  3. MySQL初始化root密码以及root密码忘记解决方法
  4. 什么是C中的“静态”功能?
  5. REST中的PUT与POST
  6. [C#] Delegate, Multicase delegate, Event
  7. Native SBS for Android
  8. 从0移植uboot (二) _uboot启动流程分析
  9. OpenDNSSEC 1.3.12 发布
  10. Android 4.0中振动控制