BL2的最后通过汇编调用了board_init_r函数,此时进入BL3的阶段,此时的主要工作:

这一阶段涉及的文件及任务如下

arch/arm/lib/board.c
           1. board_init_r()是进入定制板目录的入口
common/main.c
           2. main_loop()中关闭中断,执行命令以及加载引导内核

下面分析一下board_init_r函数:

/*************************************************************************** This is the next part if the initialization sequence: we are now* running from RAM and have a "normal" C environment, i. e. global* data can be written, BSS has been cleared, the stack size in not* that critical any more, etc.**************************************************************************/
void board_init_r(gd_t *id, ulong dest_addr)
{...bd_t *bd;...gd = id;bd = gd->bd;gd->flags |= GD_FLG_RELOC;    /* tell others: relocation done */monitor_flash_len = _end_ofs;...debug("monitor flash len: %08lX\n", monitor_flash_len);board_init();    /* Setup chipselects */    

上述代码的作用是对gd和bd进行赋值,其中monitor_flash_len为整个U-Boot的长度。

 malloc_start = dest_addr - TOTAL_MALLOC_LEN - sizeof(struct spare_boot_head_t);
...
/* The Malloc area is immediately below the monitor copy in DRAM */mem_malloc_init (malloc_start, TOTAL_MALLOC_LEN);

对SDRAM中的malloc空间进行清零初始化。

#if !defined(CONFIG_SYS_NO_FLASH)puts("Flash: ");flash_size = flash_init();if (flash_size > 0) {
# ifdef CONFIG_SYS_FLASH_CHECKSUMprint_size(flash_size, "");/** Compute and print flash CRC if flashchecksum is set to 'y'** NOTE: Maybe we should add some WATCHDOG_RESET()? XXX*/s = getenv("flashchecksum");if (s && (*s == 'y')) {printf("  CRC: %08X", crc32(0,(const unsigned char *) CONFIG_SYS_FLASH_BASE,flash_size));}putc('\n');
# else    /* !CONFIG_SYS_FLASH_CHECKSUM */print_size(flash_size, "\n");
# endif /* CONFIG_SYS_FLASH_CHECKSUM */} else {puts(failed);hang();}
#endif

上述代码的作用是计算FLASH的大小,并把它通过串口显示在控制台上。由于没有定义CONFIG_SYS_FLASH_CHECKSUM,所以没有执行CRC的校验和。其中flash_init函数是在drivers/mtd目录下的cfi_flash.c文件内(因为include/configs/smdk2410.h中定义了CONFIG_FLASH_CFI_DRIVER)。

    /* set up exceptions */interrupt_init();/* enable exceptions */enable_interrupts();

interrupt_init函数是建立IRQ中断堆栈,enable_interrupts函数是使能IRQ中断,它们都是在arch/arm/lib目录下的interrupts.c文件中定义的。

...
/* initialize environment */env_relocate();

初始化环境变量,由于gd->env_valid等于0,所以在这里设置的是缺省环境变量。env_relocate函数是在common目录下的env_common.c文件中定义的。

#if defined(CONFIG_CMD_PCI) || defined(CONFIG_PCI)arm_pci_init();
#endif

初始化PCI。

    /* IP Address */gd->bd->bi_ip_addr = getenv_IPaddr("ipaddr");stdio_init();    /* get the devices list going. */jumptable_init();
#if defined(CONFIG_API)/* Initialize API */api_init();
#endifconsole_init_r();    /* fully init console as a device */

上面代码的作用分别对应:

设置IP地址。

初始化各类外设,如IIC、LCD、键盘、USB等,当然只有在定义了这些外设的前提下,才对这些外设进行初始化。该函数是在common目录下的stdio.c文件中定义的。

初始化跳转表gd->jt,该跳转表是一个函数指针数组,它定义了U-Boot中基本的常用函数库。该函数是在common目录下的exports.c文件中定义的。

初始化API。

初始化控制台,即标准输入、标准输出和标准错误,在这里都是串口。该函数是在common目录下的console.c文件中定义的。

    /* Initialize from environment */s = getenv("loadaddr");if (s != NULL)load_addr = simple_strtoul(s, NULL, 16);

从环境变量中获取loadaddr参数,得到需要加载的地址。

#if defined(CONFIG_CMD_NET)s = getenv("bootfile");if (s != NULL)copy_filename(BootFile, s, sizeof(BootFile));
#endif

从环境变量中获取bootfile参数,得到通过TFTP加载的镜像文件名。

#if defined(CONFIG_CMD_NET)
#if defined(CONFIG_NET_MULTI)puts("Net:   ");
#endifeth_initialize(gd->bd);
#if defined(CONFIG_RESET_PHY_R)debug("Reset Ethernet PHY\n");reset_phy();
#endif
#endif

初始化以太网,其中eth_initialize函数是在net目录下的eth.c文件中定义的。

    .../* main_loop() can return to retry autoboot, if so just run it again. */for (;;){main_loop();}hang();/* NOTREACHED - no way out of command loop except booting */
}

board_init_r函数的最后就是执行一个死循环,调用main_loop函数。该函数是在common目录下的main.c文件内定义的。

总结:

3.接下来分析main_loop函数:

void main_loop (void)
{
#ifndef CONFIG_SYS_HUSH_PARSERstatic char lastcommand[CONFIG_SYS_CBSIZE] = { 0, };int len;int rc = 1;int flag;
#endif

声明一些hush参数。关于hush后面会讲到。

#if defined(CONFIG_BOOTDELAY) && (CONFIG_BOOTDELAY >= 0)char *s;int bootdelay;
#endif

声明启动延时需要的参数。

#ifdef CONFIG_SYS_HUSH_PARSERu_boot_hush_start ();
#endif

初始化hush功能。稍后再说。

 1 #if defined(CONFIG_BOOTDELAY) && (CONFIG_BOOTDELAY >= 0)2     s = getenv ("bootdelay");3     bootdelay = s ? (int)simple_strtol(s, NULL, 10) : CONFIG_BOOTDELAY;4 5     debug ("### main_loop entered: bootdelay=%d\n\n", bootdelay);6 7 # ifdef CONFIG_BOOT_RETRY_TIME8     init_cmd_timeout ();9 # endif    /* CONFIG_BOOT_RETRY_TIME */
10
11 #ifdef CONFIG_POST
12     if (gd->flags & GD_FLG_POSTFAIL) {
13         s = getenv("failbootcmd");
14     }
15     else
16 #endif /* CONFIG_POST */
17 #ifdef CONFIG_BOOTCOUNT_LIMIT
18     if (bootlimit && (bootcount > bootlimit)) {
19         printf ("Warning: Bootlimit (%u) exceeded. Using altbootcmd.\n",
20                 (unsigned)bootlimit);
21         s = getenv ("altbootcmd");
22     }
23     else
24 #endif /* CONFIG_BOOTCOUNT_LIMIT */
25         s = getenv ("bootcmd");
26
27     debug ("### main_loop: bootcmd=\"%s\"\n", s ? s : "<UNDEFINED>");
28
29     if (bootdelay >= 0 && s && !abortboot (bootdelay)) {
30 # ifdef CONFIG_AUTOBOOT_KEYED
31         int prev = disable_ctrlc(1);    /* disable Control C checking */
32 # endif
33
34 # ifndef CONFIG_SYS_HUSH_PARSER
35         run_command (s, 0);
36 # else
37         parse_string_outer(s, FLAG_PARSE_SEMICOLON |
38                     FLAG_EXIT_FROM_LOOP);
39 # endif
40
41 # ifdef CONFIG_AUTOBOOT_KEYED
42         disable_ctrlc(prev);    /* restore Control C checking */
43 # endif
44     }
45
46 # ifdef CONFIG_MENUKEY
47     if (menukey == CONFIG_MENUKEY) {
48         s = getenv("menucmd");
49         if (s) {
50 # ifndef CONFIG_SYS_HUSH_PARSER
51             run_command(s, 0);
52 # else
53             parse_string_outer(s, FLAG_PARSE_SEMICOLON |
54                         FLAG_EXIT_FROM_LOOP);
55 # endif
56         }
57     }
58 #endif /* CONFIG_MENUKEY */
59 #endif /* CONFIG_BOOTDELAY */

第2行和第3行的含义是从环境变量中获取bootdelay参数,得到自动启动缺省镜像文件的延时(单位是秒)。

其中bootdelay的作用是:uboot正常启动后,会调用main_loop(void)函数,进入main_loop()之后,如果在规定的时间(CONFIG_BOOTDELAY)内,没有检查到任何按键事件的发生,就会去加载OS,并启动系统。

第8行的含义是初始化命令行超时机制。

第25行的含义是从环境变量中获取bootcmd参数,得到在启动延时过程中自动执行的命令。当我们得到了bootcmd参数,bootdelay参数也是大于等于0,并且在启动延时过程中没有按下任意键时,执行第37行的parse_string_outer函数,该函数的作用是解释bootcmd参数

并执行,它是在common目录下的hush.c文件内定义的。

 1     /*2      * Main Loop for Monitor Command Processing3      */4 #ifdef CONFIG_SYS_HUSH_PARSER5     parse_file_outer();6     /* This point is never reached */7     for (;;);8 #else9     for (;;) {
10 #ifdef CONFIG_BOOT_RETRY_TIME
11         if (rc >= 0) {
12             /* Saw enough of a valid command to
13              * restart the timeout.
14              */
15             reset_cmd_timeout();
16         }
17 #endif
18         len = readline (CONFIG_SYS_PROMPT);
19
20         flag = 0;    /* assume no special flags for now */
21         if (len > 0)
22             strcpy (lastcommand, console_buffer);
23         else if (len == 0)
24             flag |= CMD_FLAG_REPEAT;
25 #ifdef CONFIG_BOOT_RETRY_TIME
26         else if (len == -2) {
27             /* -2 means timed out, retry autoboot
28              */
29             puts ("\nTimed out waiting for command\n");
30 # ifdef CONFIG_RESET_TO_RETRY
31             /* Reinit board to run initialization code again */
32             do_reset (NULL, 0, 0, NULL);
33 # else
34             return;        /* retry autoboot */
35 # endif
36         }
37 #endif
38
39         if (len == -1)
40             puts ("<INTERRUPT>\n");
41         else
42             rc = run_command (lastcommand, flag);
43
44         if (rc <= 0) {
45             /* invalid command or not repeatable, forget it */
46             lastcommand[0] = 0;
47         }
48     }
49 #endif /*CONFIG_SYS_HUSH_PARSER*/
50 }

由于在include/configs/smdk2410.h文件中定义了CONFIG_SYS_HUSH_PARSER,所以上面的代码仅仅执行的是第5行至第7行的内容。第5行的parse_file_outer函数是在common目录下的hush.c文件中定义的,它的含义是依次读取命令序列中的命令并执行之,其中在该

函数还调用了parse_stream_outer函数,这个函数体内有一个do-while循环,只有发生语法错误的时候才会跳出该循环,因此一般情况下永远也不会执行上面代码中的第7行内容,而是始终在那个do-while循环体内。

上面说到过如果在CONFIG_BOOTDELAY时间内,用户按下键盘上的任意一个按键,uboot就会进入与用户交互的状态。如果用户在配置文件中定义了CONFIG_SYS_HUSH_PARSER,就会通过parse_file_outer(),去接收并解析用户命令,否则进入一个for(;;)循环,

通过 readline (CONFIG_SYS_PROMPT)接收用户命令,然后调用run_command(cmd,flag)去解析并执行命令。

当在配置文件中定义了CONFIG_SYS_HUSH_PARSER,main_loop会调用parse_file_outer(),进入hush中。其中parse_file_outer()在u-boot\common\hush.c下。

#ifndef __U_BOOT__
static int parse_file_outer(FILE *f)
#else
int parse_file_outer(void)
#endif
{int rcode;struct in_str input;
#ifndef __U_BOOT__setup_file_in_str(&input, f);
#elsesetup_file_in_str(&input);
#endifrcode = parse_stream_outer(&input, FLAG_PARSE_SEMICOLON);return rcode;
}

/* most recursion does not come through here, the exeception is* from builtin_source() */
int parse_stream_outer(struct in_str *inp, int flag)
{struct p_context ctx;o_string temp=NULL_O_STRING;int rcode;
#ifdef __U_BOOT__int code = 0;
#endifdo {ctx.type = flag;initialize_context(&ctx);update_ifs_map();if (!(flag & FLAG_PARSE_SEMICOLON) || (flag & FLAG_REPARSING)) mapset((uchar *)";$&|", 0);inp->promptmode=1;rcode = parse_stream(&temp, &ctx, inp, '\n');
#ifdef __U_BOOT__if (rcode == 1) flag_repeat = 0;
#endifif (rcode != 1 && ctx.old_flag != 0) {syntax();
#ifdef __U_BOOT__flag_repeat = 0;
#endif}if (rcode != 1 && ctx.old_flag == 0) {done_word(&temp, &ctx);done_pipe(&ctx,PIPE_SEQ);
#ifndef __U_BOOT__run_list(ctx.list_head);
#elsecode = run_list(ctx.list_head);if (code == -2) {    /* exit */b_free(&temp);code = 0;/* XXX hackish way to not allow exit from main loop */if (inp->peek == file_peek) {printf("exit not allowed from main input shell.\n");continue;}break;}if (code == -1)flag_repeat = 0;
#endif} else {if (ctx.old_flag != 0) {free(ctx.stack);b_reset(&temp);}
#ifdef __U_BOOT__if (inp->__promptme == 0) printf("<INTERRUPT>\n");inp->__promptme = 1;
#endiftemp.nonnull = 0;temp.quote = 0;inp->p = NULL;free_pipe_list(ctx.list_head,0);}b_free(&temp);} while (rcode != -1 && !(flag & FLAG_EXIT_FROM_LOOP));   /* loop on syntax errors, return on EOF */
#ifndef __U_BOOT__return 0;
#elsereturn (code != 0) ? 1 : 0;
#endif /* __U_BOOT__ */
}

hush是uboot中命令接收和解析的工具,与uboot原始的命令解析方法相比,该工具更加智能。

这里会在run_list中调用到hush中的run_pipe_real(struct pipe *pi),在该函数中经过一些列解析,最终会调用到对应的命令执行函数。

/* run_pipe_real() starts all the jobs, but doesn't wait for anything* to finish.  See checkjobs().** return code is normally -1, when the caller has to wait for children* to finish to determine the exit status of the pipe.  If the pipe* is a simple builtin command, however, the action is done by the* time run_pipe_real returns, and the exit code is provided as the* return value.** The input of the pipe is always stdin, the output is always* stdout.  The outpipe[] mechanism in BusyBox-0.48 lash is bogus,* because it tries to avoid running the command substitution in* subshell, when that is in fact necessary.  The subshell process* now has its stdout directed to the input of the appropriate pipe,* so this routine is noticeably simpler.*/
static int run_pipe_real(struct pipe *pi)
{int i;
#ifndef __U_BOOT__int nextin, nextout;int pipefds[2];                /* pipefds[0] is for reading */struct child_prog *child;struct built_in_command *x;char *p;
# if __GNUC__/* Avoid longjmp clobbering */(void) &i;(void) &nextin;(void) &nextout;(void) &child;
# endif
#elseint nextin;int flag = do_repeat ? CMD_FLAG_REPEAT : 0;struct child_prog *child;cmd_tbl_t *cmdtp;char *p;
# if __GNUC__/* Avoid longjmp clobbering */(void) &i;(void) &nextin;(void) &child;
# endif
#endif    /* __U_BOOT__ */nextin = 0;
#ifndef __U_BOOT__pi->pgrp = -1;
#endif/* Check if this is a simple builtin (not part of a pipe).* Builtins within pipes have to fork anyway, and are handled in* pseudo_exec.  "echo foo | read bar" doesn't work on bash, either.*/if (pi->num_progs == 1) child = & (pi->progs[0]);
#ifndef __U_BOOT__if (pi->num_progs == 1 && child->group && child->subshell == 0) {int squirrel[] = {-1, -1, -1};int rcode;debug_printf("non-subshell grouping\n");setup_redirects(child, squirrel);/* XXX could we merge code with following builtin case,* by creating a pseudo builtin that calls run_list_real? */rcode = run_list_real(child->group);restore_redirects(squirrel);
#elseif (pi->num_progs == 1 && child->group) {int rcode;debug_printf("non-subshell grouping\n");rcode = run_list_real(child->group);
#endifreturn rcode;} else if (pi->num_progs == 1 && pi->progs[0].argv != NULL) {for (i=0; is_assignment(child->argv[i]); i++) { /* nothing */ }if (i!=0 && child->argv[i]==NULL) {/* assignments, but no command: set the local environment */for (i=0; child->argv[i]!=NULL; i++) {/* Ok, this case is tricky.  We have to decide if this is a* local variable, or an already exported variable.  If it is* already exported, we have to export the new value.  If it is* not exported, we need only set this as a local variable.* This junk is all to decide whether or not to export this* variable. */int export_me=0;char *name, *value;name = xstrdup(child->argv[i]);debug_printf("Local environment set: %s\n", name);value = strchr(name, '=');if (value)*value=0;
#ifndef __U_BOOT__if ( get_local_var(name)) {export_me=1;}
#endiffree(name);p = insert_var_value(child->argv[i]);set_local_var(p, export_me);if (p != child->argv[i]) free(p);}return EXIT_SUCCESS;   /* don't worry about errors in set_local_var() yet */}for (i = 0; is_assignment(child->argv[i]); i++) {p = insert_var_value(child->argv[i]);
#ifndef __U_BOOT__putenv(strdup(p));
#elseset_local_var(p, 0);
#endifif (p != child->argv[i]) {child->sp--;free(p);}}if (child->sp) {char * str = NULL;str = make_string((child->argv + i));parse_string_outer(str, FLAG_EXIT_FROM_LOOP | FLAG_REPARSING);free(str);return last_return_code;}
#ifndef __U_BOOT__for (x = bltins; x->cmd; x++) {if (strcmp(child->argv[i], x->cmd) == 0 ) {int squirrel[] = {-1, -1, -1};int rcode;if (x->function == builtin_exec && child->argv[i+1]==NULL) {debug_printf("magic exec\n");setup_redirects(child,NULL);return EXIT_SUCCESS;}debug_printf("builtin inline %s\n", child->argv[0]);/* XXX setup_redirects acts on file descriptors, not FILEs.* This is perfect for work that comes after exec().* Is it really safe for inline use?  Experimentally,* things seem to work with glibc. */setup_redirects(child, squirrel);
#else/* check ";", because ,example , argv consist from* "help;flinfo" must not execute*/if (strchr(child->argv[i], ';')) {printf ("Unknown command '%s' - try 'help' or use 'run' command\n",child->argv[i]);return -1;}/* Look up command in command table */if ((cmdtp = find_cmd(child->argv[i])) == NULL) {printf ("Unknown command '%s' - try 'help'\n", child->argv[i]);return -1;    /* give up after bad command */} else {int rcode;
#if defined(CONFIG_CMD_BOOTD)/* avoid "bootd" recursion */if (cmdtp->cmd == do_bootd) {if (flag & CMD_FLAG_BOOTD) {printf ("'bootd' recursion detected\n");return -1;}elseflag |= CMD_FLAG_BOOTD;}
#endif/* found - check max args */if ((child->argc - i) > cmdtp->maxargs)return cmd_usage(cmdtp);
#endifchild->argv+=i;  /* XXX horrible hack */
#ifndef __U_BOOT__rcode = x->function(child);
#else/* OK - call function to do the command */rcode = (cmdtp->cmd)
(cmdtp, flag,child->argc-i,&child->argv[i]);if ( !cmdtp->repeatable )flag_repeat = 0;#endifchild->argv-=i;  /* XXX restore hack so free() can work right */
#ifndef __U_BOOT__restore_redirects(squirrel);
#endifreturn rcode;}}
#ifndef __U_BOOT__}for (i = 0; i < pi->num_progs; i++) {child = & (pi->progs[i]);/* pipes are inserted between pairs of commands */if ((i + 1) < pi->num_progs) {if (pipe(pipefds)<0) perror_msg_and_die("pipe");nextout = pipefds[1];} else {nextout=1;pipefds[0] = -1;}/* XXX test for failed fork()? */if (!(child->pid = fork())) {/* Set the handling for job control signals back to the default.  */signal(SIGINT, SIG_DFL);signal(SIGQUIT, SIG_DFL);signal(SIGTERM, SIG_DFL);signal(SIGTSTP, SIG_DFL);signal(SIGTTIN, SIG_DFL);signal(SIGTTOU, SIG_DFL);signal(SIGCHLD, SIG_DFL);close_all();if (nextin != 0) {dup2(nextin, 0);close(nextin);}if (nextout != 1) {dup2(nextout, 1);close(nextout);}if (pipefds[0]!=-1) {close(pipefds[0]);  /* opposite end of our output pipe */}/* Like bash, explicit redirects override pipes,* and the pipe fd is available for dup'ing. */setup_redirects(child,NULL);if (interactive && pi->followup!=PIPE_BG) {/* If we (the child) win the race, put ourselves in the process* group whose leader is the first process in this pipe. */if (pi->pgrp < 0) {pi->pgrp = getpid();}if (setpgid(0, pi->pgrp) == 0) {tcsetpgrp(2, pi->pgrp);}}pseudo_exec(child);}/* put our child in the process group whose leader is thefirst process in this pipe */if (pi->pgrp < 0) {pi->pgrp = child->pid;}/* Don't check for errors.  The child may be dead already,* in which case setpgid returns error code EACCES. */setpgid(child->pid, pi->pgrp);if (nextin != 0)close(nextin);if (nextout != 1)close(nextout);/* If there isn't another process, nextin is garbagebut it doesn't matter */nextin = pipefds[0];}
#endifreturn -1;
}

View Code

上面关键是这段:

                /* OK - call function to do the command */rcode = (cmdtp->cmd)
(cmdtp, flag,child->argc-i,&child->argv[i]);if ( !cmdtp->repeatable )flag_repeat = 0;

通过这段代码调用对应的命令执行函数。cmd_tbl_t的结构如下:

struct cmd_tbl_s {char        *name;        /* Command Name            */int        maxargs;    /* maximum number of arguments    */int        repeatable;    /* autorepeat allowed?        *//* Implementation function    */int        (*cmd)(struct cmd_tbl_s *, int, int, char * const []);char        *usage;        /* Usage message    (short)    */
#ifdef    CONFIG_SYS_LONGHELPchar        *help;        /* Help  message    (long)    */
#endif
#ifdef CONFIG_AUTO_COMPLETE/* do auto completion on the arguments */int        (*complete)(int argc, char * const argv[], char last_char, int maxv, char *cmdv[]);
#endif
};typedef struct cmd_tbl_s    cmd_tbl_t;

对于uboot支持的每一个命令,是通过U_BOOT_CMD宏定义的,他定义了该命令对应的名称name,支持的最大参数rep,重复次数,实现函数cmd,以及输入help命令时,显示的帮助信息usage。

在执行函数cmd中,第一个参数对应该命令结构本身的指针,第二个参数对应flag标记,第三个参数对应参数数目,第四个参数是指针数组,里面存储的是对应参数的指针。

转载于:https://www.cnblogs.com/yeqluofwupheng/p/7372849.html

uboot学习之BL3的流程相关推荐

  1. UBOOT学习1——UBOOT移植流程

    UBOOT学习1--UBOOT移植流程 1.创建板级目录 在board/ 目录下创建目录更改文件(使用imx6ull) (1)创建板级.c文件 (2)更改镜像配置文件imximage.cfg 2.创建 ...

  2. U-Boot 之五 详解 U-Boot 及 SPL 的启动流程

      在之前的博文 Linux 之八 完整嵌入式 Linux 环境介绍及搭建过程详解 中我们说了要一步步搭建整个嵌入式 Linux 运行环境,今天继续介绍 U-Boot 相关的内容.我所使用的硬件平台及 ...

  3. OK6410开发板Uboot学习总结----(三)从SD卡启动分析

    前面讲了Uboot启动流程和如何修改调试串口,相信大家对Uboot已经有了初步的了解,今天来进行更深一点的分析.上篇文章 OK6410开发板Uboot学习总结----(二)修改调试打印串口 遗留一个问 ...

  4. 学习ui设计的流程是什么

    UI设计在如今的市场行情中是很多企业都必不可少的一个技术岗位,UI设计是比较注重自身产品的用户体验的,想要学习UI设计,一定要做足功课,下面小编就为大家详细的介绍一下学习ui设计的流程是什么? 学习u ...

  5. 一文搞定深度学习建模预测全流程(Python)

    作者 | 泳鱼 来源 | 算法进阶 本文详细地梳理及实现了深度学习模型构建及预测的全流程,代码示例基于python及神经网络库keras,通过设计一个深度神经网络模型做波士顿房价预测.主要依赖的Pyt ...

  6. ZYNQ学习(1) —— 基础开发流程

    ZYNQ学习(1) -- 基础开发流程 1. 现在PlanAhead中新建一个工程 2. 添加嵌入式内核,进入EDK中配置内核(导入XML模板,添加模块,设置端口等) 3. 回到PlanAhead生成 ...

  7. app开发学习需要经历哪些流程

    app开发学习需要经历哪些流程?如何零基础入门app开发?以下是知乎热心开发者的经验总结,对学习app开发有很好的参考意义 1.如果没有编程基础的,学习基础知识的过程肯定是必须的. 2.有了一些基础之 ...

  8. html 流程控制,HTML5独家分享:原生JS学习笔记2——程序流程控制

    当当当当 .....楼主又来了!新一期的js学习笔记2--程序流程控制更新了! 想一键获取全部js学习笔记的可以给楼主留言哦! js中的程序控制语句 常见的程序有三种执行结构: 1.顺序结构 2.分支 ...

  9. 深度学习建模预测全流程(Python)!

    本文详细地梳理及实现了深度学习模型构建及预测的全流程,代码示例基于python及神经网络库keras,通过设计一个深度神经网络模型做波士顿房价预测.主要依赖的Python库有:keras.scikit ...

最新文章

  1. varnish缓存的配置优化(redhat5.4)
  2. Redis集群研究和实践(基于redis 3.0.5)
  3. 忘记Oracle中System和Sys密码的解决办法
  4. 关于开发系统后门软件的几点思路
  5. spring cloud各组件详解
  6. Linux 命令之 mv -- 移动文件/重命名文件
  7. 从0开始学习 GitHub 系列之「06.团队合作利器 Branch」
  8. 时间服务器端口协议,ntp时间服务器
  9. 2018年下半年系统集成项目管理工程师下午真题及答案解析
  10. HP Proliant DL360 G9使用业务网卡登录ILO管理
  11. 树莓派网络摄像头远程监控
  12. 别做正常的傻瓜-读后感
  13. *关键字retry:很像goto语句,跳到标记处
  14. 数字图像处理——第二章(数字图像基础)
  15. 新版标准日本语中级_第十六课
  16. 4K技术频抢戏 OLED电视现身更待何时
  17. 2D和3D人体姿态数据集
  18. 黑盒测试,白盒测试,灰盒测试
  19. mysql 事务的好坏_mysql存储引擎:InnoDB和MyISAM的差别/优劣评价/评测/性能测试
  20. PHP程序员每天都在做什么?我跟大伙聊聊一天的工作日常

热门文章

  1. 神经正切核,深度学习理论研究的最新热点?
  2. 「AI不惑境」学习率和batchsize如何影响模型的性能?
  3. 语音识别已成红海,声纹识别正成为AI领域新热点
  4. 从神经网络的历史发展热潮看深度学习的发展趋势
  5. 中文分词jieba的简单使用
  6. 清华大学和MIT研究人员使用DeepMind的AlphaFold方法来增强COVID-19抗体
  7. 清华大学精密仪器系:智能传感器太重要了!
  8. 美国国家科学委员会发布学术研发报告
  9. 数字化?智能化?中国企业智能制造现状究竟如何 李炳积 工信头条 昨天
  10. 《2020城市大脑全球标准研究报告》全文正式开放申领