一、常见索引数据结构

索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。

1、哈希表

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的值即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况(hash冲突)。处理这种情况的一种方法是,拉出一个链表。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

图中,User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。假设,这时候你要查 ID_card_n2 对应的名字是什么,处理步骤就是:首先,将ID_card_n2 通过哈希函数算出 N;然后,按顺序遍历,找到 User2。

需要注意的是,图中四个 ID_card_n 的值并不是递增的,这样做的好处是增加新的 User时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。你可以设想下,如果你现在要找身份证号在 [ID_card_X, ID_card_Y] 这个区间的所有用户,就必须全部扫描一遍了。所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些NoSQL 引擎。

2、有序数组

有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 ID_card_n2 对应的名字,用二分法就可以快速得到,这个时间复杂度是O(log(N))。

同时很显然,这个索引结构支持范围查询。你要查身份证号在 [ID_card_X, ID_card_Y] 区间的 User,可以先用二分法找到 ID_card_X(如果不存在 ID_card_X,就找到大于ID_card_X 的第一个 User),然后向右遍历,直到查到第一个大于 ID_card_Y 的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。

3、二叉搜索树

二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF ->User2 这个路径得到。这个时间复杂度是 O(log(N))。

当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10ms 的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。

小结:

以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。不管是哈希还是有序数组,或者 N 叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表、LSM 树等数据结构也被用于引擎设计中你心里要有个概念,数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。

二、InnoDB 的索引模型

在 MySQL 中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。由于 InnoDB 存储引擎在 MySQL 数据库中使用最为广泛,所以下面我就以 InnoDB 为例,和你分析一下其中的索引模型。

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+树中的。

每一个索引在 InnoDB 里面对应一棵 B+ 树。假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引。

mysql> create table T(id int primary key,k int not null,name varchar(16),index (k)
)engine=InnoDB;

表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下

1、聚簇索引

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

2、基于主键索引和普通索引的查询有什么区别?

如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵B+ 树;

如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

3、如何做索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,

如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

4、自增主键的作用

基于上面的索引维护过程说明,我们来讨论一个案例:

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULLPRIMARY KEY AUTO_INCREMENT。

1)从性能上的考虑

插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的ID 值。也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

2)从存储空间角度

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?

由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:

1)只有一个索引;

2)该索引必须是唯一索引。

你一定看出来了,这就是典型的 KV 场景。由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树

三、问题

假设有如下表需要重建索引:

mysql> create table T(id int primary key,k int not null,name varchar(16),index (k)
)engine=InnoDB;

1、为何要重建索引?

答:索引可能因为删除,或者页分裂等原因,导致数据页有空洞,重建索引的过程会创建一个新的索引,把数据按顺序插入,这样页面的利用率最高,也就是索引更紧凑、更省空间

2、上表若需重建索引,以下操作有无问题?

1)如果你要重建索引 k,你的两个 SQL 语句可以这么写:

alter table T drop index k;
alter table T add index(k);

2)如果你要重建主键索引,也可以这么写:

alter table T drop primary key;
alter table T add primary key(id);

答:重建索引 k 的做法是合理的,可以达到省空间的目的。但是,重建主键的过程不合理。不论是删除主键还是创建主键,都会将整个表重建。所以连着执行这两个语句的话,第一个语句就白做了。这两个语句,你可以用这个语句代替

alter table T engine=InnoDB

MySQL索引数据结构详解相关推荐

  1. 【肝帝一周总结:全网最全最细】☀️Mysql 索引数据结构详解与索引优化☀️《❤️记得收藏❤️》

    [肝帝一周总结:全网最全最细]☀️Mysql 索引数据结构详解与索引优化☀️<❤️记得收藏❤️> 目录

  2. 1万条数据大概占多大空间_Java互联网架构-性能优化Mysql索引数据结构详解

    欢迎关注头条号:java小马哥 周一至周日下午三点半!精品技术文章准时送上!!! 精品学习资料获取通道,参见文末 一,索引数据结构红黑树,Hash,B+树详解 索引是帮助MySQL高效获取数据的排好序 ...

  3. MySQL事务、MySQL索引、MySQL索引数据结构详解

    事务 DDL : 操作表,库 DCL : 授权 DML : 增删改数据 DQL : 查询 TCL : 数据库事务语言 #前期准备 CREATE TABLE account( #账户 id INT PR ...

  4. 数据结构可视化与MySQL索引视频详解

    数据结构 必看: 数据结构可视化:https://www.cs.usfca.edu/~galles/visualization/Algorithms.html MySQL索引视频详解:https:// ...

  5. MySQL索引原理详解

    MySQL索引原理详解 索引的本质 索引的分类 Hash 索引 二叉树 B树(二三树) B+树 主键目录 索引页 索引页的分层 非主键索引 回表 索引的本质 索引的本质是一种排好序的数据结构. 索引的 ...

  6. MySQL 索引失效详解

    MySQL 索引失效详解 一.MySQL索引失效原因汇总 隐式的类型转换,索引失效 查询条件包含or,可能导致索引失效 like通配符可能导致索引失效 查询条件不满足联合索引的最左匹配原则 在索引列上 ...

  7. mysql 大量数据 更改索引_Mysql索引数据结构详解与索引优化

    本篇文章主要学习了MySQL的索引的数据结构的认识,做一个大概的了解即可. 一.索引 在关系数据库中,索引是一种单独的.物理的对数据库表中一列或多列的值进行排序的一种存储数据结构,它是某个表中一列或若 ...

  8. 玩转Mysql系列 - 第22篇:mysql索引原理详解

    Mysql系列的目标是:通过这个系列从入门到全面掌握一个高级开发所需要的全部技能. 欢迎大家加我微信itsoku一起交流java.算法.数据库相关技术. 这是Mysql系列第22篇. 背景 使用mys ...

  9. Mysql索引优化详解

    索引优化分析详解: http://liucw.cn/2018/01/07/mysql/%E7%B4%A2%E5%BC%95%E4%BC%98%E5%8C%96%E5%88%86%E6%9E%90/

最新文章

  1. 数组常用解题方法(持续更新)
  2. 为什么字节跳动、腾讯、阿里都在用Python??
  3. 用DOS命令来运行Java代码
  4. [做题记录]AtCoder AGC做题记录
  5. c语言管理系统信息以文件保存,求大神给一份能用的c语言的学籍管理系统:且能进行文件保存...
  6. 【CodeForces - 1027C】Minimum Value Rectangle (数学,公式化简,思维,卡常卡memset)
  7. router vue 动态改变url_2020年 vue常见面试问题总结(干货)!
  8. java实验10流_实验9 Java输入输出流
  9. 电脑不能上网win7 解决办法
  10. 神舟电脑冲击创业板失败 首发未获证监会通过
  11. 瑞幸咖啡首席技术官也离职了:并未参加公司财务造假
  12. 云计算的高增长将持续推动光模块行业景气度
  13. python下载贴吧的图片
  14. 数学中几种积:点积(数量积/标量积/内积)、叉积(叉乘/向量积)、外积(张量积/Kronecker积)、哈达玛积(元素积)
  15. 总结js中关于路径的写法
  16. 消息中间件RabbitMQ
  17. 计算机汉字录入试题,计算机等考试一级B上机试题——汉字录入题
  18. VB中On Error Resume Next 什么意思,一般在什么情况下使用
  19. 计算机技能大赛 英语,计算机科学与技术学院英语技能大赛圆满结束
  20. 基于某知名招聘网站的上海财务岗位数据分析(含excel可视化)

热门文章

  1. kafka send方法详解 (同步异步) 小白使用记录
  2. keyboard speed
  3. 近视眼手术-如何治近视-激光近视手术
  4. 「 周末去哪儿」安卓版免费下载 - 豌豆荚
  5. 中国经济学家与管理学家的错位
  6. SODA10M 数据集下载记录
  7. AcWing 692. G巴士计数 差分+前缀和
  8. 局域网访问提示无法访问检查拼写_Win7访问共享文件夹提示请检查名称的拼写的解决方法...
  9. 查看mysql缓存命中_【转】MySQL如何检查缓存命中
  10. 无极性电容的定义及应用