我们今天来聊一聊Kafka中优秀的设计,希望可以提高你的设计能力、写代码能力!

一.Kafka基础

消息系统的作用

应该大部份小伙伴都清楚,用机油装箱举个例子

所以消息系统就是如上图我们所说的仓库,能在中间过程作为缓存,并且实现解耦合的作用。

引入一个场景,我们知道中国移动,中国联通,中国电信的日志处理,是交给外包去做大数据分析的,假设现在它们的日志都交给了你做的系统去做用户画像分析。

按照刚刚前面提到的消息系统的作用,我们知道了消息系统其实就是一个模拟缓存 ,且仅仅是起到了缓存的作用 而并不是真正的缓存,数据仍然是存储在磁盘上面而不是内存。

1.Topic 主题

kafka学习了数据库里面的设计,在里面设计了topic(主题),这个东西类似于关系型数据库的表

此时我需要获取中国移动的数据,那就直接监听TopicA即可

2.Partition 分区

kafka还有一个概念叫Partition(分区),分区具体在服务器上面表现起初就是一个目录,一个主题下面有多个分区,这些分区会存储到不同的服务器上面,或者说,其实就是在不同的主机上建了不同的目录。

这些分区主要的信息就存在了.log文件里面。跟数据库里面的分区差不多,是为了提高性能。

至于为什么提高了性能,很简单,多个分区多个线程,多个线程并行处理肯定会比单线程好得多

Topic和partition像是HBASE里的table和region的概念,table只是一个逻辑上的概念,真正存储数据的是region,这些region会分布式地存储在各个服务器上面,对应于kafka,也是一样,Topic也是逻辑概念 ,而partition就是分布式存储单元。这个设计是保证了海量数据处理的基础。

我们可以对比一下,如果HDFS没有block的设计,一个100T的文件也只能单独放在一个服务器上面,那就直接占满整个服务器了,引入block后,大文件可以分散存储在不同的服务器上。

注意:1.分区会有单点故障问题,所以我们会为每个分区设置副本数

2.分区的编号是从0开始的

3.Producer - 生产者

往消息系统里面发送数据的就是生产者

4.Consumer - 消费者

从kafka里读取数据的就是消费者

5.Message - 消息

kafka里面的我们处理的数据叫做消息

二.Kafka的集群架构

创建一个TopicA的主题,3个分区分别存储在不同的服务器,也就是broker下面。Topic是一个逻辑上的概念 ,并不能直接在图中把Topic的相关单元画出

需要注意:kafka在0.8版本以前是没有副本机制的,所以在面对服务器宕机的突发情况时会丢失数据,所以尽量避免使用这个版本之前的kafka

Replica - 副本

kafka中的partition为了保证数据安全,所以每个partition可以设置多个副本。

此时我们对分区0,1,2分别设置3个副本(其实设置两个副本是比较合适的)

而且其实每个副本都是有角色之分的,它们会选取一个副本作为leader,而其余的作为follower,我们的生产者在发送数据的时候,是直接发送到leader partition里面 ,然后follower partition会去leader那里自行同步数据,消费者消费数据的时候,也是从leader那去消费数据的 。

另外搜索公众号后端架构师回复“架构整洁”,送你一份惊喜礼包。

Consumer Group - 消费者组

我们在消费数据时会在代码里面指定一个group.id,这个id代表的是消费组的名字,而且这个group.id就算不设置,系统也会默认设置

conf.setProperty("group.id","tellYourDream")

我们所熟知的一些消息系统一般来说会这样设计,就是只要有一个消费者去消费了消息系统里面的数据,那么其余所有的消费者都不能再去消费这个数据。可是kafka并不是这样,比如现在consumerA去消费了一个topicA里面的数据。

consumerA:
    group.id = a
consumerB:
    group.id = a

consumerC:
    group.id = b
consumerD:
    group.id = b

再让consumerB也去消费TopicA的数据,它是消费不到了,但是我们在consumerC中重新指定一个另外的group.id,consumerC是可以消费到topicA的数据的。而consumerD也是消费不到的,所以在kafka中,不同组可有唯一的一个消费者去消费同一主题的数据。

所以消费者组就是让多个消费者并行消费信息而存在的,而且它们不会消费到同一个消息,如下,consumerA,B,C是不会互相干扰的

consumer group:a
    consumerA
    consumerB
    consumerC

如图,因为前面提到过了消费者会直接和leader建立联系,所以它们分别消费了三个leader,所以一个分区不会让消费者组里面的多个消费者去消费 ,但是在消费者不饱和的情况下,一个消费者是可以去消费多个分区的数据的 。

Controller

熟知一个规律:在大数据分布式文件系统里面,95%的都是主从式的架构,个别是对等式的架构,比如ElasticSearch。

kafka也是主从式的架构,主节点就叫controller,其余的为从节点,controller是需要和zookeeper进行配合管理整个kafka集群。

kafka和zookeeper如何配合工作

kafka严重依赖于zookeeper集群(所以之前的zookeeper文章还是有点用的)。所有的broker在启动的时候都会往zookeeper进行注册,目的就是选举出一个controller,这个选举过程非常简单粗暴,就是一个谁先谁当的过程,不涉及什么算法问题。

那成为controller之后要做啥呢,它会监听zookeeper里面的多个目录。

例如有一个目录/brokers/,其他从节点往这个目录上注册(就是往这个目录上创建属于自己的子目录而已) 自己,这时命名规则一般是它们的id编号,比如/brokers/0,1,2注册时各个节点必定会暴露自己的主机名,端口号等等的信息,此时controller就要去读取注册上来的从节点的数据(通过监听机制),生成集群的元数据信息,之后把这些信息都分发给其他的服务器,让其他服务器能感知到集群中其它成员的存在 。

此时模拟一个场景,我们创建一个主题(其实就是在zookeeper上/topics/topicA这样创建一个目录而已),kafka会把分区方案生成在这个目录中,此时controller就监听到了这一改变,它会去同步这个目录的元信息,然后同样下放给它的从节点,通过这个方法让整个集群都得知这个分区方案,此时从节点就各自创建好目录等待创建分区副本即可。这也是整个集群的管理机制。

加餐时间

1.Kafka性能好在什么地方?

① 顺序写

操作系统每次从磁盘读写数据的时候,需要先寻址,也就是先要找到数据在磁盘上的物理位置,然后再进行数据读写,如果是机械硬盘,寻址就需要较长的时间。

kafka的设计中,数据其实是存储在磁盘上面,一般来说,会把数据存储在内存上面性能才会好。但是kafka用的是顺序写,追加数据是追加到末尾,磁盘顺序写的性能极高,在磁盘个数一定,转数达到一定的情况下,基本和内存速度一致

随机写的话是在文件的某个位置修改数据,性能会较低。

② 零拷贝

先来看看非零拷贝的情况

可以看到数据的拷贝从内存拷贝到kafka服务进程那块,又拷贝到socket缓存那块,整个过程耗费的时间比较高,kafka利用了Linux的sendFile技术(NIO),省去了进程切换和一次数据拷贝,让性能变得更好。

2.日志分段存储

Kafka规定了一个分区内的.log文件最大为1G,做这个限制目的是为了方便把.log加载到内存去操作

00000000000000000000.index
00000000000000000000.log
00000000000000000000.timeindex

00000000000005367851.index
00000000000005367851.log
00000000000005367851.timeindex

00000000000009936472.index
00000000000009936472.log
00000000000009936472.timeindex

这个9936472之类的数字,就是代表了这个日志段文件里包含的起始offset,也就说明这个分区里至少都写入了接近1000万条数据了。

Kafka broker有一个参数,log.segment.bytes,限定了每个日志段文件的大小,最大就是1GB,一个日志段文件满了,就自动开一个新的日志段文件来写入,避免单个文件过大,影响文件的读写性能,这个过程叫做log rolling,正在被写入的那个日志段文件,叫做active log segment。

如果大家有看前面的两篇有关于HDFS的文章时,就会发现NameNode的edits log也会做出限制,所以这些框架都是会考虑到这些问题。

3.Kafka的网络设计

kafka的网络设计和Kafka的调优有关,这也是为什么它能支持高并发的原因

首先客户端发送请求全部会先发送给一个Acceptor,broker里面会存在3个线程(默认是3个),这3个线程都是叫做processor,Acceptor不会对客户端的请求做任何的处理,直接封装成一个个socketChannel发送给这些processor形成一个队列,发送的方式是轮询,就是先给第一个processor发送,然后再给第二个,第三个,然后又回到第一个。消费者线程去消费这些socketChannel时,会获取一个个request请求,这些request请求中就会伴随着数据。

线程池里面默认有8个线程,这些线程是用来处理request的,解析请求,如果request是写请求,就写到磁盘里。读的话返回结果。processor会从response中读取响应数据,然后再返回给客户端。这就是Kafka的网络三层架构。

所以如果我们需要对kafka进行增强调优,增加processor并增加线程池里面的处理线程,就可以达到效果。request和response那一块部分其实就是起到了一个缓存的效果,是考虑到processor们生成请求太快,线程数不够不能及时处理的问题。

所以这就是一个加强版的reactor网络线程模型。

往期推荐

面试官:来说说https和http区别?

聊聊前后端分离接口规范

SpringBoot 配置文件中的敏感信息如何保护?

图解 Spring 循环依赖,顶呱呱的好

7000+字,30+张图!Java线上故障排查思路全部总结在这里了

没错!后端程序员也可以用Grafana做出漂亮可视化界面!

记一次 Java 应用内存泄漏的定位过程

你见过最垃圾的代码长什么样?(来长长见识)

多维度Mysql数据库优化策略 (建议收藏)!!

面试官老是问到Nginx 的五大应用场景

回复干货】获取精选干货视频教程

回复加群】加入疑难问题攻坚交流群

回复mat】获取内存溢出问题分析详细文档教程

回复赚钱】获取用java写一个能赚钱的微信机器人

回复副业】获取程序员副业攻略一份

好文请点赞+分享

Kafka 中的这些设计思想值得一学!相关推荐

  1. 专业老师为你讲解夹具设计,值得一学!

    专业老师为你讲解夹具设计,值得一学! 在机床上加工工件时,我们可以看到两种不同的情况: (1)用划针或指示表等量具,按工件的某一表面,或者按工件表面上所划的线进行找正,使工件在机床上处于所需要的正确位 ...

  2. 资深老师讲解CAD中的旋转命令,值得一学!

    资深老师讲解CAD中的旋转命令,值得一学! 在使用CAD绘制图形的过程中,小伙伴们可能会遇到一种情况,当图形绘制完成后发现图形的角度与实际需求有所偏差,这个时候我们就需要用到CAD中的旋转命令来调整图 ...

  3. java中service设计_JDBC中DAO+service设计思想

    一.DAO设计思想 a) Data access Object(数据访问对象):前人总结出的一种固定模式的设计思想. 高可读性. 高复用性. 高扩展性. b) JDBC代码实现的增删改查操作是有复用需 ...

  4. python中locator_locator 分层设计思想

    locator 分层 登录页面元素定位,都是放在 PageObjects 目录下的 login_page.py 文件下的 LoginPage 类下 元素定位分层 这个登录页面要用到的元素定位还是比较少 ...

  5. 聊聊Kafka中值得我们学习的优秀设计

    我们今天来聊一聊Kafka中优秀的设计,希望可以提高你的设计能力.写代码能力! 一.Kafka基础 消息系统的作用 应该大部份小伙伴都清楚,用机油装箱举个例子 所以消息系统就是如上图我们所说的仓库,能 ...

  6. axios源码中的10多个工具函数,值得一学~

    大家好,我是若川.最近组织了源码共读活动,感兴趣的可以点此加我微信 ruochuan12 参与,每周大家一起学习200行左右的源码,共同进步.同时极力推荐订阅我写的<学习源码整体架构系列> ...

  7. 【嵌入式Linux】嵌入式Linux驱动开发基础知识之LED驱动框架--面向对象、分层设计思想

    文章目录 前言 1.LED驱动程序框架 1.1.对于LED驱动,我们想要什么样的接口? 1.2.LED驱动要怎么写,才能支持多个板子?分层写 1.3.程序分析 驱动程序 应用程序 Makefile 1 ...

  8. Kafka/Metaq设计思想学习笔记 转

    转载自: http://my.oschina.net/geecoodeer/blog/194829 本文没有特意区分它们之间的区别,仅仅是列出其中笔者认为好的设计思想,供后续设计参考.  目前笔者并没 ...

  9. 消息中间件—Kafka 的设计思想

    1.动机 设计 kafka 初衷,作为统一平台处理大公司的实时数据.所以 必须具有如下特性: 支持海量数据 高吞吐量 低延迟(实时性) 支持分区,分布式 容错 2.持久化 kafka 高度依赖 文件系 ...

最新文章

  1. QIIME 2用户文档. 1简介和安装(2018.11)
  2. 使用trash-cli防止rm -rf 误删除带来的灾难(“事前”非“事后”)
  3. mysql+PHP源码编译安装
  4. IP地址配置冲突导致路由振荡怎么办
  5. 中国阻燃纤维板市场运行局势分析与产销需求前景展望报告2022年
  6. Git复习(五)之多人协作、git push失败、git pull失败
  7. 【JAVASCRIPT】表单序列化问题
  8. C# WPF:初识布局容器
  9. .net core 杂记:用Autofac替换内置容器
  10. vscode 头文件包含问题_使用clangd替代c/c++配置vscode c++项目
  11. PHP超级全局变量、魔术变量和魔术函数
  12. java 双向链表循环_(java实现)双向循环链表
  13. 黑马程序员-说说自己
  14. 电脑时间不同步怎么办?
  15. java——阿里云短信工具类
  16. 谷粒商城 - 项目环境搭建
  17. Gradle - Groovy Language
  18. R语言使用cph函数和rcs函数构建限制性立方样条cox回归模型、检验模型是否满足等比例风险、是否存在非线性关系、使用rms包的Predict函数计算指定连续变量和风险比HR值的关系并可视化
  19. mysql的环境搭建
  20. IT网管软件比较一览表

热门文章

  1. dos脚本批量更改照片命名(文字变更数字)
  2. android手机连接hdmi,手机hdmi转接线的介绍以及连接方法
  3. RAR文件解压缩时系统提示“CRC校验失败,文件被破坏”,修复损坏文件的办法!
  4. 局域网匿名访问共享文件的设置方法?
  5. 波束成形学习-1(Introduction)
  6. 官方消息:即将开始退钱
  7. 浅谈最近流行的三起区块链51%算力攻击
  8. 银河护卫队漫威大法好之漫威系列
  9. transforms.ToTensor()与transforms.Normalize()函数解析
  10. 周庄王,姬佗(公元前696年—公元前682年在位)