YOLOv5代码注释版更新啦,注释的是最近的2021.07.14的版本,且注释更全
github: https://github.com/Laughing-q/yolov5_annotations

YOLOV5训练代码train.py注释与解析

  • 2020.8.31版本
    • 超参数文件hyp解析
    • 训练参数以及main函数解析
    • train函数解析
  • 2020.7.20版本
    • 训练参数以及main函数解析
    • train函数解析

本文主要对ultralytics\yolov5的训练代码train.py的解析,由于yolov5还在开发当中,平常多多少少都会修复一些bug或者有一些代码和功能的更新,但基本上不会有很大的改动,故以下注释与解析都是适用的;当然如果有大改动,笔者也会更新注释。

yolov5其他代码解析

2020.9.3
1.更新了最新的代码解析注释(其实也不算最最新的,是这周一(8.31)clone的代码, 最近比较忙,今天才把注释完成,主要在于添加了分布式计算的一些代码,以及更新了一些小细节的东西;
2.由于笔者目前还没试用过分布式训练的代码,可能对这方面代码理解不是很好,如有问题欢迎指正,谢谢;
3.以前版本(7.20)的注释我也会留着;

2020.8.31版本

超参数文件hyp解析

# Hyperparameters for VOC finetuning
# python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials# Hyperparameter Evolution Results
# Generations: 51
#                   P         R     mAP.5 mAP.5:.95       box       obj       cls
# Metrics:      0.625     0.926      0.89     0.677    0.0111   0.00849   0.00124lr0: 0.00447  # 学习率
lrf: 0.114    # 余弦退火超参数
momentum: 0.873 # 学习率动量
weight_decay: 0.00047 # 权重衰减系数
giou: 0.0306 # giou损失的系数
cls: 0.211 # 分类损失的系数
cls_pw: 0.546 # 分类BCELoss中正样本的权重
obj: 0.421 # 有无物体损失的系数
obj_pw: 0.972 # 有无物体BCELoss中正样本的权重
iou_t: 0.2 # 标签与anchors的iou阈值iou training threshold
anchor_t: 2.26 # 标签的长h宽w/anchor的长h_a宽w_a阈值, 即h/h_a, w/w_a都要在(1/2.26, 2.26)之间anchor-multiple threshold
# anchors: 5.07
fl_gamma: 0.0  # 设为0则表示不使用focal loss(efficientDet default is gamma=1.5)
# 下面是一些数据增强的系数, 包括颜色空间和图片空间
hsv_h: 0.0154 # 色调
hsv_s: 0.9 # 饱和度
hsv_v: 0.619 # 明度
degrees: 0.404 #旋转角度
translate: 0.206  # 水平和垂直平移
scale: 0.86   # 缩放
shear: 0.795  # 剪切
perspective: 0.0  # 透视变换参数
flipud: 0.00756  # 上下翻转
fliplr: 0.5  # 左右翻转
mixup: 0.153  # mixup系数

训练参数以及main函数解析

if __name__ == '__main__':"""opt参数解析:cfg:模型配置文件,网络结构data:数据集配置文件,数据集路径,类名等hyp:超参数文件epochs:训练总轮次batch-size:批次大小img-size:输入图片分辨率大小rect:是否采用矩形训练,默认Falseresume:接着打断训练上次的结果接着训练nosave:不保存模型,默认Falsenotest:不进行test,默认Falsenoautoanchor:不自动调整anchor,默认Falseevolve:是否进行超参数进化,默认Falsebucket:谷歌云盘bucket,一般不会用到cache-images:是否提前缓存图片到内存,以加快训练速度,默认Falseweights:加载的权重文件name:数据集名字,如果设置:results.txt to results_name.txt,默认无device:训练的设备,cpu;0(表示一个gpu设备cuda:0);0,1,2,3(多个gpu设备)multi-scale:是否进行多尺度训练,默认Falsesingle-cls:数据集是否只有一个类别,默认Falseadam:是否使用adam优化器sync-bn:是否使用跨卡同步BN,在DDP模式使用local_rank:gpu编号logdir:存放日志的目录workers:dataloader的最大worker数量"""parser = argparse.ArgumentParser()parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')parser.add_argument('--cfg', type=str, default='', help='model.yaml path')parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')parser.add_argument('--hyp', type=str, default='', help='hyperparameters path, i.e. data/hyp.scratch.yaml')parser.add_argument('--epochs', type=int, default=300)parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')parser.add_argument('--rect', action='store_true', help='rectangular training')parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')parser.add_argument('--notest', action='store_true', help='only test final epoch')parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')opt = parser.parse_args()# Set DDP variables"""设置DDP模式的参数world_size:表示全局进程个数global_rank:进程编号"""opt.total_batch_size = opt.batch_sizeopt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1set_logging(opt.global_rank)if opt.global_rank in [-1, 0]:# 检查你的代码版本是否为最新的(不适用于windows系统)check_git_status()# Resume# 是否resumeif opt.resume:  # resume an interrupted run# 如果resume是str,则表示传入的是模型的路径地址# get_latest_run()函数获取runs文件夹中最近的last.ptckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent pathlog_dir = Path(ckpt).parent.parent  # runs/exp0assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'# opt参数也全部替换with open(log_dir / 'opt.yaml') as f:opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader))  # replace# opt.cfg设置为'' 对应着train函数里面的操作(加载权重时是否加载权重里的anchor)opt.cfg, opt.weights, opt.resume = '', ckpt, Truelogger.info('Resuming training from %s' % ckpt)else:# 获取超参数列表opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml')# 检查配置文件信息opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check filesassert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'# 扩展image_size为[image_size, image_size]一个是训练size,一个是测试sizeopt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)# 根据opt.logdir生成目录log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name)  # runs/exp1# 选择设备device = select_device(opt.device, batch_size=opt.batch_size)# DDP mode# DDP 模式if opt.local_rank != -1:assert torch.cuda.device_count() > opt.local_rank# 根据gpu编号选择设备torch.cuda.set_device(opt.local_rank)device = torch.device('cuda', opt.local_rank)# 初始化进程组dist.init_process_group(backend='nccl', init_method='env://')  # distributed backendassert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'# 将总批次按照进程数分配给各个gpuopt.batch_size = opt.total_batch_size // opt.world_size# 打印opt参数信息logger.info(opt)# 加载超参数列表with open(opt.hyp) as f:hyp = yaml.load(f, Loader=yaml.FullLoader)  # load hyps# Train# 如果不进行超参数进化,则直接调用train()函数,开始训练if not opt.evolve:tb_writer = Noneif opt.global_rank in [-1, 0]:# 创建tensorboardlogger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)tb_writer = SummaryWriter(log_dir=log_dir)  # runs/exp0train(hyp, opt, device, tb_writer)# Evolve hyperparameters (optional)else:# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)# 超参数进化列表,括号里分别为(突变规模, 最小值,最大值)meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)'momentum': (0.1, 0.6, 0.98),  # SGD momentum/Adam beta1'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay'giou': (1, 0.02, 0.2),  # GIoU loss gain'cls': (1, 0.2, 4.0),  # cls loss gain'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight'iou_t': (0, 0.1, 0.7),  # IoU training threshold'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold# 'anchors': (1, 2.0, 10.0),  # anchors per output grid (0 to ignore)'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)'scale': (1, 0.0, 0.9),  # image scale (+/- gain)'shear': (1, 0.0, 10.0),  # image shear (+/- deg)'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)'mixup': (1, 0.0, 1.0)}  # image mixup (probability)assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'opt.notest, opt.nosave = True, True  # only test/save final epoch# ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indicesyaml_file = Path('runs/evolve/hyp_evolved.yaml')  # save best result hereif opt.bucket:os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists# 默认进化100次"""这里的进化算法是:根据之前训练时的hyp来确定一个base hyp再进行突变;如何根据?通过之前每次进化得到的results来确定之前每个hyp的权重有了每个hyp和每个hyp的权重之后有两种进化方式;1.根据每个hyp的权重随机选择一个之前的hyp作为base hyp,random.choices(range(n), weights=w)2.根据每个hyp的权重对之前所有的hyp进行融合获得一个base hyp,(x * w.reshape(n, 1)).sum(0) / w.sum()evolve.txt会记录每次进化之后的results+hyp每次进化时,hyp会根据之前的results进行从大到小的排序;再根据fitness函数计算之前每次进化得到的hyp的权重再确定哪一种进化方式,从而进行进化"""for _ in range(100):  # generations to evolveif os.path.exists('evolve.txt'):  # if evolve.txt exists: select best hyps and mutate# Select parent(s)# 选择进化方式parent = 'single'  # parent selection method: 'single' or 'weighted'# 加载evolve.txtx = np.loadtxt('evolve.txt', ndmin=2)# 选取至多前5次进化的结果n = min(5, len(x))  # number of previous results to considerx = x[np.argsort(-fitness(x))][:n]  # top n mutations# 根据results计算hyp的权重w = fitness(x) - fitness(x).min()  # weights# 根据不同进化方式获得base hypif parent == 'single' or len(x) == 1:# x = x[random.randint(0, n - 1)]  # random selectionx = x[random.choices(range(n), weights=w)[0]]  # weighted selectionelif parent == 'weighted':x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination# Mutate# 超参数进化mp, s = 0.9, 0.2  # mutation probability, sigmanpr = np.randomnpr.seed(int(time.time()))# 获取突变初始值g = np.array([x[0] for x in meta.values()])  # gains 0-1ng = len(meta)v = np.ones(ng)# 设置突变while all(v == 1):  # mutate until a change occurs (prevent duplicates)v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)# 将突变添加到base hyp上# [i+7]是因为x中前七个数字为results的指标(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后才是超参数hypfor i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)hyp[k] = float(x[i + 7] * v[i])  # mutate# Constrain to limits# 修剪hyp在规定范围里for k, v in meta.items():hyp[k] = max(hyp[k], v[1])  # lower limithyp[k] = min(hyp[k], v[2])  # upper limithyp[k] = round(hyp[k], 5)  # significant digits# Train mutation# 训练results = train(hyp.copy())# Write mutation results"""写入results和对应的hyp到evolve.txtevolve.txt文件每一行为一次进化的结果一行中前七个数字为(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后为hyp保存hyp到yaml文件"""print_mutation(hyp.copy(), results, yaml_file, opt.bucket)# Plot resultsplot_evolution(yaml_file)print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these ''hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))

train函数解析

import argparse
import logging
import math
import os
import random
import shutil
import time
from pathlib import Pathimport numpy as np
import torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdmimport test  # import test.py to get mAP after each epoch
from models.yolo import Model
from utils.datasets import create_dataloader
from utils.general import (torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging)
from utils.google_utils import attempt_download
from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dictslogger = logging.getLogger(__name__)def train(hyp, opt, device, tb_writer=None):logger.info(f'Hyperparameters {hyp}')# 获取记录训练日志的路径"""训练日志包括:权重、tensorboard文件、超参数hyp、设置的训练参数opt(也就是epochs,batch_size等),result.txtresult.txt包括: 占GPU内存、训练集的GIOU loss, objectness loss, classification loss, 总loss, targets的数量, 输入图片分辨率, 准确率TP/(TP+FP),召回率TP/P ; 测试集的mAP50, mAP@0.5:0.95, GIOU loss, objectness loss, classification loss.还会保存batch<3的ground truth"""# 如果设置进化算法则不会传入tb_writer(则为None),设置一个evolve文件夹作为日志目录log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve'  # logging directory# 设置保存权重的路径wdir = log_dir / 'weights'  # weights directoryos.makedirs(wdir, exist_ok=True)last = wdir / 'last.pt'best = wdir / 'best.pt'# 设置保存results的路径results_file = str(log_dir / 'results.txt')# 获取轮次、批次、总批次(涉及到分布式训练)、权重、进程序号(主要用于分布式训练)epochs, batch_size, total_batch_size, weights, rank = \opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank# Save run settings# 保存hyp和optwith open(log_dir / 'hyp.yaml', 'w') as f:yaml.dump(hyp, f, sort_keys=False)with open(log_dir / 'opt.yaml', 'w') as f:yaml.dump(vars(opt), f, sort_keys=False)# Configurecuda = device.type != 'cpu'# 设置随机种子init_seeds(2 + rank)# 加载数据配置信息with open(opt.data) as f:data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict# torch_distributed_zero_first同步所有进程# check_dataset检查数据集,如果没找到数据集则下载数据集(仅适用于项目中自带的yaml文件数据集)with torch_distributed_zero_first(rank):check_dataset(data_dict)  # check# 获取训练集、测试集图片路径train_path = data_dict['train']test_path = data_dict['val']# 获取类别数量和类别名字# 如果设置了opt.single_cls则为一类nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, namesassert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check# Modelpretrained = weights.endswith('.pt')# 如果采用预训练if pretrained:# 加载模型,从google云盘中自动下载模型# 但通常会下载失败,建议提前下载下来放进weights目录with torch_distributed_zero_first(rank):attempt_download(weights)  # download if not found locally# 加载检查点ckpt = torch.load(weights, map_location=device)  # load checkpoint# if hyp['anchors']:#     ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchor"""这里模型创建,可通过opt.cfg,也可通过ckpt['model'].yaml这里的区别在于是否是resume,resume时会将opt.cfg设为空,则按照ckpt['model'].yaml创建模型;这也影响着下面是否除去anchor的key(也就是不加载anchor),如果resume,则加载权重中保存的anchor来继续训练;主要是预训练权重里面保存了默认coco数据集对应的anchor,如果用户自定义了anchor,再加载预训练权重进行训练,会覆盖掉用户自定义的anchor;所以这里主要是设定一个,如果加载预训练权重进行训练的话,就去除掉权重中的anchor,采用用户自定义的;如果是resume的话,就是不去除anchor,就权重和anchor一起加载, 接着训练;参考https://github.com/ultralytics/yolov5/issues/459所以下面设置了intersect_dicts,该函数就是忽略掉exclude中的键对应的值"""model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # create# 如果opt.cfg存在(表示采用预训练权重进行训练)就设置去除anchorexclude = ['anchor'] if opt.cfg else []  # exclude keysstate_dict = ckpt['model'].float().state_dict()  # to FP32state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersectmodel.load_state_dict(state_dict, strict=False)  # load# 显示加载预训练权重的的键值对和创建模型的键值对# 如果设置了resume,则会少加载两个键值对(anchors,anchor_grid)logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # reportelse:# 创建模型, ch为输入图片通道model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create# Freeze"""冻结模型层,设置冻结层名字即可具体可以查看https://github.com/ultralytics/yolov5/issues/679但作者不鼓励冻结层,因为他的实验当中显示冻结层不能获得更好的性能,参照:https://github.com/ultralytics/yolov5/pull/707并且作者为了使得优化参数分组可以正常进行,在下面将所有参数的requires_grad设为了True其实这里只是给一个freeze的示例"""freeze = ['', ]  # parameter names to freeze (full or partial)if any(freeze):for k, v in model.named_parameters():if any(x in k for x in freeze):print('freezing %s' % k)v.requires_grad = False# Optimizer"""nbs为模拟的batch_size; 就比如默认的话上面设置的opt.batch_size为16,这个nbs就为64,也就是模型梯度累积了64/16=4(accumulate)次之后再更新一次模型,变相的扩大了batch_size"""nbs = 64  # nominal batch sizeaccumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing# 根据accumulate设置权重衰减系数hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decaypg0, pg1, pg2 = [], [], []  # optimizer parameter groups# 将模型分成三组(weight、bn, bias, 其他所有参数)优化for k, v in model.named_parameters():v.requires_grad = Trueif '.bias' in k:pg2.append(v)  # biaseselif '.weight' in k and '.bn' not in k:pg1.append(v)  # apply weight decayelse:pg0.append(v)  # all else# 选用优化器,并设置pg0组的优化方式if opt.adam:optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentumelse:optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)# 设置weight、bn的优化方式optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay# 设置biases的优化方式optimizer.add_param_group({'params': pg2})  # add pg2 (biases)# 打印优化信息logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))del pg0, pg1, pg2# 设置学习率衰减,这里为余弦退火方式进行衰减# 就是根据以下公式lf,epoch和超参数hyp['lrf']进行衰减# Scheduler https://arxiv.org/pdf/1812.01187.pdf# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLRlf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf']  # cosinescheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)# plot_lr_scheduler(optimizer, scheduler, epochs)# Resume# 初始化开始训练的epoch和最好的结果# best_fitness是以[0.0, 0.0, 0.1, 0.9]为系数并乘以[精确度, 召回率, mAP@0.5, mAP@0.5:0.95]再求和所得# 根据best_fitness来保存best.ptstart_epoch, best_fitness = 0, 0.0if pretrained:# Optimizer# 加载优化器与best_fitnessif ckpt['optimizer'] is not None:optimizer.load_state_dict(ckpt['optimizer'])best_fitness = ckpt['best_fitness']# Results# 加载训练结果result.txtif ckpt.get('training_results') is not None:with open(results_file, 'w') as file:file.write(ckpt['training_results'])  # write results.txt# Epochs# 加载训练的轮次start_epoch = ckpt['epoch'] + 1"""如果resume,则备份权重尽管目前resume能够近似100%成功的起作用了,参照:https://github.com/ultralytics/yolov5/pull/756但为了防止resume时出现其他问题,把之前的权重覆盖了,所以这里进行备份,参照:https://github.com/ultralytics/yolov5/pull/765"""if opt.resume:assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}')  # save previous weights"""如果新设置epochs小于加载的epoch,则视新设置的epochs为需要再训练的轮次数而不再是总的轮次数"""if epochs < start_epoch:logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %(weights, ckpt['epoch'], epochs))epochs += ckpt['epoch']  # finetune additional epochsdel ckpt, state_dict# Image sizes# 获取模型总步长和模型输入图片分辨率gs = int(max(model.stride))  # grid size (max stride)# 检查输入图片分辨率确保能够整除总步长gsimgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples# DP mode# 分布式训练,参照:https://github.com/ultralytics/yolov5/issues/475# DataParallel模式,仅支持单机多卡# rank为进程编号, 这里应该设置为rank=-1则使用DataParallel模式# rank=-1且gpu数量=1时,不会进行分布式if cuda and rank == -1 and torch.cuda.device_count() > 1:model = torch.nn.DataParallel(model)# SyncBatchNorm# 使用跨卡同步BNif opt.sync_bn and cuda and rank != -1:model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)logger.info('Using SyncBatchNorm()')# Exponential moving average# 为模型创建EMA指数滑动平均,如果GPU进程数大于1,则不创建ema = ModelEMA(model) if rank in [-1, 0] else None# DDP mode# 如果rank不等于-1,则使用DistributedDataParallel模式# local_rank为gpu编号,rank为进程,例如rank=3,local_rank=0 表示第 3 个进程内的第 1 块 GPU。if cuda and rank != -1:model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))# Trainloader# 创建训练集dataloaderdataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,world_size=opt.world_size, workers=opt.workers)"""获取标签中最大的类别值,并于类别数作比较如果大于类别数则表示有问题"""mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label classnb = len(dataloader)  # number of batchesassert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)# Testloaderif rank in [-1, 0]:# 更新ema模型的updates参数,保持ema的平滑性ema.updates = start_epoch * nb // accumulate  # set EMA updates# 创建测试集dataloadertestloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,hyp=hyp, augment=False, cache=opt.cache_images, rect=True, rank=-1,world_size=opt.world_size, workers=opt.workers)[0]  # only runs on process 0# Model parameters# 根据自己数据集的类别数设置分类损失的系数hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset# 设置类别数,超参数model.nc = nc  # attach number of classes to modelmodel.hyp = hyp  # attach hyperparameters to model"""设置giou的值在objectness loss中做标签的系数, 使用代码如下tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)这里model.gr=1,也就是说完全使用标签框与预测框的giou值来作为该预测框的objectness标签"""model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)# 根据labels初始化图片采样权重model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights# 获取类别的名字model.names = names# Class frequencyif rank in [-1, 0]:# 将所有样本的标签拼接到一起shape为(total, 5),统计后做可视化labels = np.concatenate(dataset.labels, 0)# 获得所有样本的类别c = torch.tensor(labels[:, 0])  # classes# cf = torch.bincount(c.long(), minlength=nc) + 1.# model._initialize_biases(cf.to(device))# 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化plot_labels(labels, save_dir=log_dir)if tb_writer:# tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384tb_writer.add_histogram('classes', c, 0)# Check anchors"""计算默认锚点anchor与数据集标签框的长宽比值标签的长h宽w与anchor的长h_a宽w_a的比值, 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的如果标签框满足上面条件的数量小于总数的99%,则根据k-mean算法聚类新的锚点anchor"""if not opt.noautoanchor:check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)# Start trainingt0 = time.time()# 获取热身训练的迭代次数nw = max(3 * nb, 1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)# nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training# 初始化mAP和resultsmaps = np.zeros(nc)  # mAP per classresults = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'"""设置学习率衰减所进行到的轮次,目的是打断训练后,--resume接着训练也能正常的衔接之前的训练进行学习率衰减"""scheduler.last_epoch = start_epoch - 1  # do not move# 通过torch1.6自带的api设置混合精度训练scaler = amp.GradScaler(enabled=cuda)"""打印训练和测试输入图片分辨率加载图片时调用的cpu进程数从哪个epoch开始训练"""logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test))logger.info('Using %g dataloader workers' % dataloader.num_workers)logger.info('Starting training for %g epochs...' % epochs)# torch.autograd.set_detect_anomaly(True)# 训练for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------model.train()# Update image weights (optional)if dataset.image_weights:# Generate indices"""如果设置进行图片采样策略,则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数通过random.choices生成图片索引indices从而进行采样"""if rank in [-1, 0]:w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weightsimage_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)dataset.indices = random.choices(range(dataset.n), weights=image_weights,k=dataset.n)  # rand weighted idx# Broadcast if DDP# 如果是DDP模式,则广播采样策略if rank != -1:indices = torch.zeros([dataset.n], dtype=torch.int)if rank == 0:indices[:] = torch.tensor(dataset.indices, dtype=torch.int)# 广播索引到其他groupdist.broadcast(indices, 0)if rank != 0:dataset.indices = indices.cpu().numpy()# Update mosaic border# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)# dataset.mosaic_border = [b - imgsz, -b]  # height, width borders# 初始化训练时打印的平均损失信息mloss = torch.zeros(4, device=device)  # mean lossesif rank != -1:# DDP模式下打乱数据, ddp.sampler的随机采样数据是基于epoch+seed作为随机种子,# 每次epoch不同,随机种子就不同dataloader.sampler.set_epoch(epoch)pbar = enumerate(dataloader)logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))if rank in [-1, 0]:# tqdm 创建进度条,方便训练时 信息的展示pbar = tqdm(pbar, total=nb)  # progress baroptimizer.zero_grad()for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------# 计算迭代的次数iterationni = i + nb * epoch  # number integrated batches (since train start)imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0# Warmup"""热身训练(前nw次迭代)在前nw次迭代中,根据以下方式选取accumulate和学习率"""if ni <= nw:xi = [0, nw]  # x interp# model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0"""bias的学习率从0.1下降到基准学习率lr*lf(epoch),其他的参数学习率从0增加到lr*lf(epoch).lf为上面设置的余弦退火的衰减函数"""x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])# 动量momentum也从0.9慢慢变到hyp['momentum'](default=0.937)if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])# Multi-scale# 设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸if opt.multi_scale:sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # sizesf = sz / max(imgs.shape[2:])  # scale factorif sf != 1:ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)# Forward# 混合精度with amp.autocast(enabled=cuda):# 前向传播pred = model(imgs)  # forward# Loss# 计算损失,包括分类损失,objectness损失,框的回归损失# loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失loss, loss_items = compute_loss(pred, targets.to(device), model)  # loss scaled by batch_sizeif rank != -1:# 平均不同gpu之间的梯度loss *= opt.world_size  # gradient averaged between devices in DDP mode# Backward# 反向传播scaler.scale(loss).backward()# Optimize# 模型反向传播accumulate次之后再根据累积的梯度更新一次参数if ni % accumulate == 0:scaler.step(optimizer)  # optimizer.stepscaler.update()optimizer.zero_grad()if ema:ema.update(model)# Printif rank in [-1, 0]:# 打印显存,进行的轮次,损失,target的数量和图片的size等信息mloss = (mloss * i + loss_items) / (i + 1)  # update mean lossesmem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)s = ('%10s' * 2 + '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])# 进度条显示以上信息pbar.set_description(s)# Plot# 将前三次迭代batch的标签框在图片上画出来并保存if ni < 3:f = str(log_dir / ('train_batch%g.jpg' % ni))  # filenameresult = plot_images(images=imgs, targets=targets, paths=paths, fname=f)if tb_writer and result is not None:tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)# tb_writer.add_graph(model, imgs)  # add model to tensorboard# end batch ------------------------------------------------------------------------------------------------# Scheduler# 进行学习率衰减lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboardscheduler.step()# DDP process 0 or single-GPUif rank in [-1, 0]:# mAPif ema:# 更新EMA的属性# 添加include的属性ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])# 判断该epoch是否为最后一轮final_epoch = epoch + 1 == epochs# 对测试集进行测试,计算mAP等指标# 测试时使用的是EMA模型if not opt.notest or final_epoch:  # Calculate mAPresults, maps, times = test.test(opt.data,batch_size=total_batch_size,imgsz=imgsz_test,model=ema.ema,single_cls=opt.single_cls,dataloader=testloader,save_dir=log_dir)# Write# 将指标写入result.txtwith open(results_file, 'a') as f:f.write(s + '%10.4g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)# 如果设置opt.bucket, 上传results.txt到谷歌云盘if len(opt.name) and opt.bucket:os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))# Tensorboard# 添加指标,损失等信息到tensorboard显示if tb_writer:tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',  # train loss'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95','val/giou_loss', 'val/obj_loss', 'val/cls_loss',  # val loss'x/lr0', 'x/lr1', 'x/lr2']  # paramsfor x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):tb_writer.add_scalar(tag, x, epoch)# Update best mAP# 更新best_fitnessfi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]if fi > best_fitness:best_fitness = fi# Save model"""保存模型,还保存了epoch,results,optimizer等信息,optimizer将不会在最后一轮完成后保存model保存的是EMA的模型"""save = (not opt.nosave) or (final_epoch and not opt.evolve)if save:with open(results_file, 'r') as f:  # create checkpointckpt = {'epoch': epoch,'best_fitness': best_fitness,'training_results': f.read(),'model': ema.ema,'optimizer': None if final_epoch else optimizer.state_dict()}# Save last, best and deletetorch.save(ckpt, last)if best_fitness == fi:torch.save(ckpt, best)del ckpt# end epoch ----------------------------------------------------------------------------------------------------# end trainingif rank in [-1, 0]:# Strip optimizers"""模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;并且对模型进行model.half(), 将Float32的模型->Float16,可以减少模型大小,提高inference速度"""n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.namefresults, flast, fbest = 'results%s.txt' % n, wdir / f'last{n}.pt', wdir / f'best{n}.pt'for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', 'results.txt'], [flast, fbest, fresults]):if os.path.exists(f1):os.rename(f1, f2)  # renameif str(f2).endswith('.pt'):  # is *.ptstrip_optimizer(f2)  # strip optimizer# 上传结果到谷歌云盘os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None  # upload# Finish# 可视化results.txt文件if not opt.evolve:plot_results(save_dir=log_dir)  # save as results.pnglogger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))# 释放显存dist.destroy_process_group() if rank not in [-1, 0] else Nonetorch.cuda.empty_cache()return results

2020.7.20版本

训练参数以及main函数解析

训练的时候可以设置进行超参数进化算法(默认不使用)。
值得一提的是,由于现在yolov5还在开发当中,训练文件的–resume还不是100%的完善,不建议打断训练再resume。具体可以参照issue292。

if __name__ == '__main__':# 因为yolov5还在开发当中,check_git_status()检查你的代码版本是否为最新的(不适用于windows系统)check_git_status()"""opt参数解析:cfg:模型配置文件,网络结构data:数据集配置文件,数据集路径,类名等hyp:超参数文件epochs:训练总轮次batch-size:批次大小img-size:输入图片分辨率大小rect:是否采用矩形训练,默认Falseresume:接着打断训练上次的结果接着训练nosave:不保存模型,默认Falsenotest:不进行test,默认Falsenoautoanchor:不自动调整anchor,默认Falseevolve:是否进行超参数进化,默认Falsebucket:谷歌云盘bucket,一般不会用到cache-images:是否提前缓存图片到内存,以加快训练速度,默认Falseweights:加载的权重文件name:数据集名字,如果设置:results.txt to results_name.txt,默认无device:训练的设备,cpu;0(表示一个gpu设备cuda:0);0,1,2,3(多个gpu设备)multi-scale:是否进行多尺度训练,默认Falsesingle-cls:数据集是否只有一个类别,默认False"""parser = argparse.ArgumentParser()parser.add_argument('--cfg', type=str, default='models/yolov5x_landslide.yaml', help='model.yaml path')parser.add_argument('--data', type=str, default='data/landslide.yaml', help='data.yaml path')parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')parser.add_argument('--epochs', type=int, default=300)parser.add_argument('--batch-size', type=int, default=8)parser.add_argument('--img-size', nargs='+', type=int, default=[416, 416], help='train,test sizes')parser.add_argument('--rect', action='store_true', help='rectangular training')parser.add_argument('--resume', nargs='?', const='get_last', default='runs/exp0/weights/last.pt',help='resume from given path/to/last.pt, or most recent run if blank.')parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')parser.add_argument('--notest', action='store_true', help='only test final epoch')parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')parser.add_argument('--weights', type=str, default='', help='initial weights path')parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')opt = parser.parse_args()"""resume时获取last.pt的路径get_latest_run()函数获取runs文件夹中最近的last.pt注意:进行resume时,不要设置opt.weights(除非设置opt.weights='last.pt'),否则会重新开始训练"""last = get_latest_run() if opt.resume == 'get_last' else opt.resume  # resume from most recent runif last and not opt.weights:print(f'Resuming training from {last}')opt.weights = last if opt.resume and not opt.weights else opt.weights# check_file检查文件是否存在opt.cfg = check_file(opt.cfg)  # check fileopt.data = check_file(opt.data)  # check fileopt.hyp = check_file(opt.hyp) if opt.hyp else ''  # check fileprint(opt)# 扩展image_size为[image_size, image_size]一个是训练size,一个是测试sizeopt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)# 选择设备device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)if device.type == 'cpu':mixed_precision = False# Train# 如果不进行超参数进化,则直接调用train()函数,开始训练if not opt.evolve:print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')# 创建tensorboardtb_writer = SummaryWriter(log_dir=increment_dir('runs' + os.sep + 'exp', opt.name))# 如果设置了超参数文件路径,则加载新的超参数文件if opt.hyp:  # update hypswith open(opt.hyp) as f:hyp.update(yaml.load(f, Loader=yaml.FullLoader))train(hyp)# Evolve hyperparameters (optional)# 根据训练结果进行超参数的进化else:tb_writer = None# 设置不测试不保存模型opt.notest, opt.nosave = True, True  # only test/save final epochif opt.bucket:os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists# 默认进化十次"""这里的进化算法是:根据之前训练时的hyp来确定一个base hyp再进行突变;如何根据?通过之前每次进化得到的results来确定之前每个hyp的权重有了每个hyp和每个hyp的权重之后有两种进化方式;1.根据每个hyp的权重随机选择一个之前的hyp作为base hyp,random.choices(range(n), weights=w)2.根据每个hyp的权重对之前所有的hyp进行融合获得一个base hyp,(x * w.reshape(n, 1)).sum(0) / w.sum()evolve.txt会记录每次进化之后的results+hyp每次进化时,hyp会根据之前的results进行从大到小的排序;再根据fitness函数计算之前每次进化得到的hyp的权重再确定哪一种进化方式,从而进行进化"""for _ in range(10):  # generations to evolveif os.path.exists('evolve.txt'):  # if evolve.txt exists: select best hyps and mutate# Select parent(s)# 选择进化方式parent = 'single'  # parent selection method: 'single' or 'weighted'# 加载evolve.txtx = np.loadtxt('evolve.txt', ndmin=2)# 选取至多前5次进化的结果n = min(5, len(x))  # number of previous results to considerx = x[np.argsort(-fitness(x))][:n]  # top n mutations# 根据results计算hyp的权重w = fitness(x) - fitness(x).min()  # weights# 根据不同进化方式获得base hypif parent == 'single' or len(x) == 1:# x = x[random.randint(0, n - 1)]  # random selectionx = x[random.choices(range(n), weights=w)[0]]  # weighted selectionelif parent == 'weighted':x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination# Mutate# 超参数进化mp, s = 0.9, 0.2  # mutation probability, sigmanpr = np.randomnpr.seed(int(time.time()))g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1])  # gainsng = len(g)v = np.ones(ng)# 设置突变while all(v == 1):  # mutate until a change occurs (prevent duplicates)v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)# 将突变添加到base hyp上# [i+7]是因为x中前七个数字为results的指标(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后才是超参数hypfor i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)hyp[k] = x[i + 7] * v[i]  # mutate# Clip to limits# 修剪hyp在规定范围里keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]for k, v in zip(keys, limits):hyp[k] = np.clip(hyp[k], v[0], v[1])# Train mutation# 训练results = train(hyp.copy())# Write mutation results"""写入results和对应的hyp到evolve.txtevolve.txt文件每一行为一次进化的结果一行中前七个数字为(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后为hyp"""print_mutation(hyp, results, opt.bucket)# Plot results# plot_evolution_results(hyp)

train函数解析

import argparseimport torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
from torch.utils.tensorboard import SummaryWriterimport test  # import test.py to get mAP after each epoch
from models.yolo import Model
from utils import google_utils
from utils.datasets import *
from utils.utils import *#  设置混精度训练,需要安装英伟达的apex,默认为True,笔者没用到就设置为False
mixed_precision = False
try:  # Mixed precision training https://github.com/NVIDIA/apexfrom apex import amp
except:print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')mixed_precision = False  # not installed# 超参数
hyp = {'optimizer': 'SGD',  # 优化器['adam', 'SGD', None] if none, default is SGD'lr0': 0.01,  # 学习率initial learning rate (SGD=1E-2, Adam=1E-3)'momentum': 0.937,  # 学习率动量SGD momentum/Adam beta1'weight_decay': 5e-4,  # 权重衰减系数optimizer weight decay'giou': 0.05,  # giou损失的系数giou loss gain'cls': 0.58,  # 分类损失的系数cls loss gain'cls_pw': 1.0,  # 分类BCELoss中正样本的权重cls BCELoss positive_weight'obj': 1.0,  # 有无物体损失的系数obj loss gain (*=img_size/320 if img_size != 320)'obj_pw': 1.0,  # 有无物体BCELoss中正样本的权重obj BCELoss positive_weight'iou_t': 0.20,  # 标签与anchors的iou阈值iou training threshold'anchor_t': 4.0,  # 标签的长h宽w/anchor的长h_a宽w_a阈值, 即h/h_a, w/w_a都要在(1/4, 4)之间anchor-multiple threshold'fl_gamma': 0.0,  # focal loss gamma, 设为0则表示不使用focal loss(efficientDet default is gamma=1.5)# 下面是一些数据增强的系数, 包括颜色空间和图片空间'hsv_h': 0.014,  # image HSV-Hue augmentation (fraction)'hsv_s': 0.68,  # image HSV-Saturation augmentation (fraction)'hsv_v': 0.36,  # image HSV-Value augmentation (fraction)'degrees': 0.0,  # image rotation (+/- deg)'translate': 0.0,  # image translation (+/- fraction)'scale': 0.5,  # image scale (+/- gain)'shear': 0.0}  # image shear (+/- deg)def train(hyp):print(f'Hyperparameters {hyp}')# 获取记录训练日志的路径"""训练日志包括:权重、tensorboard文件、超参数hyp、设置的训练参数opt(也就是epochs,batch_size等),result.txtresult.txt包括: 占GPU内存、训练集的GIOU loss, objectness loss, classification loss, 总loss, targets的数量, 输入图片分辨率, 准确率TP/(TP+FP),召回率TP/P ; 测试集的mAP50, mAP@0.5:0.95, GIOU loss, objectness loss, classification loss.还会保存batch<3的ground truth"""log_dir = tb_writer.log_dir  # run directory# 设置保存权重的路径wdir = str(Path(log_dir) / 'weights') + os.sep  # weights directoryos.makedirs(wdir, exist_ok=True)last = wdir + 'last.pt'best = wdir + 'best.pt'# 设置保存results的路径results_file = log_dir + os.sep + 'results.txt'# Save run settings# 保存hyp和optwith open(Path(log_dir) / 'hyp.yaml', 'w') as f:yaml.dump(hyp, f, sort_keys=False)with open(Path(log_dir) / 'opt.yaml', 'w') as f:yaml.dump(vars(opt), f, sort_keys=False)# 设置轮次、批次、权重epochs = opt.epochs  # 300batch_size = opt.batch_size  # 64weights = opt.weights  # initial training weights# Configure# 设置随机种子init_seeds(1)# 加载数据配置信息with open(opt.data) as f:data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict# 获取训练集、测试集图片路径train_path = data_dict['train']test_path = data_dict['val']# 获取类别数量和类别名字# 如果设置了opt.single_cls则为一类nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, namesassert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check# Remove previous results# 移除之前的图片结果for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):os.remove(f)# Create model# 创建模型model = Model(opt.cfg, nc=nc).to(device)# Image sizes# 获取模型总步长和模型输入图片分辨率gs = int(max(model.stride))  # grid size (max stride)# 检查输入图片分辨率确保能够整除总步长gsimgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples# Optimizer"""nbs为模拟的batch_size; 就比如默认的话上面设置的opt.batch_size为16,这个nbs就为64,也就是模型梯度累积了64/16=4(accumulate)次之后再更新一次模型,变相的扩大了batch_size"""nbs = 32  # nominal batch sizeaccumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing# 根据accumulate设置权重衰减系数hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decaypg0, pg1, pg2 = [], [], []  # optimizer parameter groups# 将模型分成三组(weight、bn, bias, 其他所有参数)优化for k, v in model.named_parameters():if v.requires_grad:if '.bias' in k:pg2.append(v)  # biaseselif '.weight' in k and '.bn' not in k:pg1.append(v)  # apply weight decayelse:pg0.append(v)  # all else# 选用优化器,并设置pg0组的优化方式if hyp['optimizer'] == 'adam':  # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLRoptimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentumelse:optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)# 设置weight、bn的优化方式optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay# 设置biases的优化方式optimizer.add_param_group({'params': pg2})  # add pg2 (biases)print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))del pg0, pg1, pg2# 设置学习率衰减,这里为余弦退火方式进行衰减# 就是根据以下公式lf与epoch进行衰减# Scheduler https://arxiv.org/pdf/1812.01187.pdflf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1  # cosinescheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)# plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=log_dir)# Load Model# 加载模型,从google云盘中自动下载模型# 但通常会下载失败,建议提前下载下来放进weights目录google_utils.attempt_download(weights)# 初始化开始训练的epoch和最好的结果# best_fitness是以[0.0, 0.0, 0.1, 0.9]为系数并乘以[精确度, 召回率, mAP@0.5, mAP@0.5:0.95]再求和所得# 根据best_fitness来保存best.ptstart_epoch, best_fitness = 0, 0.0if weights.endswith('.pt'):  # pytorch format# 加载检查点ckpt = torch.load(weights, map_location=device)  # load checkpoint# load model# 加载模型try:ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()if model.state_dict()[k].shape == v.shape}  # to FP32, filtermodel.load_state_dict(ckpt['model'], strict=False)except KeyError as e:s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \"Please delete or update %s and try again, or use --weights '' to train from scratch." \% (opt.weights, opt.cfg, opt.weights, opt.weights)raise KeyError(s) from e# load optimizer# 加载优化器与best_fitnessif ckpt['optimizer'] is not None:optimizer.load_state_dict(ckpt['optimizer'])best_fitness = ckpt['best_fitness']# load results# 加载训练结果result.txtif ckpt.get('training_results') is not None:with open(results_file, 'w') as file:file.write(ckpt['training_results'])  # write results.txt# epochs# 加载训练的轮次start_epoch = ckpt['epoch'] + 1"""如果新设置epochs小于加载的epoch,则视新设置的epochs为需要再训练的轮次数而不再是总的轮次数"""if epochs < start_epoch:print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %(opt.weights, ckpt['epoch'], epochs))epochs += ckpt['epoch']  # finetune additional epochsdel ckpt# Mixed precision training https://github.com/NVIDIA/apex# 如果设置混精度训练,初始化混精度训练if mixed_precision:model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)# Distributed training# 如果不在cpu上计算且gpu数量大于1且pytorch允许分布式,则设置分布式训练if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():dist.init_process_group(backend='nccl',  # distributed backendinit_method='tcp://127.0.0.1:9999',  # init methodworld_size=1,  # number of nodesrank=0)  # node rankmodel = torch.nn.parallel.DistributedDataParallel(model)# pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html# Trainloader# 创建训练集dataloaderdataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect)"""获取标签中最大的类别值,并于类别数作比较如果大于类别数则表示有问题"""mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label classnb = len(dataloader)  # number of batchesassert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)# Testloader# 创建测试集dataloadertestloader = create_dataloader(test_path, imgsz_test, batch_size, gs, opt,hyp=hyp, augment=False, cache=opt.cache_images, rect=True)[0]# Model parameters# 根据自己数据集的类别数设置分类损失的系数hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset# 设置类别数,超参数model.nc = nc  # attach number of classes to modelmodel.hyp = hyp  # attach hyperparameters to model"""设置giou的值在objectness loss中做标签的系数, 使用代码如下tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)这里model.gr=1,也就是说完全使用标签框与预测框的giou值来作为该预测框的objectness标签"""model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)# 根据labels初始化图片采样权重model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights# 获取类别的名字model.names = names# Class frequency# 将所有样本的标签拼接到一起shape为(total, 5),统计后做可视化labels = np.concatenate(dataset.labels, 0)# 获得所有样本的类别c = torch.tensor(labels[:, 0])  # classes# cf = torch.bincount(c.long(), minlength=nc) + 1.# model._initialize_biases(cf.to(device))# 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化plot_labels(labels, save_dir=log_dir)# 添加类别的直方图到tensorboard中if tb_writer:tb_writer.add_histogram('classes', c, 0)# Check anchors"""计算默认锚点anchor与数据集标签框的长宽比值标签的长h宽w与anchor的长h_a宽w_a的比值, 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的如果标签框满足上面条件的数量小于总数的99%,则根据k-mean算法聚类新的锚点anchor"""if not opt.noautoanchor:check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)# Exponential moving average# 为模型创建EMA指数滑动平均ema = torch_utils.ModelEMA(model, updates=start_epoch * nb / accumulate)print(ema.updates)# Start trainingt0 = time.time()# 获取热身训练的迭代次数nw = max(3 * nb, 1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)# 初始化mAP和resultsmaps = np.zeros(nc)  # mAP per classresults = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'"""设置学习率衰减所进行到的轮次,目的是打断训练后,--resume接着训练也能正常的衔接之前的训练进行学习率衰减"""scheduler.last_epoch = start_epoch - 1  # do not move"""打印训练和测试输入图片分辨率加载图片时调用的cpu进程数从哪个epoch开始训练"""print('Image sizes %g train, %g test' % (imgsz, imgsz_test))print('Using %g dataloader workers' % dataloader.num_workers)print('Starting training for %g epochs...' % epochs)# torch.autograd.set_detect_anomaly(True)# 训练for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------# if epoch == 250:#     exit()model.train()# Update image weights (optional)"""如果设置进行图片采样策略,则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数通过random.choices生成图片索引indices从而进行采样"""if dataset.image_weights:w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weightsimage_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n)  # rand weighted idx# Update mosaic border# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)# dataset.mosaic_border = [b - imgsz, -b]  # height, width borders# 初始化训练时打印的平均损失信息mloss = torch.zeros(4, device=device)  # mean lossesprint(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))# tqdm 创建进度条,方便训练时 信息的展示pbar = tqdm(enumerate(dataloader), total=nb)  # progress barfor i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------# 计算迭代的次数iterationni = i + nb * epoch  # number integrated batches (since train start)imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0# Warmup"""热身训练(前nw次迭代)在前nw次迭代中,根据以下方式选取accumulate和学习率"""if ni <= nw:xi = [0, nw]  # x interp# model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0"""bias的学习率从0.1下降到基准学习率lr*lf(epoch),其他的参数学习率从0增加到lr*lf(epoch).lf为上面设置的余弦退火的衰减函数"""x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])# 动量momentum也从0.9慢慢变到hyp['momentum'](default=0.937)if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])# Multi-scale# 设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸if opt.multi_scale:sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # sizesf = sz / max(imgs.shape[2:])  # scale factorif sf != 1:ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)# Forwardpred = model(imgs)# Loss# 计算损失,包括分类损失,objectness损失,框的回归损失# loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失loss, loss_items = compute_loss(pred, targets.to(device), model)# 检查loss是否无穷大(可能时梯度爆炸,或者计算损失梯度时存在log(score)->log(0)->无穷大)if not torch.isfinite(loss):print('WARNING: non-finite loss, ending training ', loss_items)return results# Backward# 如果设置混精度训练,混合精度反向传播if mixed_precision:with amp.scale_loss(loss, optimizer) as scaled_loss:scaled_loss.backward()else:loss.backward()# Optimize# 模型反向传播accumulate次之后再根据累积的梯度更新一次参数if ni % accumulate == 0:optimizer.step()optimizer.zero_grad()ema.update(model)# Print# 打印显存,进行的轮次,损失,target的数量和图片的size等信息mloss = (mloss * i + loss_items) / (i + 1)  # update mean lossesmem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)s = ('%10s' * 2 + '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])# 进度条显示以上信息pbar.set_description(s)# Plot# 将前三次迭代batch的标签框在图片上画出来并保存if ni < 3:f = str(Path(log_dir) / ('train_batch%g.jpg' % ni))  # filenameresult = plot_images(images=imgs, targets=targets, paths=paths, fname=f)if tb_writer and result is not None:tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)# tb_writer.add_graph(model, imgs)  # add model to tensorboard# end batch ------------------------------------------------------------------------------------------------# Scheduler# 进行学习率衰减scheduler.step()# mAP# 更新EMA的属性ema.update_attr(model)# 判断该epoch是否为最后一轮final_epoch = epoch + 1 == epochs# 对测试集进行测试,计算mAP等指标# 测试时使用的是EMA模型if not opt.notest or final_epoch:  # Calculate mAPresults, maps, times = test.test(opt.data,batch_size=batch_size,imgsz=imgsz_test,save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),model=ema.ema,single_cls=opt.single_cls,dataloader=testloader,save_dir=log_dir)# Write# 将指标写入result.txtwith open(results_file, 'a') as f:f.write(s + '%10.4g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)# 如果设置opt.bucket, 上传results.txt到谷歌云盘if len(opt.name) and opt.bucket:os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))# Tensorboard# 添加指标,损失等信息到tensorboard显示if tb_writer:tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss','metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1','val/giou_loss', 'val/obj_loss', 'val/cls_loss']for x, tag in zip(list(mloss[:-1]) + list(results), tags):tb_writer.add_scalar(tag, x, epoch)# Update best mAP# 更新best_fitnessfi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]if fi > best_fitness:best_fitness = fi# Save model"""保存模型,还保存了epoch,results,optimizer等信息,optimizer将不会在最后一轮完成后保存model保存的是EMA的模型"""save = (not opt.nosave) or (final_epoch and not opt.evolve)if save:with open(results_file, 'r') as f:  # create checkpointckpt = {'epoch': epoch,'best_fitness': best_fitness,'training_results': f.read(),'model': ema.ema,'optimizer': None if final_epoch else optimizer.state_dict()}# Save last, best and deletetorch.save(ckpt, last)if (best_fitness == fi) and not final_epoch:torch.save(ckpt, best)del ckpt# end epoch ----------------------------------------------------------------------------------------------------# end training# Strip optimizers"""模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;并且对模型进行model.half(), 将Float32的模型->Float16,可以减少模型大小,提高inference速度"""n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.namefresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % nfor f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):if os.path.exists(f1):os.rename(f1, f2)  # renameispt = f2.endswith('.pt')  # is *.ptstrip_optimizer(f2) if ispt else None  # strip optimizer# 上传结果到谷歌云盘os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None  # upload# Finish# 可视化results.txt文件if not opt.evolve:plot_results(save_dir=log_dir)  # save as results.pngprint('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))# 释放显存dist.destroy_process_group() if device.type != 'cpu' and torch.cuda.device_count() > 1 else Nonetorch.cuda.empty_cache()return results

以上我根据ultralytics\yolov5的train.py代码对其整体流程做一个梳理,讲解每个部分的代码的作用,但是对于一些细节函数还没做详细解析,就比如说计算损失的compute_loss()函数等,这些函数在utils.py文件里,之后更新解析utils.py。

YOLOV5训练代码train.py注释与解析相关推荐

  1. YOLOV5测试代码test.py注释与解析

    YOLOv5代码注释版更新啦,注释的是最近的2021.07.14的版本,且注释更全 github: https://github.com/Laughing-q/yolov5_annotations Y ...

  2. YOLOV5检测代码detect.py注释与解析

    YOLOv5代码注释版更新啦,注释的是最近的2021.07.14的版本,且注释更全 github: https://github.com/Laughing-q/yolov5_annotations Y ...

  3. DeamNet||训练代码学习train.py注释与解析

    目录 1. 导入各种库,设置运行环境 2. 训练设置,各种参数 3.测试 1. 导入各种库,设置运行环境 from __future__ import print_function import os ...

  4. YOLOv5源码逐行超详细注释与解读(3)——训练部分train.py

    前言 本篇文章主要是对YOLOv5项目的训练部分train.py.通常这个文件主要是用来读取用户自己的数据集,加载模型并训练. 文章代码逐行手打注释,每个模块都有对应讲解,一文帮你梳理整个代码逻辑! ...

  5. yolov5---detect.py注释解析

    YOLOV5检测代码detect.py注释与解析 检测参数以及main函数解析 if __name__ == '__main__':"""weights:训练的权重sou ...

  6. 图像去雨:超详细手把手写 pytorch 实现代码(带注释)

    引导 数据集准备 训练数据集代码 测试数据集代码 网络模型代码 训练代码 测试代码 参考文献 其他 数据集准备 使用来自第一个参考文献的公开数据集Rain12600和Rain1400,下载链接.其中训 ...

  7. 1 PyTorch版YOLOv3 代码中文注释 之 训练 train.py test.py detect.py

    文章目录 PyTorch版YOLOv3 代码中文注释 1. 相关链接: 2. 代码结构: 3. train.py 3.1. train.py 中包含的主要功能 4. test.py 4.1. test ...

  8. 图像分割套件PaddleSeg全面解析(一)train.py代码解读

    首先祝贺百度团队百度斩获NeurIPS2020挑战赛冠军,https://www.jiqizhixin.com/articles/2020-12-09-2. 在此次比赛中使用的是基于飞桨深度学习框架开 ...

  9. 基于YOLOv5的手势识别系统(含手势识别数据集+训练代码)

    基于YOLOv5的手势识别系统(含手势识别数据集+训练代码) 目录 基于YOLOv5的手势识别系统(含手势识别数据集+训练代码) 1. 前言 2. 手势识别的方法 (1)基于多目标检测的手势识别方法 ...

最新文章

  1. oracle11g的安装
  2. 【vue】webpack插件svg-sprite-loader---实现自己的icon组件
  3. cnn验证码识别代码_中文项目:快速识别验证码,CNN也能为爬虫保驾护航
  4. 数据结构--二叉树 Binary Tree
  5. c++中wstring 和 string的转换
  6. Nginx+tomcat+memcached缓存共享session
  7. 权威可信 | 华为云云测通过中国电子技术标准院软件测试工具能力评价
  8. 插画素材 | 圣诞节设计离不了!
  9. Unity之如何从fbx提取Animation clip文件
  10. 院士大咖齐聚苏州,共话AI未来,30个优秀个人和企业、产品受到表彰
  11. 一键打造全栈式小程序开发者!
  12. Ble扫描导致wifi信号弱/断开解决
  13. android模拟器 bridge,ADB (Android Debug Bridge)简介
  14. 尝试加载 Oracle 客户端库时引发 BadImageFormatException。问题记录
  15. 第三章CDMA的原理和应用(1)
  16. 数字音频水印技术的matlab代码,数字水印技术dct算法matlab源代码
  17. matlab中uigetfile函数的使用
  18. 电脑检测工具eve_EVEREST中文版下载
  19. 阿里云mysql导出表,mysql导出数据库表数据
  20. 阿里研究员玄难:如何做电商业务中台

热门文章

  1. 【时间之外】一个命令解决win10登录黑屏
  2. 第六章、坐标轴的定制
  3. mysql中locat函数,MySQL中的LOCATE和POSITION函数使用方法
  4. 删库跑路、“投毒”、改协议,开源有哪几大红线千万不能踩?
  5. google chrome adobe flash player过期解决方法
  6. 用DIV+CSS技术设计的网页与实现制作【体育文化】dreamweaver学生网页设计
  7. python飞行棋项目
  8. 32 --> 详解 OpenWRT系统框架基础软件模块之netifd
  9. linux 把进程调到前台,【如何将后台运行的程序转到前台来?】
  10. 欧姆龙NJ/NX基于Sysmac Studio的EIP通讯 方式