点击上方“朱小厮的博客”,选择“设为星标”

后台回复"书",获取

来源:r6d.cn/J2bw

简介

MySQL在2016年仍然保持强劲的数据库流行度增长趋势。越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来。但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况。阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题。现将《ApsaraDB专家诊断报告》中出现的部分常见SQL问题总结如下,供大家参考。

前言

MySQL在2016年仍然保持强劲的数据库流行度增长趋势。越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来。但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况。阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题。现将《ApsaraDB专家诊断报告》中出现的部分常见SQL问题总结如下,供大家参考。

常见SQL错误用法

1. LIMIT 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般DBA想到的办法是在type, name, create_time字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

SELECT *
FROM   operation
WHERE  type = 'SQLStats' AND name = 'SlowLog'
ORDER  BY create_time
LIMIT  1000, 10;

好吧,可能90%以上的DBA解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL重新设计如下:

SELECT   *
FROM     operation
WHERE    type = 'SQLStats'
AND      name = 'SlowLog'
AND      create_time > '2017-03-16 14:00:00'
ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2. 隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended SELECT * > FROM my_balance b > WHERE b.bpn = 14000000123 > AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段bpn的定义为varchar(20),MySQL的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3. 关联更新、删除

虽然MySQL5.6引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成JOIN。

比如下面UPDATE语句,MySQL实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o
SET    status = 'applying'
WHERE  o.id IN (SELECT id FROM   (SELECT o.id, o.status FROM   operation o WHERE  o.group = 123 AND o.status NOT IN ( 'done' ) ORDER  BY o.parent, o.id LIMIT  1) t);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY | o | index |               | PRIMARY | 8       | | 24   | Using where; Using temporary |
| 2 | DEPENDENT SUBQUERY | |       | |         | |       | | Impossible WHERE noticed after reading const tables |
| 3  | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8       | const | 1    | Using where; Using filesort |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为JOIN之后,子查询的选择模式从DEPENDENT SUBQUERY变成DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o JOIN  (SELECT o.id, o.status FROM   operation o WHERE  o.group = 123 AND o.status NOT IN ( 'done' ) ORDER  BY o.parent, o.id LIMIT  1) tON o.id = t.id
SET    status = 'applying'

执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY |       | |               | |         | |      | Impossible WHERE noticed after reading const tables |
| 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

4. 混合排序

MySQL不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT *
FROM   my_order o INNER JOIN my_appraise a ON a.orderid = o.id
ORDER  BY a.is_reply ASC, a.appraise_time DESC
LIMIT  0, 20

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |
|  1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122     | a.orderid |       1 | NULL |
+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于is_reply只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT *
FROM   ((SELECT *FROM   my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 0 ORDER  BY appraise_time DESC LIMIT  0, 20) UNION ALL (SELECT *FROM   my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 1 ORDER  BY appraise_time DESC LIMIT  0, 20)) t
ORDER  BY  is_reply ASC, appraisetime DESC
LIMIT  20;

5. EXISTS语句

MySQL对待EXISTS子句时,仍然采用嵌套子查询的执行方式。如下面的SQL语句:

SELECT *
FROM   my_neighbor n LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4 AND EXISTS(SELECT 1 FROM   message_info m WHERE  n.id = m.neighbor_id AND m.inuser = 'xxx') AND n.topic_type <> 5

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
|  1 | PRIMARY | n | ALL |  | NULL | NULL | NULL | 1086041 | Using where |
| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
|  2 | DEPENDENT SUBQUERY | m | ref |  | idx_message_info | 122     | const |       1 | Using index condition; Using where |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉exists更改为join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT *
FROM   my_neighbor n INNER JOIN message_info m ON n.id = m.neighbor_id AND m.inuser = 'xxx' LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4 AND n.topic_type <> 5

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
|  1 | SIMPLE | m | ref | | idx_message_info | 122     | const |    1 | Using index condition |
| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |
|  1 | SIMPLE | sra | ref | | idx_user_id | 123     | const |    1 | Using where |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
6. 条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

  1. 聚合子查询;

  2. 含有LIMIT的子查询;

  3. UNION 或UNION ALL子查询;

  4. 输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT *
FROM   (SELECT target, Count(*) FROM   operation GROUP  BY target) t
WHERE  target = 'rm-xxxx'+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table      | type  | possible_keys | key         | key_len | ref   | rows | Extra |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| 1 | PRIMARY | <derived2> | ref   | <auto_key0> | <auto_key0> | 514     | const | 2 | Using where |
| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519     | NULL  | 20 | Using index |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target, Count(*)
FROM   operation
WHERE  target = 'rm-xxxx'
GROUP  BY target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

关于MySQL外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表

7. 提前缩小范围

先上初始SQL语句:

SELECT *
FROM   my_order o LEFT JOIN my_userinfo u ON o.uid = u.uidLEFT JOIN my_productinfo p ON o.pid = p.pid
WHERE  ( o.display = 0 ) AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
|  1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
|  1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL |      6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后WHERE条件以及排序均针对最左主表,因此可以先对my_order排序提前缩小数据量再做左连接。SQL重写后如下,执行时间缩小为1毫秒左右。

SELECT *
FROM (
SELECT *
FROM   my_order o
WHERE  ( o.display = 0 ) AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15
) o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid
ORDER BY  o.selltime DESC
limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及LIMIT 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
|  1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL |     15 | Using temporary; Using filesort |
| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
|  1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL |      6 | Using where; Using join buffer (Block Nested Loop) |
| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

8. 中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT    a.*, c.allocated
FROM      ( SELECT   resourceid FROM     my_distribute d WHERE    isdelete = 0 AND      cusmanagercode = '1234567' ORDER BY salecode limit 20) a
LEFT JOIN ( SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM     my_resources GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表resourceid能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT    a.*, c.allocated
FROM      ( SELECT   resourceid FROM     my_distribute d WHERE    isdelete = 0 AND      cusmanagercode = '1234567' ORDER BY salecode limit 20) a
LEFT JOIN ( SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM     my_resources r, ( SELECT   resourceid FROM     my_distribute d WHERE    isdelete = 0 AND      cusmanagercode = '1234567' ORDER BY salecode limit 20) a WHERE    r.resourcesid = a.resourcesid GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用WITH语句再次重写:

WITH a AS
( SELECT   resourceid FROM     my_distribute d WHERE    isdelete = 0 AND      cusmanagercode = '1234567' ORDER BY salecode limit 20)
SELECT    a.*, c.allocated
FROM      a
LEFT JOIN ( SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM     my_resources r, a WHERE    r.resourcesid = a.resourcesid GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

AliSQL即将推出WITH语法,敬请期待。

总结

数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。

程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。编写复杂SQL语句要养成使用WITH语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 ^^。

使用云上数据库遇到难点(不局限于SQL问题),随时寻求阿里云原厂专家服务的帮助。

想知道更多?扫描下面的二维码关注我
后台回复"技术",加入技术群
【精彩推荐】原创|OpenAPI标准规范如此简单| ES最全详细使用教程ClickHouse到底是什么?为什么如此牛逼!原来ElasticSearch还可以这么理解面试官:InnoDB中一棵B+树可以存放多少行数据?微服务下如何解耦?对于已经紧耦合下如何重构?如何构建一套高性能、高可用、低成本的视频处理系统?架构之道:分离业务逻辑和技术细节星巴克不使用两阶段提交点个赞+在看,少个 bug ????

你知道这 8 种 SQL 错误用法吗?相关推荐

  1. 8 种常见的SQL错误用法

    点击上方蓝色"程序猿DD",选择"设为星标" 回复"资源"获取独家整理的学习资料! 作者 | db匠 来源 | http://yq.aliy ...

  2. 数据库优化:8 种常见的SQL错误用法

    作者 | db匠 来源 | http://yq.aliyun.com/articles/72501 前言 MySQL在2016年仍然保持强劲的数据库流行度增长趋势.越来越多的客户将自己的应用建立在My ...

  3. 盘点 8 种最坑的 SQL 错误用法

    今天为大家搜集了几类SQL错误用法,纯纯纯纯干货,来了! 1.LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句,一般 DBA 想到的办法是在 typ ...

  4. MySQL 性能优化:8 种常见 SQL 错误用法!

    声明:转载自 MySQL 性能优化:8 种常见 SQL 错误用法! 1.LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句,一般 DBA 想到的办法是 ...

  5. 避免常见的6种HTML5错误用法,如何避免常见的6种HTML5错误用法

    一.不要使用section作为div的替代品 人们在标签使用中最常见到的错误之一就是随意将HTML5的等价于 --具体地说,就是直接用作替代品(用于样式).在XHTML或者HTML4中,我们常看到这样 ...

  6. 8种常见SQL错误用法

    点击上方"方志朋",选择"设为星标" 做积极的人,而不是积极废人 来源:https://dwz.cn/cgAPOWPx 1.LIMIT 语句 分页查询是最常用的 ...

  7. 8种最坑的SQL错误用法,第一个就很坑?

    作者:程序员追风 链接:https://juejin.im/post/5dd15451e51d453b3d3d4329 1.LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方 ...

  8. 8种常被忽视的SQL错误用法,快来认领一下!

    一.LIMIT  语句分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引 ...

  9. 你应该避免的8种常见SQL错误用法!

    来源:https://dwz.cn/cgAPOWPx 1.LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方. 比如对于下面简单的语句,一般 DBA 想到的办法是在 type ...

最新文章

  1. 管理学中的知名定律之阿尔布莱特法则
  2. View及ViewGroup的事件分发及传递(二)
  3. 基于自然语言的软件工程和程序设计(下)
  4. java各科成绩排序_java 成绩排序
  5. 使用JDBC操作基于Oracle的CLOB,BLOB字段类型
  6. core data firing fault
  7. jenkins未授权访问漏洞记录(端口:7001,80,8080,50000)
  8. ios手机游戏 带你体验拉斯维加斯的疯狂
  9. ArcFace免费人脸识别 Demo [Android]
  10. android 模拟器 403,Android403R2模拟器安装.doc
  11. 苹果官方下载_苹果官方发布的2018年应用榜单里,有安卓也能下载的抠图神器!...
  12. python 流程结构练习
  13. 相对路径和绝对路径及表示
  14. Spring07 Java配置
  15. java对台湾同胞身份证号码验证
  16. 谷歌浏览器突然不能翻译成中文
  17. 认识USB Type-C Type-CB Type-A 接口
  18. 联想服务器TS130主板芯片组,【ThinkServer TS130配置】ThinkServer TS130塔式服务器配置-ZOL中关村在线...
  19. 学习java开发培训
  20. Java复习打卡day40

热门文章

  1. 网线制作(一根网线劈开给2台同时上网使用)
  2. How to think positively 如何培养正念
  3. 李洪强漫谈iOS开发[C语言-025]-赋值运算符案例
  4. GridView实战二:使用ObjectDataSource数据源控件(自定义缓存机制实现Sort)
  5. Linux运维工程师面试题第三套
  6. [php]数据结构算法(PHP描述) 半折插入排序 straight binary sort
  7. java对字符处理(一)--对HTML中字符转换
  8. C++:函数参数不确定时用cstdarg(stdarg.h)
  9. CodeForces - 566A Matching Names(字典树上贪心)
  10. 通过条件判断文本框是否隐藏_如何通过风速来判断高效过滤器是否达到更换要求...