吴恩达deeplearning.ai课程作业,自己写的答案。
补充说明:
1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学习方法,况且作业也不算难。
2. 关于评论中有人说我是抄袭,注释还没别人详细,复制下来还运行不过。答复是:做伸手党之前,请先搞清这个作业是干什么的。大家都是从GitHub上下载原始的作业,然后根据代码前面的提示(通常会指定函数和公式)来编写代码,而且后面还有expected output供你比对,如果程序正确,结果一般来说是一样的。请不要无脑喷,说什么跟别人的答案一样的。说到底,我们要做的就是,看他的文字部分,根据提示在代码中加入部分自己的代码。我们自己要写的部分只有那么一小部分代码。
3. 由于实在很反感无脑喷子,故禁止了下面的评论功能,请见谅。如果有问题,请私信我,在力所能及的范围内会尽量帮忙。

Initialization

Welcome to the first assignment of “Improving Deep Neural Networks”.

Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning.

If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results.

A well chosen initialization can:
- Speed up the convergence of gradient descent
- Increase the odds of gradient descent converging to a lower training (and generalization) error

To get started, run the following cell to load the packages and the planar dataset you will try to classify.

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation
from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec%matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'# load image dataset: blue/red dots in circles
train_X, train_Y, test_X, test_Y = load_dataset()

You would like a classifier to separate the blue dots from the red dots.

1 - Neural Network model

You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with:
- Zeros initialization – setting initialization = "zeros" in the input argument.
- Random initialization – setting initialization = "random" in the input argument. This initializes the weights to large random values.
- He initialization – setting initialization = "he" in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015.

Instructions: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this model() calls.

def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"):"""Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.Arguments:X -- input data, of shape (2, number of examples)Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples)learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descentprint_cost -- if True, print the cost every 1000 iterationsinitialization -- flag to choose which initialization to use ("zeros","random" or "he")Returns:parameters -- parameters learnt by the model"""grads = {}costs = [] # to keep track of the lossm = X.shape[1] # number of exampleslayers_dims = [X.shape[0], 10, 5, 1]# Initialize parameters dictionary.if initialization == "zeros":parameters = initialize_parameters_zeros(layers_dims)elif initialization == "random":parameters = initialize_parameters_random(layers_dims)elif initialization == "he":parameters = initialize_parameters_he(layers_dims)# Loop (gradient descent)for i in range(0, num_iterations):# Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.a3, cache = forward_propagation(X, parameters)# Losscost = compute_loss(a3, Y)# Backward propagation.grads = backward_propagation(X, Y, cache)# Update parameters.parameters = update_parameters(parameters, grads, learning_rate)# Print the loss every 1000 iterationsif print_cost and i % 1000 == 0:print("Cost after iteration {}: {}".format(i, cost))costs.append(cost)# plot the lossplt.plot(costs)plt.ylabel('cost')plt.xlabel('iterations (per hundreds)')plt.title("Learning rate =" + str(learning_rate))plt.show()return parameters

2 - Zero initialization

There are two types of parameters to initialize in a neural network:
- the weight matrices (W[1],W[2],W[3],...,W[L−1],W[L])(W[1],W[2],W[3],...,W[L−1],W[L])(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})
- the bias vectors (b[1],b[2],b[3],...,b[L−1],b[L])(b[1],b[2],b[3],...,b[L−1],b[L])(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})

Exercise: Implement the following function to initialize all parameters to zeros. You’ll see later that this does not work well since it fails to “break symmetry”, but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes.

# GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims):"""Arguments:layer_dims -- python array (list) containing the size of each layer.Returns:parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])b1 -- bias vector of shape (layers_dims[1], 1)...WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])bL -- bias vector of shape (layers_dims[L], 1)"""parameters = {}L = len(layers_dims)            # number of layers in the networkfor l in range(1, L):### START CODE HERE ### (≈ 2 lines of code)parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l-1]))parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))### END CODE HERE ###return parameters
parameters = initialize_parameters_zeros([3,2,1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 0.  0.  0.][ 0.  0.  0.]]
b1 = [[ 0.][ 0.]]
W2 = [[ 0.  0.]]
b2 = [[ 0.]]

Expected Output:

W1 [[ 0. 0. 0.] [ 0. 0. 0.]]
b1 [[ 0.] [ 0.]]
W2 [[ 0. 0.]]
b2 [[ 0.]]

Run the following code to train your model on 15,000 iterations using zeros initialization.

parameters = model(train_X, train_Y, initialization = "zeros")
print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)
Cost after iteration 0: 0.6931471805599453
Cost after iteration 1000: 0.6931471805599453
Cost after iteration 2000: 0.6931471805599453
Cost after iteration 3000: 0.6931471805599453
Cost after iteration 4000: 0.6931471805599453
Cost after iteration 5000: 0.6931471805599453
Cost after iteration 6000: 0.6931471805599453
Cost after iteration 7000: 0.6931471805599453
Cost after iteration 8000: 0.6931471805599453
Cost after iteration 9000: 0.6931471805599453
Cost after iteration 10000: 0.6931471805599455
Cost after iteration 11000: 0.6931471805599453
Cost after iteration 12000: 0.6931471805599453
Cost after iteration 13000: 0.6931471805599453
Cost after iteration 14000: 0.6931471805599453

On the train set:
Accuracy: 0.5
On the test set:
Accuracy: 0.5

The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary:

print ("predictions_train = " + str(predictions_train))
print ("predictions_test = " + str(predictions_test))
predictions_train = [[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0]]
predictions_test = [[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
plt.title("Model with Zeros initialization")
axes = plt.gca()
axes.set_xlim([-1.5,1.5])
axes.set_ylim([-1.5,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

The model is predicting 0 for every example.

In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with n[l]=1n[l]=1n^{[l]}=1 for every layer, and the network is no more powerful than a linear classifier such as logistic regression.

What you should remember:
- The weights W[l]W[l]W^{[l]} should be initialized randomly to break symmetry.
- It is however okay to initialize the biases b[l]b[l]b^{[l]} to zeros. Symmetry is still broken so long as W[l]W[l]W^{[l]} is initialized randomly.

3 - Random initialization

To break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values.

Exercise: Implement the following function to initialize your weights to large random values (scaled by *10) and your biases to zeros. Use np.random.randn(..,..) * 10 for weights and np.zeros((.., ..)) for biases. We are using a fixed np.random.seed(..) to make sure your “random” weights match ours, so don’t worry if running several times your code gives you always the same initial values for the parameters.

# GRADED FUNCTION: initialize_parameters_randomdef initialize_parameters_random(layers_dims):"""Arguments:layer_dims -- python array (list) containing the size of each layer.Returns:parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])b1 -- bias vector of shape (layers_dims[1], 1)...WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])bL -- bias vector of shape (layers_dims[L], 1)"""np.random.seed(3)               # This seed makes sure your "random" numbers will be the as oursparameters = {}L = len(layers_dims)            # integer representing the number of layersfor l in range(1, L):### START CODE HERE ### (≈ 2 lines of code)parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * 10parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))### END CODE HERE ###return parameters
parameters = initialize_parameters_random([3, 2, 1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 17.88628473   4.36509851   0.96497468][-18.63492703  -2.77388203  -3.54758979]]
b1 = [[ 0.][ 0.]]
W2 = [[-0.82741481 -6.27000677]]
b2 = [[ 0.]]

Expected Output:

W1 [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]]
b1 [[ 0.] [ 0.]]
W2 [[-0.82741481 -6.27000677]]
b2 [[ 0.]]

Run the following code to train your model on 15,000 iterations using random initialization.

parameters = model(train_X, train_Y, initialization = "random")
print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)
/root/deeplearning.ai/homework/Course2 Improving Deep Neural Network/Class2 Week1/assignment1/init_utils.py:145: RuntimeWarning: divide by zero encountered in loglogprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
/root/deeplearning.ai/homework/Course2 Improving Deep Neural Network/Class2 Week1/assignment1/init_utils.py:145: RuntimeWarning: invalid value encountered in multiplylogprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)Cost after iteration 0: inf
Cost after iteration 1000: 0.6247924745506072
Cost after iteration 2000: 0.5980258056061102
Cost after iteration 3000: 0.5637539062842213
Cost after iteration 4000: 0.5501256393526495
Cost after iteration 5000: 0.5443826306793814
Cost after iteration 6000: 0.5373895855049121
Cost after iteration 7000: 0.47157999220550006
Cost after iteration 8000: 0.39770475516243037
Cost after iteration 9000: 0.3934560146692851
Cost after iteration 10000: 0.3920227137490125
Cost after iteration 11000: 0.38913700035966736
Cost after iteration 12000: 0.3861358766546214
Cost after iteration 13000: 0.38497629552893475
Cost after iteration 14000: 0.38276694641706693

On the train set:
Accuracy: 0.83
On the test set:
Accuracy: 0.86

If you see “inf” as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn’t worth worrying about for our purposes.

Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s.

print (predictions_train)
print (predictions_test)
[[1 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 11 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 00 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 11 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 01 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 10 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 1 10 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 11 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 11 1 1 0]]
[[1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 01 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 11 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0]]
plt.title("Model with large random initialization")
axes = plt.gca()
axes.set_xlim([-1.5,1.5])
axes.set_ylim([-1.5,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

Observations:
- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when log(a[3])=log(0)log⁡(a[3])=log⁡(0)\log(a^{[3]}) = \log(0), the loss goes to infinity.
- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm.
- If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.

In summary:
- Initializing weights to very large random values does not work well.
- Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part!

4 - He initialization

Finally, try “He Initialization”; this is named for the first author of He et al., 2015. (If you have heard of “Xavier initialization”, this is similar except Xavier initialization uses a scaling factor for the weights W[l]W[l]W^{[l]} of sqrt(1./layers_dims[l-1]) where He initialization would use sqrt(2./layers_dims[l-1]).)

Exercise: Implement the following function to initialize your parameters with He initialization.

Hint: This function is similar to the previous initialize_parameters_random(...). The only difference is that instead of multiplying np.random.randn(..,..) by 10, you will multiply it by 2dimension of the previous layer−−−−−−−−−−−−−−−−−−√2dimension of the previous layer\sqrt{\frac{2}{\text{dimension of the previous layer}}}, which is what He initialization recommends for layers with a ReLU activation.

# GRADED FUNCTION: initialize_parameters_hedef initialize_parameters_he(layers_dims):"""Arguments:layer_dims -- python array (list) containing the size of each layer.Returns:parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])b1 -- bias vector of shape (layers_dims[1], 1)...WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])bL -- bias vector of shape (layers_dims[L], 1)"""np.random.seed(3)parameters = {}L = len(layers_dims) - 1 # integer representing the number of layersfor l in range(1, L + 1):### START CODE HERE ### (≈ 2 lines of code)parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * np.sqrt(2 / layers_dims[l-1])parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))### END CODE HERE ###return parameters
parameters = initialize_parameters_he([2, 4, 1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ][-0.2773882  -0.35475898][-0.08274148 -0.62700068]]
b1 = [[ 0.][ 0.][ 0.][ 0.]]
W2 = [[-0.03098412 -0.33744411 -0.92904268  0.62552248]]
b2 = [[ 0.]]

Expected Output:

W1 [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]]
b1 [[ 0.] [ 0.] [ 0.] [ 0.]]
W2 [[-0.03098412 -0.33744411 -0.92904268 0.62552248]]
b2 [[ 0.]]

Run the following code to train your model on 15,000 iterations using He initialization.

parameters = model(train_X, train_Y, initialization = "he")
print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)
Cost after iteration 0: 0.8830537463419761
Cost after iteration 1000: 0.6879825919728063
Cost after iteration 2000: 0.6751286264523371
Cost after iteration 3000: 0.6526117768893805
Cost after iteration 4000: 0.6082958970572938
Cost after iteration 5000: 0.5304944491717495
Cost after iteration 6000: 0.4138645817071794
Cost after iteration 7000: 0.3117803464844441
Cost after iteration 8000: 0.23696215330322562
Cost after iteration 9000: 0.1859728720920684
Cost after iteration 10000: 0.15015556280371808
Cost after iteration 11000: 0.12325079292273551
Cost after iteration 12000: 0.09917746546525937
Cost after iteration 13000: 0.08457055954024283
Cost after iteration 14000: 0.07357895962677366

On the train set:
Accuracy: 0.993333333333
On the test set:
Accuracy: 0.96
plt.title("Model with He initialization")
axes = plt.gca()
axes.set_xlim([-1.5,1.5])
axes.set_ylim([-1.5,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

Observations:
- The model with He initialization separates the blue and the red dots very well in a small number of iterations.

5 - Conclusions

You have seen three different types of initializations. For the same number of iterations and same hyperparameters the comparison is:

Model Train accuracy Problem/Comment
3-layer NN with zeros initialization 50% fails to break symmetry
3-layer NN with large random initialization 83% too large weights
3-layer NN with He initialization 99% recommended method

What you should remember from this notebook:
- Different initializations lead to different results
- Random initialization is used to break symmetry and make sure different hidden units can learn different things
- Don’t intialize to values that are too large
- He initialization works well for networks with ReLU activations.

吴恩达深度学习课程deeplearning.ai课程作业:Class 2 Week 1 1.Initialization相关推荐

  1. 吴恩达深度学习第二周--logistic回归作业1

    吴恩达深度学习第二周–logistic回归作业1 本系列为吴恩达老师深度学习作业的总结,其中参考了很多优秀的文章,本文为了方便日后的复习与巩固,更为详细的作业讲解参考 目录 吴恩达深度学习第二周--l ...

  2. 吴恩达深度学习之tensorflow2.0 课程

    课链接 吴恩达深度学习之tensorflow2.0入门到实战 2019年最新课程 最佳配合吴恩达实战的教程 代码资料 自己取 链接:https://pan.baidu.com/s/1QrTV3KvKv ...

  3. 吴恩达深度学习-Course4第三周作业 yolo.h5文件读取错误解决方法

    这个yolo.h5文件走了不少弯路呐,不过最后终于搞好了,现在把最详细的脱坑过程记录下来,希望小伙伴们少走些弯路. 最初的代码是从下面这个大佬博主的百度网盘下载的,但是h5文件无法读取.(22条消息) ...

  4. 吴恩达深度学习的实用层面编程作业:正则化Regularization

  5. 吴恩达深度学习的实用层面编程作业:初始化Initialization

  6. 360题带你走进深度学习!吴恩达深度学习课程测试题中英对照版发布

    吴恩达的深度学习课程(deepLearning.ai)是公认的入门深度学习的宝典,本站将课程的课后测试题进行了翻译,建议初学者学习.所有题目都翻译完毕,适合英文不好的同学学习. 主要翻译者:黄海广 内 ...

  7. github标星8331+:吴恩达深度学习课程资源(完整笔记、中英文字幕视频、python作业,提供百度云镜像!)...

    吴恩达老师的深度学习课程(deeplearning.ai),可以说是深度学习入门的最热门课程,我和志愿者编写了这门课的笔记,并在github开源,star数达到8331+,曾经有相关报道文章.为解决g ...

  8. 吴恩达深度学习课程之第四门课 卷积神经网络 第二周 深度卷积网络

    本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai <深度学习课程 笔记 (V5.1 )> 第二周 深度卷积网络 2.1 为什么要进行实例探究?(Why look at ...

  9. 吴恩达深度学习课程笔记之卷积神经网络(2nd week)

    0 参考资料 [1]  大大鹏/Bilibili资料 - Gitee.com [2] [中英字幕]吴恩达深度学习课程第四课 - 卷积神经网络_哔哩哔哩_bilibili [3]  深度学习笔记-目录 ...

  10. 吴恩达 深度学习1 2022, 浙大AI第一课

    强推![浙大公开课]2022B站最好最全的机器学习课程,从入门到实战!人工智能/AI/机器学习/数学基础_哔哩哔哩_bilibili 我们规定了行为和收益函数后,就不管了,构造一个算法,让计算机自己去 ...

最新文章

  1. homework-03
  2. Nginx的负载均衡 - 保持会话 (ip_hash)
  3. 探秘小程序(9):父页面与自定义组件交互
  4. SAP MM 评估类型 评估类别
  5. mysql年份_【数据库_Mysql】查询当前年份的sql
  6. 深入理解JavaScript系列(18):面向对象编程之ECMAScript实现
  7. HashMap jdk1.7源码阅读与解析
  8. Openssl的证书格式转换
  9. 迷宫(AHOI2016初中组T3)
  10. Java中的Random()函数 【转载】
  11. 2012.12.26 晚 小雨
  12. 搭载Apple芯片的Mac如何使用macOS恢复?
  13. mysql表添加字段_怎么给mysql数据表添加字段
  14. java sqlite 多线程_深入Sqlite多线程入库的问题
  15. 基于51单片机和GPS的经纬度时间速度航向系统设计定位电子罗盘原理图程序设计
  16. 太干了,Android 抓包姿势总结!
  17. win10sas安装教程_Android Studio详细安装教程
  18. excel怎么设置选项选择_使用Excel选项按钮选择答案
  19. mysql横向扩展_转mysql横向扩展和纵向扩展
  20. C/C++语言100题练习计划 98——最长最短单词

热门文章

  1. mybatis清除一级缓存的几种方法
  2. VS2013导入opencv320配置属性文件
  3. 模式识别的评价方法:ROC曲线, DET曲线, FPPW, FPPI
  4. 初学Java Web(3)——第一个Servlet
  5. 浅谈 Java 字符串(String, StringBuffer, StringBuilder)
  6. 【Spring】Bean的生命周期
  7. 跟我一起写 Makefile(五)
  8. C++运算符重载(友元函数方式)
  9. 【OpenCV3】双线性插值
  10. 在react-router中进行代码拆分