地理坐标:为球面坐标。 参考平面地是 椭球面。坐标单位:经纬度大地坐标:为平面坐标。参考平面地是 水平面 坐标单位:米、千米等。

地理坐标转换到大地坐标的过程可理解为投影。 (投影:将不规则的地球曲面转换为平面)

在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system),

1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为

地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate syst

em是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作

呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求

我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短

半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。

Spheroid: Krasovsky_1940

Semimajor Axis: 6378245.000000000000000000

Semiminor Axis: 6356863.018773047300000000

Inverse Flattening(扁率): 298.300000000000010000

然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描

述中,可以看到有这么一行:

Datum: D_Beijing_1954

表示,大地基准面是D_Beijing_1954。

--------------------------------------------------------------------------------

有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。

完整参数:

Alias:

Abbreviation:

Remarks:

Angular Unit: Degree (0.017453292519943299)

Prime Meridian(起始经度): Greenwich (0.000000000000000000)

Datum(大地基准面): D_Beijing_1954

Spheroid(参考椭球体): Krasovsky_1940

Semimajor Axis: 6378245.000000000000000000

Semiminor Axis: 6356863.018773047300000000

Inverse Flattening: 298.300000000000010000

2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐

标系统中的一些参数。

Projection: Gauss_Kruger

Parameters:

False_Easting: 500000.000000

False_Northing: 0.000000

Central_Meridian: 117.000000

Scale_Factor: 1.000000

Latitude_Of_Origin: 0.000000

Linear Unit: Meter (1.000000)

Geographic Coordinate System:

Name: GCS_Beijing_1954

Alias:

Abbreviation:

Remarks:

Angular Unit: Degree (0.017453292519943299)

Prime Meridian: Greenwich (0.000000000000000000)

Datum: D_Beijing_1954

Spheroid: Krasovsky_1940

Semimajor Axis: 6378245.000000000000000000

Semiminor Axis: 6356863.018773047300000000

Inverse Flattening: 298.300000000000010000

从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。

投影坐标系统,实质上便是平面坐标系统,其地图单位通常为米。

那么为什么投影坐标系统中要存在坐标系统的参数呢?

这时候,又要说明一下投影的意义:将球面坐标转化为平面坐标的过程便称为投影。

好了,投影的条件就出来了:

a、球面坐标

b、转化过程(也就是算法)

也就是说,要得到投影坐标就必须得有一个“拿来”投影的球面坐标,然后才能使用算法

去投影!

即每一个投影坐标系统都必须要求有Geographic Coordinate System参数。

关于北京54和西安80是我们使用最多的坐标系

先简单介绍高斯-克吕格投影的基本知识,了解就直接跳过,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。具体分带法是:6度分带从本初子午线开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,带号分别为1-60;3度投影带是从东经1度30秒经线开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带。为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。由于我国疆域均在北半球,x值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为500km。为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号,如20带内A点的坐标可以表示为YA=20 745 921.8m。

在Coordinate Systems/Projected Coordinate Systems/Gauss Kruger/Beijing 1954目录中,我们可以看到四种不同的命名方式:

Beijing 1954 3 Degree GK CM 75E.prj

Beijing 1954 3 Degree GK Zone 25.prj

Beijing 1954 GK Zone 13.prj

Beijing 1954 GK Zone 13N.prj

对它们的说明分别如下:

三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号

三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号

六度分带法的北京54坐标系,分带号为13,横坐标前加带号

六度分带法的北京54坐标系,分带号为13,横坐标前不加带号

在Coordinate Systems/Projected Coordinate Systems/Gauss Kruger/Xian 1980目录中,文件命名方式又有所变化:

Xian 1980 3 Degree GK CM 75E.prj

Xian 1980 3 Degree GK Zone 25.prj

Xian 1980 GK CM 75E.prj

Xian 1980 GK Zone 13.prj

西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方式?让人看了有些费解。=======================================

大地坐标(GeodeticCoordinate):大地测量中以参考椭球面为基准面的坐标。地面点P的位置用大地经度L、大地纬度B和大地高H表示。当点在参考椭球面上时,仅用大地经度和大地纬度表示。大地经度是通过该点的大地子午面与起始大地子午面之间的夹角,大地纬度是通过该点的法线与赤道面的夹角,大地高是地面点沿法线到参考椭球面的距离。

方里网:是由平行于投影坐标轴的两组平行线所构成的方格网。因为是每隔整公里绘出坐标纵线和坐标横线,所以称之为方里网,由于方里线同时 又是平行于直角坐标轴的坐标网线,故又称直角坐标网。

在1:1万——1:20万比例尺的地形图上,经纬线只以图廓线的形式直接表现出来,并在图角处注出相应度数。为了在用图时加密成网,在内外图廓间还绘有加密经纬网的加密分划短线(图式中称“分度带”),必要时对应短线相连就可以构成加密的经纬线网。1:25万地形图上,除内图廓上绘有经纬网的加密分划外,图内还有加密用的十字线。

我国的1:50万——1:100万地形图,在图面上直接绘出经纬线网,内图廓上也有供加密经纬线网的加密分划短线。

直角坐标网的坐标系以中央经线投影后的直线为X轴,以赤道投影后的直线为Y轴,它们的交点为坐标原点。这样,坐标系中就出现了四 个象限。纵坐标从赤道算起向北为正、向南为负;横坐标从中央经线算起,向东为正、向西为负。

虽然我们可以认为方里网是直角坐标,大地坐标就是球面坐标。但是我们在一副地形图上经常见到方里网和经纬度网,我们很习惯的称经纬度网为大地坐标,这个时候的大地坐标不是球面坐标,她与方里网的投影是一样的(一般为高斯投影),也是平面坐标

arcgis 投影坐标系转地理坐标系_ArcGIS的地理坐标系、大地坐标系相关推荐

  1. arcgis 投影坐标系转地理坐标系_空间坐标与投影系统系列(二):国内常用投影坐标系...

    上一篇我们介绍了空间坐标和地图投影.本篇我们以国内常用的54,80,2000坐标系统为例,介绍各坐标系统的区别与联系. 一.我国常用坐标系 我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3 ...

  2. ArcGIS投影坐标系下坐标值转换成地理坐标系经纬度

    一.背景           最近由于项目原因,接触了ArcGIS,之前重来没有接触过. 由于提供的管网位置数据是坐标系是:"CGCS2000_3_Degree_GK_CM_117E &qu ...

  3. arcgis 投影坐标系的区分

    ArcGIS中如何分辨坐标系是几度分带,坐标有没有带号? 在我国多使用北京54地理坐标系和西安80地理坐标系,相应的也会使用其对应的投影坐标.我国规定1:1万.1:2.5万.1:5万.1:10万.1: ...

  4. ArcGIS中ArcMap为不含坐标系的图层添加地理坐标系或投影坐标系

      本文介绍在ArcMap软件中,为不含有任何坐标系的图层添加地理坐标系或投影坐标系的方法.   在之前的文章ArcGIS矢量图层投影与地理坐标系转为投影坐标系--ArcMap(https://fkx ...

  5. 地理坐标系和投影坐标系

    地理坐标系和投影坐标系讲解收藏 cr.龙之吻number7 (一)两种坐标系 坐标系(Coordinate System)的概念为:"In geometry, a coordinate sy ...

  6. 地理坐标系、投影坐标系详解

    地理坐标系.投影坐标系详解 1.基本概念 2.地理坐标系 2.1 地球的三级逼近 2.1.1大地水准面 2.1.2地球椭球体 2.1.3大地基准面 2.2地理坐标 3.投影坐标系 3.1投影 3.2我 ...

  7. 地理坐标系和投影坐标系之间的关系

    转自:http://blog.csdn.net/qq_34149805/article/details/65634252 基本概念 地理坐标系:为球面坐标. 参考平面地是椭球面,坐标单位:经纬度: 投 ...

  8. 你必须知道的地理坐标系和投影坐标系

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_34149805/article/details/65634252 1.基本概念 地理坐标系:为 ...

  9. 转:你必须知道的地理坐标系和投影坐标系

    原文地址:你必须知道的地理坐标系和投影坐标系 文章条理清晰,内容通俗易懂 还可以参考另一篇文章:GISer梳理的我国常用的坐标系及相关知识 1.基本概念 地理坐标系:为球面坐标. 参考平面地是椭球面, ...

最新文章

  1. [Python]理解 if __name__ == ‘__main__‘
  2. 利用JEXL实现动态表达式编译
  3. java垃圾回收机制的理解
  4. 售价16999元!心系天下三星W22 5G耀世发布
  5. centos改变文件拥有者_每天学点之CentOS软件二进制包安装
  6. Machine Learning - I. Introduction机器学习综述 (Week 1)
  7. Python数据库连接池DBUtils(基于pymysql模块连接数据库)
  8. JS的IE和FF兼容性问题汇总
  9. 【系统分析师之路】第五章 复盘软件工程(敏捷开发)
  10. mysql补丁不成功,SQLServer2000SP4补丁打不上的解决办法_MySQL
  11. 版式设计——网页排版
  12. win7连接远程服务器特别慢,技术员告诉您win7远程桌面连接速度慢的具体解决法子...
  13. 增加关键词密度不要堆积
  14. __DSB()指令的作用
  15. python 正则表达式整理
  16. 微信小程序开发01 双线程模型:为什么小程序不用浏览器的线程模型?
  17. 图像和base64的转换 uniapp开发
  18. 选择适当的NFC标签类型
  19. Python小姿势 - Python爬虫:如何使用Python实现网页爬虫
  20. 计算机函数exp是什么意思,exp函数是什么意思

热门文章

  1. 力扣:15三数之和(python)
  2. LFS安装ifconfig命令
  3. Drupal 通过API动态的加入样式文件
  4. Html----编写
  5. Linux有问必答:如何为在Linux中安装兄弟牌打印机
  6. 第三章 使用Servlet处理HTTP响应
  7. 报表设计器条形码支持类型
  8. SHELL相关的特殊字符总结
  9. 函数式编程学习之路(一)
  10. 设计模式系列-组合模式