文章目录

  • 一、幂级数是什么?
  • 二、常见的幂级数
  • 三、幂级数重要结论:在收敛域内可逐项求导和积分
  • 四、用幂级数求数项级数的和
  • 五、用幂级数求数列通项公式
  • 六、用幂级数解微分方程

一、幂级数是什么?

由常数项乘以幂函数组成的无穷级数:
∑n=0∞cnxn=c0+c1x+c2x2+c3x3+…\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots n=0∑∞​cn​xn=c0​+c1​x+c2​x2+c3​x3+…
它在(−R,R)(-R,R)(−R,R)内一定收敛,通常是否取到端点要具体讨论。这里R=1/lim⁡n→∞∣cn+1cn∣R=1\Big/\lim _{n \rightarrow \infty}\left|\frac{c_{n+1} }{c_{n}}\right|R=1/limn→∞​∣∣∣​cn​cn+1​​∣∣∣​,且 RRR 可以为0或无穷大。

二、常见的幂级数

11−x=1+x+x2+x3+x4+…=∑n=0∞xn,x∈(−1,1)\frac{1}{1-x} = 1+x+x^{2}+x^{3}+x^{4}+\ldots =\sum_{n=0}^{\infty} x^{n}, \quad x \in(-1,1) 1−x1​=1+x+x2+x3+x4+…=n=0∑∞​xn,x∈(−1,1)

ex=1+x+x22!+x33!+x44!+…=∑n=0∞xnn!,x∈Re^{x} =1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots =\sum_{n=0}^{\infty} \frac{x^{n}}{n !}, \quad x \in R ex=1+x+2!x2​+3!x3​+4!x4​+…=n=0∑∞​n!xn​,x∈R

cos⁡x=1−x22!+x44!−x66!+x88!−⋯=∑n=0∞(−1)nx2n(2n)!,x∈R\cos x =1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\frac{x^{6}}{6 !}+\frac{x^{8}}{8 !}-\cdots =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}, \quad x \in R cosx=1−2!x2​+4!x4​−6!x6​+8!x8​−⋯=n=0∑∞​(−1)n(2n)!x2n​,x∈R

sin⁡x=x−x33!+x55!−x77!+x99!−⋯=∑n=1∞(−1)(n−1)x2n−1(2n−1)!,x∈R\sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\frac{x^{7}}{7 !}+\frac{x^{9}}{9 !}-\cdots =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{2 n-1}}{(2 n-1) !}, \quad x \in R sinx=x−3!x3​+5!x5​−7!x7​+9!x9​−⋯=n=1∑∞​(−1)(n−1)(2n−1)!x2n−1​,x∈R

ln⁡(1+x)=x−x22+x33−x44+x55−⋯=∑n=1∞(−1)(n−1)xnn=or ∑n=1∞(−1)n+1xnn,(x∈(−1,1])\ln (1+x) =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\cdots =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{n}}{n} \stackrel{\text { or }}{=} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n},\quad (x \in(-1,1] ) ln(1+x)=x−2x2​+3x3​−4x4​+5x5​−⋯=n=1∑∞​(−1)(n−1)nxn​= or n=1∑∞​(−1)n+1nxn​,(x∈(−1,1])

tan⁡−1x=x−x33+x55−x77+x99−⋯=∑n=1∞(−1)(n−1)x2n−12n−1,(x∈(−1,1])\tan ^{-1} x \quad =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{2 n-1}}{2 n-1} ,\quad (x \in(-1,1] ) tan−1x=x−3x3​+5x5​−7x7​+9x9​−⋯=n=1∑∞​(−1)(n−1)2n−1x2n−1​,(x∈(−1,1])

1+x=1+x2−x28+x316+…,x≥−1\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}+\ldots,\quad x \geq -1 1+x​=1+2x​−8x2​+16x3​+…,x≥−1

(1+x)k=1+kx+k(k−1)2!x2+k(k−1)(k−2)3!x3+…=∑n=0∞(kn)xn,∣x∣<1(1+x)^{k}=1+k x+\frac{k(k-1)}{2 !} x^{2}+\frac{k(k-1)(k-2)}{3 !} x^{3}+\ldots=\sum_{n=0}^{\infty}\left(\begin{array}{l} k \\ n \end{array}\right) x^{n}, \quad |x|< 1 (1+x)k=1+kx+2!k(k−1)​x2+3!k(k−1)(k−2)​x3+…=n=0∑∞​(kn​)xn,∣x∣<1

暂时写上这些,有空再来补充。

三、幂级数重要结论:在收敛域内可逐项求导和积分

例1:(∣x∣<1|x|<1∣x∣<1)
1(1−x)2=ddx(11−x)=ddx(∑n=0∞xn)=∑n=1∞nxn−1=1+2x+3x2+4x3+⋯\begin{aligned} \frac{1}{(1-x)^{2}} &=\frac{d}{d x}\left(\frac{1}{1-x}\right) \\ &=\frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right) \\ &=\sum_{n=1}^{\infty} n x^{n-1} \\ &=1+2 x+3 x^{2}+4 x^{3}+\cdots \end{aligned} (1−x)21​​=dxd​(1−x1​)=dxd​(n=0∑∞​xn)=n=1∑∞​nxn−1=1+2x+3x2+4x3+⋯​
例2:(∣x∣<1|x|<1∣x∣<1)
ln⁡(1+x)=∫11+xdx=∫(∑n=0∞(−1)nxn)dx=(∑n=0∞(−1)nxn+1n+1)+C=∑n=0∞(−1)nxn+1n+1=x−x22+x33−x44+⋯\begin{aligned} \ln (1+x) &=\int \frac{1}{1+x} d x \\ &=\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right) d x \\ &=\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}\right)+C \\ &=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \\ &=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \end{aligned} ln(1+x)​=∫1+x1​dx=∫(n=0∑∞​(−1)nxn)dx=(n=0∑∞​(−1)nn+1xn+1​)+C=n=0∑∞​(−1)nn+1xn+1​=x−2x2​+3x3​−4x4​+⋯​
例3: 已知ddxtan⁡−1(x)=11+x2\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}dxd​tan−1(x)=1+x21​,11+x2=∑n=0∞(−x2)n=∑n=0∞(−1)nx2n\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}1+x21​=∑n=0∞​(−x2)n=∑n=0∞​(−1)nx2n,那么
KaTeX parse error: No such environment: eqnarray at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ \tan^{-…
由于tan⁡−1(0)=0\tan^{-1}(0)=0tan−1(0)=0,因此C=0C=0C=0,所以得到上面的公式:
tan⁡−1(x)=∑n=0∞(−1)nx2n+12n+1=x−x33+x55−x77+⋯\tan^{-1}(x)= \sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1}=x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots tan−1(x)=n=0∑∞​(−1)n2n+1x2n+1​=x−3x3​+5x5​−7x7​+⋯
例4: 从arctanh⁡x\operatorname{arctanh} xarctanhx 出发我们能推出些啥结论? (注意不是arctan⁡\arctanarctan, 而是tanh⁡(x)=sinh⁡(x)cosh⁡(x)=ex−e−xex+e−x\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}tanh(x)=cosh(x)sinh(x)​=ex+e−xex−e−x​的反函数)
f(x)=arctanh⁡xf′(x)=11−x2f′′(x)=2x(1−x2)2f′′′(x)=2(1−x2)2−8x2(1−x2)3\begin{aligned} f(x) &=\operatorname{arctanh} x \\ f^{\prime}(x) &=\frac{1}{1-x^{2}} \\ f^{\prime \prime}(x) &=\frac{2 x}{\left(1-x^{2}\right)^{2}} \\ f^{\prime \prime \prime}(x) &=\frac{2}{\left(1-x^{2}\right)^{2}}-\frac{8 x^{2}}{\left(1-x^{2}\right)^{3}} \end{aligned} f(x)f′(x)f′′(x)f′′′(x)​=arctanhx=1−x21​=(1−x2)22x​=(1−x2)22​−(1−x2)38x2​​
注意到arctanh⁡x=11−x2=∑n=0∞x2n,(∣x∣<1)\operatorname{arctanh} x = \frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n},(|x|<1)arctanhx=1−x21​=∑n=0∞​x2n,(∣x∣<1), 可以得出:
arctanh⁡x=∫0x(1+t2+t4+…)dt=x+x33+x55+…\operatorname{arctanh} x=\int_{0}^{x}\left(1+t^{2}+t^{4}+\ldots\right) d t=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots arctanhx=∫0x​(1+t2+t4+…)dt=x+3x3​+5x5​+…
当然还没结束:
f(x)=log⁡1+x1−x=12log⁡(1+x)−12log⁡(1−x)=12∫0x(11+t+11−t)dt=∫0xdt1−t2=∫0x(1+t2+t4+…)dt=x+x33+x55+…=arctanh⁡x\begin{aligned} f(x) &=\log \sqrt{\frac{1+x}{1-x}}\\ &=\frac{1}{2} \log (1+x)-\frac{1}{2} \log (1-x) \\ &=\frac{1}{2} \int_{0}^{x}\left(\frac{1}{1+t}+\frac{1}{1-t}\right) d t \\ &=\int_{0}^{x} \frac{d t}{1-t^{2}} \\ &=\int_{0}^{x}\left(1+t^{2}+t^{4}+\ldots\right) d t \\ &=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \\ &=\operatorname{arctanh} x \end{aligned} f(x)​=log1−x1+x​​=21​log(1+x)−21​log(1−x)=21​∫0x​(1+t1​+1−t1​)dt=∫0x​1−t2dt​=∫0x​(1+t2+t4+…)dt=x+3x3​+5x5​+…=arctanhx​

四、用幂级数求数项级数的和

例5: 求 ∑n=1∞n3n\sum_{n=1}^{\infty} \frac{n}{3^{n}}∑n=1∞​3nn​
f(x)=∑n=0∞nxnf(x)x=∑n=0∞nxn−1∫f(x)xdx=C+∑n=0∞xn∫f(x)xdx=C+11−xddx∫f(x)xdx=−1(1−x)2f(x)x=1(1−x)2f(x)=x(1−x)2\begin{aligned} \quad f(x)&= \sum_{n=0}^{\infty} nx^n \\ \quad \frac{f(x)}{x}&= \sum_{n=0}^{\infty} nx^{n-1} \\ \quad \int \frac{f(x)}{x} \: dx&= C + \sum_{n=0}^{\infty} x^n \\ \quad \int \frac{f(x)}{x} \: dx&= C + \frac{1}{1 - x} \\ \quad \frac{d}{dx} \int \frac{f(x)}{x} \: dx&=-\frac{1}{(1 - x)^2} \\ \quad \frac{f(x)}{x}&= \frac{1}{(1 - x)^2} \\ \quad f(x)&= \frac{x}{(1 - x)^2} \end{aligned} f(x)xf(x)​∫xf(x)​dx∫xf(x)​dxdxd​∫xf(x)​dxxf(x)​f(x)​=n=0∑∞​nxn=n=0∑∞​nxn−1=C+n=0∑∞​xn=C+1−x1​=−(1−x)21​=(1−x)21​=(1−x)2x​​
由于它在∣x∣<1\mid x \mid < 1∣x∣<1内收敛,因此可令x=13x=\frac{1}{3}x=31​,有
f(13)=13(23)2=∑n=0∞n3n=∑n=1∞n3n=34f\left ( \frac{1}{3} \right ) = \frac{\frac{1}{3}}{\left ( \frac{2}{3} \right )^2} = \sum_{n=0}^{\infty} \frac{n}{3^n} = \sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{3}{4} f(31​)=(32​)231​​=n=0∑∞​3nn​=n=1∑∞​3nn​=43​

例6: ∑n=0∞(n+1)2πn\sum_{n=0}^{\infty} \frac{(n+1)^2}{\pi^n}∑n=0∞​πn(n+1)2​
f(x)=∑n=0∞(n+1)2xn∫f(x)dx=C+∑n=0∞(n+1)xn+1∫f(x)dxx=Cx+∑n=0∞(n+1)xn∫∫f(x)dxxdx=D+∫Cxdx+∑n=0∞xn+1∫∫f(x)dxxdx=D+∫Cxdx+x∑n=0∞xn∫∫f(x)dxxdx=D+∫Cxdx+x1−x∫f(x)dxx=Cx+(1−x)(1)−x(−1)(1−x)2∫f(x)dxx=Cx+1(1−x)2∫f(x)dx=C+x(1−x)2f(x)=(1−x)2(1)−x(2(1−x)(−1))(1−x)4f(x)=(1−x)2+2x(1−x)(1−x)4f(x)=(1−x)+2x(1−x)3\begin{aligned} \quad f(x)&= \sum_{n=0}^{\infty} (n + 1)^2 x^n \\ \quad \int f(x) \: dx&= C + \sum_{n=0}^{\infty} (n+1)x^{n+1} \\ \quad \frac{\int f(x) \: dx}{x}&= \frac{C}{x} + \sum_{n=0}^{\infty} (n+1) x^n \\ \quad \int \frac{\int f(x) \: dx}{x} \: dx&= D + \int \frac{C}{x} \: dx + \sum_{n=0}^{\infty} x^{n+1} \\ \quad \int \frac{\int f(x) \: dx}{x} \: dx&= D + \int \frac{C}{x} \: dx + x \sum_{n=0}^{\infty} x^n \\ \quad \int \frac{\int f(x) \: dx}{x} \: dx&= D + \int \frac{C}{x} \: dx + \frac{x}{1 - x} \\ \quad \frac{\int f(x) \: dx}{x}&= \frac{C}{x} + \frac{(1 - x)(1) - x(-1)}{(1 - x)^2} \\ \quad \frac{\int f(x) \: dx}{x}&= \frac{C}{x} + \frac{1}{(1 - x)^2} \\ \quad \int f(x) \: dx&= C + \frac{x}{(1 - x)^2} \\ \quad f(x)&= \frac{(1 - x)^2(1) - x(2(1 - x)(-1))}{(1 - x)^4} \\ \quad f(x)&= \frac{(1 - x)^2 + 2x(1 - x)}{(1 - x)^4} \\ \quad f(x)&= \frac{(1 - x) + 2x}{(1 - x)^3} \end{aligned} f(x)∫f(x)dxx∫f(x)dx​∫x∫f(x)dx​dx∫x∫f(x)dx​dx∫x∫f(x)dx​dxx∫f(x)dx​x∫f(x)dx​∫f(x)dxf(x)f(x)f(x)​=n=0∑∞​(n+1)2xn=C+n=0∑∞​(n+1)xn+1=xC​+n=0∑∞​(n+1)xn=D+∫xC​dx+n=0∑∞​xn+1=D+∫xC​dx+xn=0∑∞​xn=D+∫xC​dx+1−xx​=xC​+(1−x)2(1−x)(1)−x(−1)​=xC​+(1−x)21​=C+(1−x)2x​=(1−x)4(1−x)2(1)−x(2(1−x)(−1))​=(1−x)4(1−x)2+2x(1−x)​=(1−x)3(1−x)+2x​​
由于级数f(x)=∑n=0∞(n+1)2xnf(x) = \sum_{n=0}^{\infty} (n + 1)^2 x^nf(x)=∑n=0∞​(n+1)2xn的收敛域也是∣x∣<1\mid x \mid < 1∣x∣<1,因此可令x=1πx=\frac{1}{\pi}x=π1​,于是有
f(1π)=∑n=0∞(n+1)2πn=(1−1π)+2π(1−1π)3\quad f \left ( \frac{1}{\pi} \right ) = \sum_{n=0}^{\infty} \frac{(n + 1)^2}{\pi^n} = \frac{\left (1 - \frac{1}{\pi} \right ) + \frac{2}{\pi}}{\left (1 - \frac{1}{\pi} \right )^3} f(π1​)=n=0∑∞​πn(n+1)2​=(1−π1​)3(1−π1​)+π2​​

五、用幂级数求数列通项公式

幂级数还可以用来求数列的通项公式,基本的思路为:

#mermaid-svg-BxN5mpZy5NnrJupo .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);fill:#333;color:#333}#mermaid-svg-BxN5mpZy5NnrJupo .label text{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo .node rect,#mermaid-svg-BxN5mpZy5NnrJupo .node circle,#mermaid-svg-BxN5mpZy5NnrJupo .node ellipse,#mermaid-svg-BxN5mpZy5NnrJupo .node polygon,#mermaid-svg-BxN5mpZy5NnrJupo .node path{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-BxN5mpZy5NnrJupo .node .label{text-align:center;fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo .node.clickable{cursor:pointer}#mermaid-svg-BxN5mpZy5NnrJupo .arrowheadPath{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo .edgePath .path{stroke:#333;stroke-width:1.5px}#mermaid-svg-BxN5mpZy5NnrJupo .flowchart-link{stroke:#333;fill:none}#mermaid-svg-BxN5mpZy5NnrJupo .edgeLabel{background-color:#e8e8e8;text-align:center}#mermaid-svg-BxN5mpZy5NnrJupo .edgeLabel rect{opacity:0.9}#mermaid-svg-BxN5mpZy5NnrJupo .edgeLabel span{color:#333}#mermaid-svg-BxN5mpZy5NnrJupo .cluster rect{fill:#ffffde;stroke:#aa3;stroke-width:1px}#mermaid-svg-BxN5mpZy5NnrJupo .cluster text{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo div.mermaidTooltip{position:absolute;text-align:center;max-width:200px;padding:2px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:12px;background:#ffffde;border:1px solid #aa3;border-radius:2px;pointer-events:none;z-index:100}#mermaid-svg-BxN5mpZy5NnrJupo .actor{stroke:#ccf;fill:#ECECFF}#mermaid-svg-BxN5mpZy5NnrJupo text.actor>tspan{fill:#000;stroke:none}#mermaid-svg-BxN5mpZy5NnrJupo .actor-line{stroke:grey}#mermaid-svg-BxN5mpZy5NnrJupo .messageLine0{stroke-width:1.5;stroke-dasharray:none;stroke:#333}#mermaid-svg-BxN5mpZy5NnrJupo .messageLine1{stroke-width:1.5;stroke-dasharray:2, 2;stroke:#333}#mermaid-svg-BxN5mpZy5NnrJupo #arrowhead path{fill:#333;stroke:#333}#mermaid-svg-BxN5mpZy5NnrJupo .sequenceNumber{fill:#fff}#mermaid-svg-BxN5mpZy5NnrJupo #sequencenumber{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo #crosshead path{fill:#333;stroke:#333}#mermaid-svg-BxN5mpZy5NnrJupo .messageText{fill:#333;stroke:#333}#mermaid-svg-BxN5mpZy5NnrJupo .labelBox{stroke:#ccf;fill:#ECECFF}#mermaid-svg-BxN5mpZy5NnrJupo .labelText,#mermaid-svg-BxN5mpZy5NnrJupo .labelText>tspan{fill:#000;stroke:none}#mermaid-svg-BxN5mpZy5NnrJupo .loopText,#mermaid-svg-BxN5mpZy5NnrJupo .loopText>tspan{fill:#000;stroke:none}#mermaid-svg-BxN5mpZy5NnrJupo .loopLine{stroke-width:2px;stroke-dasharray:2, 2;stroke:#ccf;fill:#ccf}#mermaid-svg-BxN5mpZy5NnrJupo .note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-BxN5mpZy5NnrJupo .noteText,#mermaid-svg-BxN5mpZy5NnrJupo .noteText>tspan{fill:#000;stroke:none}#mermaid-svg-BxN5mpZy5NnrJupo .activation0{fill:#f4f4f4;stroke:#666}#mermaid-svg-BxN5mpZy5NnrJupo .activation1{fill:#f4f4f4;stroke:#666}#mermaid-svg-BxN5mpZy5NnrJupo .activation2{fill:#f4f4f4;stroke:#666}#mermaid-svg-BxN5mpZy5NnrJupo .mermaid-main-font{font-family:"trebuchet ms", verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo .section{stroke:none;opacity:0.2}#mermaid-svg-BxN5mpZy5NnrJupo .section0{fill:rgba(102,102,255,0.49)}#mermaid-svg-BxN5mpZy5NnrJupo .section2{fill:#fff400}#mermaid-svg-BxN5mpZy5NnrJupo .section1,#mermaid-svg-BxN5mpZy5NnrJupo .section3{fill:#fff;opacity:0.2}#mermaid-svg-BxN5mpZy5NnrJupo .sectionTitle0{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo .sectionTitle1{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo .sectionTitle2{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo .sectionTitle3{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo .sectionTitle{text-anchor:start;font-size:11px;text-height:14px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo .grid .tick{stroke:#d3d3d3;opacity:0.8;shape-rendering:crispEdges}#mermaid-svg-BxN5mpZy5NnrJupo .grid .tick text{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo .grid path{stroke-width:0}#mermaid-svg-BxN5mpZy5NnrJupo .today{fill:none;stroke:red;stroke-width:2px}#mermaid-svg-BxN5mpZy5NnrJupo .task{stroke-width:2}#mermaid-svg-BxN5mpZy5NnrJupo .taskText{text-anchor:middle;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo .taskText:not([font-size]){font-size:11px}#mermaid-svg-BxN5mpZy5NnrJupo .taskTextOutsideRight{fill:#000;text-anchor:start;font-size:11px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo .taskTextOutsideLeft{fill:#000;text-anchor:end;font-size:11px}#mermaid-svg-BxN5mpZy5NnrJupo .task.clickable{cursor:pointer}#mermaid-svg-BxN5mpZy5NnrJupo .taskText.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-BxN5mpZy5NnrJupo .taskTextOutsideLeft.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-BxN5mpZy5NnrJupo .taskTextOutsideRight.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-BxN5mpZy5NnrJupo .taskText0,#mermaid-svg-BxN5mpZy5NnrJupo .taskText1,#mermaid-svg-BxN5mpZy5NnrJupo .taskText2,#mermaid-svg-BxN5mpZy5NnrJupo .taskText3{fill:#fff}#mermaid-svg-BxN5mpZy5NnrJupo .task0,#mermaid-svg-BxN5mpZy5NnrJupo .task1,#mermaid-svg-BxN5mpZy5NnrJupo .task2,#mermaid-svg-BxN5mpZy5NnrJupo .task3{fill:#8a90dd;stroke:#534fbc}#mermaid-svg-BxN5mpZy5NnrJupo .taskTextOutside0,#mermaid-svg-BxN5mpZy5NnrJupo .taskTextOutside2{fill:#000}#mermaid-svg-BxN5mpZy5NnrJupo .taskTextOutside1,#mermaid-svg-BxN5mpZy5NnrJupo .taskTextOutside3{fill:#000}#mermaid-svg-BxN5mpZy5NnrJupo .active0,#mermaid-svg-BxN5mpZy5NnrJupo .active1,#mermaid-svg-BxN5mpZy5NnrJupo .active2,#mermaid-svg-BxN5mpZy5NnrJupo .active3{fill:#bfc7ff;stroke:#534fbc}#mermaid-svg-BxN5mpZy5NnrJupo .activeText0,#mermaid-svg-BxN5mpZy5NnrJupo .activeText1,#mermaid-svg-BxN5mpZy5NnrJupo .activeText2,#mermaid-svg-BxN5mpZy5NnrJupo .activeText3{fill:#000 !important}#mermaid-svg-BxN5mpZy5NnrJupo .done0,#mermaid-svg-BxN5mpZy5NnrJupo .done1,#mermaid-svg-BxN5mpZy5NnrJupo .done2,#mermaid-svg-BxN5mpZy5NnrJupo .done3{stroke:grey;fill:#d3d3d3;stroke-width:2}#mermaid-svg-BxN5mpZy5NnrJupo .doneText0,#mermaid-svg-BxN5mpZy5NnrJupo .doneText1,#mermaid-svg-BxN5mpZy5NnrJupo .doneText2,#mermaid-svg-BxN5mpZy5NnrJupo .doneText3{fill:#000 !important}#mermaid-svg-BxN5mpZy5NnrJupo .crit0,#mermaid-svg-BxN5mpZy5NnrJupo .crit1,#mermaid-svg-BxN5mpZy5NnrJupo .crit2,#mermaid-svg-BxN5mpZy5NnrJupo .crit3{stroke:#f88;fill:red;stroke-width:2}#mermaid-svg-BxN5mpZy5NnrJupo .activeCrit0,#mermaid-svg-BxN5mpZy5NnrJupo .activeCrit1,#mermaid-svg-BxN5mpZy5NnrJupo .activeCrit2,#mermaid-svg-BxN5mpZy5NnrJupo .activeCrit3{stroke:#f88;fill:#bfc7ff;stroke-width:2}#mermaid-svg-BxN5mpZy5NnrJupo .doneCrit0,#mermaid-svg-BxN5mpZy5NnrJupo .doneCrit1,#mermaid-svg-BxN5mpZy5NnrJupo .doneCrit2,#mermaid-svg-BxN5mpZy5NnrJupo .doneCrit3{stroke:#f88;fill:#d3d3d3;stroke-width:2;cursor:pointer;shape-rendering:crispEdges}#mermaid-svg-BxN5mpZy5NnrJupo .milestone{transform:rotate(45deg) scale(0.8, 0.8)}#mermaid-svg-BxN5mpZy5NnrJupo .milestoneText{font-style:italic}#mermaid-svg-BxN5mpZy5NnrJupo .doneCritText0,#mermaid-svg-BxN5mpZy5NnrJupo .doneCritText1,#mermaid-svg-BxN5mpZy5NnrJupo .doneCritText2,#mermaid-svg-BxN5mpZy5NnrJupo .doneCritText3{fill:#000 !important}#mermaid-svg-BxN5mpZy5NnrJupo .activeCritText0,#mermaid-svg-BxN5mpZy5NnrJupo .activeCritText1,#mermaid-svg-BxN5mpZy5NnrJupo .activeCritText2,#mermaid-svg-BxN5mpZy5NnrJupo .activeCritText3{fill:#000 !important}#mermaid-svg-BxN5mpZy5NnrJupo .titleText{text-anchor:middle;font-size:18px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo g.classGroup text{fill:#9370db;stroke:none;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:10px}#mermaid-svg-BxN5mpZy5NnrJupo g.classGroup text .title{font-weight:bolder}#mermaid-svg-BxN5mpZy5NnrJupo g.clickable{cursor:pointer}#mermaid-svg-BxN5mpZy5NnrJupo g.classGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-BxN5mpZy5NnrJupo g.classGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo .classLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.5}#mermaid-svg-BxN5mpZy5NnrJupo .classLabel .label{fill:#9370db;font-size:10px}#mermaid-svg-BxN5mpZy5NnrJupo .relation{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-BxN5mpZy5NnrJupo .dashed-line{stroke-dasharray:3}#mermaid-svg-BxN5mpZy5NnrJupo #compositionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo #compositionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo #aggregationStart{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo #aggregationEnd{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo #dependencyStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo #dependencyEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo #extensionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo #extensionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo .commit-id,#mermaid-svg-BxN5mpZy5NnrJupo .commit-msg,#mermaid-svg-BxN5mpZy5NnrJupo .branch-label{fill:lightgrey;color:lightgrey;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo .pieTitleText{text-anchor:middle;font-size:25px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo .slice{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo g.stateGroup text{fill:#9370db;stroke:none;font-size:10px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo g.stateGroup text{fill:#9370db;fill:#333;stroke:none;font-size:10px}#mermaid-svg-BxN5mpZy5NnrJupo g.statediagram-cluster .cluster-label text{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo g.stateGroup .state-title{font-weight:bolder;fill:#000}#mermaid-svg-BxN5mpZy5NnrJupo g.stateGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-BxN5mpZy5NnrJupo g.stateGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-BxN5mpZy5NnrJupo .transition{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-BxN5mpZy5NnrJupo .stateGroup .composit{fill:white;border-bottom:1px}#mermaid-svg-BxN5mpZy5NnrJupo .stateGroup .alt-composit{fill:#e0e0e0;border-bottom:1px}#mermaid-svg-BxN5mpZy5NnrJupo .state-note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-BxN5mpZy5NnrJupo .state-note text{fill:black;stroke:none;font-size:10px}#mermaid-svg-BxN5mpZy5NnrJupo .stateLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.7}#mermaid-svg-BxN5mpZy5NnrJupo .edgeLabel text{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo .stateLabel text{fill:#000;font-size:10px;font-weight:bold;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-BxN5mpZy5NnrJupo .node circle.state-start{fill:black;stroke:black}#mermaid-svg-BxN5mpZy5NnrJupo .node circle.state-end{fill:black;stroke:white;stroke-width:1.5}#mermaid-svg-BxN5mpZy5NnrJupo #statediagram-barbEnd{fill:#9370db}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-cluster rect{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-cluster rect.outer{rx:5px;ry:5px}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-state .divider{stroke:#9370db}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-state .title-state{rx:5px;ry:5px}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-cluster.statediagram-cluster .inner{fill:white}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-cluster.statediagram-cluster-alt .inner{fill:#e0e0e0}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-cluster .inner{rx:0;ry:0}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-state rect.basic{rx:5px;ry:5px}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-state rect.divider{stroke-dasharray:10,10;fill:#efefef}#mermaid-svg-BxN5mpZy5NnrJupo .note-edge{stroke-dasharray:5}#mermaid-svg-BxN5mpZy5NnrJupo .statediagram-note rect{fill:#fff5ad;stroke:#aa3;stroke-width:1px;rx:0;ry:0}:root{--mermaid-font-family: '"trebuchet ms", verdana, arial';--mermaid-font-family: "Comic Sans MS", "Comic Sans", cursive}#mermaid-svg-BxN5mpZy5NnrJupo .error-icon{fill:#522}#mermaid-svg-BxN5mpZy5NnrJupo .error-text{fill:#522;stroke:#522}#mermaid-svg-BxN5mpZy5NnrJupo .edge-thickness-normal{stroke-width:2px}#mermaid-svg-BxN5mpZy5NnrJupo .edge-thickness-thick{stroke-width:3.5px}#mermaid-svg-BxN5mpZy5NnrJupo .edge-pattern-solid{stroke-dasharray:0}#mermaid-svg-BxN5mpZy5NnrJupo .edge-pattern-dashed{stroke-dasharray:3}#mermaid-svg-BxN5mpZy5NnrJupo .edge-pattern-dotted{stroke-dasharray:2}#mermaid-svg-BxN5mpZy5NnrJupo .marker{fill:#333}#mermaid-svg-BxN5mpZy5NnrJupo .marker.cross{stroke:#333}:root { --mermaid-font-family: "trebuchet ms", verdana, arial;}#mermaid-svg-BxN5mpZy5NnrJupo {color: rgba(0, 0, 0, 0.75);font: ;}

设数列通项为某幂级数的系数
根据数列的关系式求出幂级数的和函数
根据和函数对应的幂级数求出数列通项

这种方法又称母函数法,通常见于组合数学。

例7. 求Fibonacci数列的通项公式:

先设:
s(x)=∑k=0∞Fkxks(x)=\sum_{k=0}^{\infty} F_{k} x^{k} s(x)=k=0∑∞​Fk​xk

考虑Fibonacci的定义Fn=Fn−1+Fn−2F_n=F_{n-1}+F_{n-2}Fn​=Fn−1​+Fn−2​,有
s(x)=∑k=0∞Fkxk=F0+F1x+∑k=2∞(Fk−1+Fk−2)xk=x+∑k=2∞Fk−1xk−∑k=2∞Fk−2xk=x+x∑k=0∞Fkxk+x2∑k=0∞Fkxk=x+xs(x)+x2s(x)\begin{aligned} s(x) &=\sum_{k=0}^{\infty} F_{k} x^{k} \\ &=F_{0}+F_{1} x+\sum_{k=2}^{\infty}\left(F_{k-1}+F_{k-2}\right) x^{k} \\ &=x+\sum_{k=2}^{\infty} F_{k-1} x^{k}-\sum_{k=2}^{\infty} F_{k-2} x^{k} \\ &=x+x \sum_{k=0}^{\infty} F_{k} x^{k}+x^{2} \sum_{k=0}^{\infty} F_{k} x^{k} \\ &=x+x s(x)+x^{2} s(x) \end{aligned} s(x)​=k=0∑∞​Fk​xk=F0​+F1​x+k=2∑∞​(Fk−1​+Fk−2​)xk=x+k=2∑∞​Fk−1​xk−k=2∑∞​Fk−2​xk=x+xk=0∑∞​Fk​xk+x2k=0∑∞​Fk​xk=x+xs(x)+x2s(x)​
解出s(x)s(x)s(x)
s(x)=x1−x−x2=−xx2+x−1s(x)=\frac{x}{1-x-x^{2}}=\frac{-x}{x^{2}+x-1} s(x)=1−x−x2x​=x2+x−1−x​
又:
x1−x−x2=x(1−φx)(1−ψx)=151−φx+−151−ψx=15(11−φx−11−ψx)\frac{x}{1-x-x^{2}}=\frac{x}{(1-\varphi x)(1-\psi x)} =\frac{\frac{1}{\sqrt{5}}}{1-\varphi x}+\frac{-\frac{1}{\sqrt{5}}}{1-\psi x}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\varphi x}-\frac{1}{1-\psi x}\right) 1−x−x2x​=(1−φx)(1−ψx)x​=1−φx5​1​​+1−ψx−5​1​​=5​1​(1−φx1​−1−ψx1​)
注意到φ,ψ\varphi,\psiφ,ψ很好求,它们是分母的根:
φ=1+52,ψ=1−52\varphi=\frac{1+\sqrt{5}}{2}, \quad \psi=\frac{1-\sqrt{5}}{2} φ=21+5​​,ψ=21−5​​
再代回上式得到:
s(x)=15(11−φx−11−ψx)=15(∑n=0∞φnxn−∑n=0∞ψnxn)=15(∑n=0∞(φn−ψn)xn)=∑k=0∞Fkxk\begin{aligned} s(x) &=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\varphi x}-\frac{1}{1-\psi x}\right) \\ &=\frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty} \varphi^{n} x^{n}-\sum_{n=0}^{\infty} \psi^{n} x^{n}\right) \\ &=\frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty}\left(\varphi^{n}-\psi^{n}\right) x^{n}\right)=\sum_{k=0}^{\infty} F_{k} x^{k} \end{aligned} s(x)​=5​1​(1−φx1​−1−ψx1​)=5​1​(n=0∑∞​φnxn−n=0∑∞​ψnxn)=5​1​(n=0∑∞​(φn−ψn)xn)=k=0∑∞​Fk​xk​
因此:
Fn=φn−ψn5=φn−(−φ)−n5=15[(1+52)n−(1−52)n]F_{n}=\frac{\varphi^{n}-\psi^{n}}{\sqrt{5}}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right] Fn​=5​φn−ψn​=5​φn−(−φ)−n​=5​1​[(21+5​​)n−(21−5​​)n]

六、用幂级数解微分方程

例8. 考虑一个简单的方程:
y′′+y=0y'' + y = 0 y′′+y=0
设它的解为一个幂级数:
y(x)=∑n=0∞anxny\left( x \right) = \sum\limits_{n = 0}^\infty {{a_n}{x^n}} y(x)=n=0∑∞​an​xn
考虑:
y′(x)=∑n=1∞nanxn−1y′′(x)=∑n=2∞n(n−1)anxn−2y'\left( x \right) = \sum\limits_{n = 1}^\infty {n{a_n}{x^{n - 1}}} \hspace{0.25in}y''\left( x \right) = \sum\limits_{n = 2}^\infty {n\left( {n - 1} \right){a_n}{x^{n - 2}}} y′(x)=n=1∑∞​nan​xn−1y′′(x)=n=2∑∞​n(n−1)an​xn−2
带回原方程得到:
∑n=2∞n(n−1)anxn−2+∑n=0∞anxn=0\sum\limits_{n = 2}^\infty {n\left( {n - 1} \right){a_n}{x^{n - 2}}} + \sum\limits_{n = 0}^\infty {{a_n}{x^n}} = 0 n=2∑∞​n(n−1)an​xn−2+n=0∑∞​an​xn=0
对第一项的系数进行一下调整:
∑n=0∞(n+2)(n+1)an+2xn+∑n=0∞anxn=0\sum\limits_{n = 0}^\infty {\left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}}{x^n}} + \sum\limits_{n = 0}^\infty {{a_n}{x^n}} = 0 n=0∑∞​(n+2)(n+1)an+2​xn+n=0∑∞​an​xn=0

实际上就是将 ∑n=2∞n(n−1)anxn−2\sum\limits_{n = 2}^\infty {n\left( {n - 1} \right){a_n}{x^{n - 2}}}n=2∑∞​n(n−1)an​xn−2 中的nnn 换成 n−2n-2n−2.

整理得到:
∑n=0∞[(n+2)(n+1)an+2+an]xn=0\sum\limits_{n = 0}^\infty {\left[ {\left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}} + {a_n}} \right]{x^n}} = 0 n=0∑∞​[(n+2)(n+1)an+2​+an​]xn=0
接下来就有意思了,由于上面的幂级数必须为零,它又是无穷级数,因此每项系数必为0:
(n+2)(n+1)an+2+an=0,n=0,1,2,…\left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}} + {a_n} = 0,\hspace{0.25in}n = 0,1,2, \ldots (n+2)(n+1)an+2​+an​=0,n=0,1,2,…
由上式可以总结出以下规律:
a2k=(−1)ka0(2k)!,k=1,2,…a2k+1=(−1)ka1(2k+1)!,k=1,2,…a_{2 k}=\frac{(-1)^{k} a_{0}}{(2 k) !}, \quad k=1,2, \ldots \quad a_{2 k+1}=\frac{(-1)^{k} a_{1}}{(2 k+1) !}, \quad k=1,2, \ldots a2k​=(2k)!(−1)ka0​​,k=1,2,…a2k+1​=(2k+1)!(−1)ka1​​,k=1,2,…
接下来的事情虽然看似麻烦,但仍然清楚:
y(x)=∑n=0∞anxn=a0+a1x+a2x2+a3x3+⋯+a2kx2k+a2k+1x2k+1+⋯=a0+a1x−a02!x2−a13!x3+⋯+(−1)ka0(2k)!x2k+(−1)ka1(2k+1)!x2k+1+⋯\begin{aligned}y\left( x \right) & = \sum\limits_{n = 0}^\infty {{a_n}{x^n}} \\ & = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + \cdots + {a_{2k}}{x^{2k}} + {a_{2k + 1}}{x^{2k + 1}} + \cdots \\ & = {a_0} + {a_1}x - \frac{{{a_0}}}{{2!}}{x^2} - \frac{{{a_1}}}{{3!}}{x^3} + \cdots + \frac{{{{\left( { - 1} \right)}^k}{a_0}}}{{\left( {2k} \right)!}}{x^{2k}} + \frac{{{{\left( { - 1} \right)}^k}{a_1}}}{{\left( {2k + 1} \right)!}}{x^{2k + 1}} + \cdots \end{aligned} y(x)​=n=0∑∞​an​xn=a0​+a1​x+a2​x2+a3​x3+⋯+a2k​x2k+a2k+1​x2k+1+⋯=a0​+a1​x−2!a0​​x2−3!a1​​x3+⋯+(2k)!(−1)ka0​​x2k+(2k+1)!(−1)ka1​​x2k+1+⋯​
再重新整理:
y(x)=a0{1−x22!⋯+(−1)kx2k(2k)!+⋯}+a1{x−x33!+⋯+(−1)k(2k+1)!x2k+1+⋯}=a0∑k=0∞(−1)kx2k(2k)!+a1∑k=0∞(−1)kx2k+1(2k+1)!\begin{aligned}y\left( x \right) & = {a_0}\left\{ {1 - \frac{{{x^2}}}{{2!}} \cdots + \frac{{{{\left( { - 1} \right)}^k}{x^{2k}}}}{{\left( {2k} \right)!}} + \cdots } \right\} + {a_1}\left\{ {x - \frac{{{x^3}}}{{3!}} + \cdots + \frac{{{{\left( { - 1} \right)}^k}}}{{\left( {2k + 1} \right)!}}{x^{2k + 1}} + \cdots } \right\}\\ & = {a_0}\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}{x^{2k}}}}{{\left( {2k} \right)!}}} + {a_1}\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}{x^{2k + 1}}}}{{\left( {2k + 1} \right)!}}} \end{aligned} y(x)​=a0​{1−2!x2​⋯+(2k)!(−1)kx2k​+⋯}+a1​{x−3!x3​+⋯+(2k+1)!(−1)k​x2k+1+⋯}=a0​k=0∑∞​(2k)!(−1)kx2k​+a1​k=0∑∞​(2k+1)!(−1)kx2k+1​​
注意到:
cos⁡(x)=∑n=0∞(−1)nx2n(2n)!sin⁡(x)=∑n=0∞(−1)nx2n+1(2n+1)!\cos \left( x \right) = \sum\limits_{n = 0}^\infty {\frac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}}} \hspace{0.25in}\sin \left( x \right) = \sum\limits_{n = 0}^\infty {\frac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)!}}} cos(x)=n=0∑∞​(2n)!(−1)nx2n​sin(x)=n=0∑∞​(2n+1)!(−1)nx2n+1​
因此:
y(x)=c1cos⁡(x)+c2sin⁡(x)y\left( x \right) = {c_1}\cos \left( x \right) + {c_2}\sin \left( x \right) y(x)=c1​cos(x)+c2​sin(x)

这个例子只是一个比较简单的问题。当然完全可以直接用简单的方法求解。但这种方法在求解其它更为复杂的非线性方程的时候十分有用,因为对于许多方程它并不一定有初等表达式。但如果其幂级数解存在的话,那么就可以对它进行近似计算。这种数值计算方法通常又比普通的差分法要精确得多,目前也是计算数学界较为主流的一种方法。

参考资料:

http://people.math.sc.edu/girardi/m142/handouts/10sTaylorPolySeries.pdf

https://math.berkeley.edu/~neu/undergrad_chap1.pdf

https://www.math.cuhk.edu.hk/course_builder/1516/math1010c/Power_series.pdf

https://web.ma.utexas.edu/users/m408s/CurrentWeb/LM14-3-10.php

[http://math.caltech.edu/syye/teaching/courses/Ma8_2015/Lecture%20Notes/ma8_wk10.pdf](http://math.caltech.edu/syye/teaching/courses/Ma8_2015/Lecture Notes/ma8_wk10.pdf)

https://tutorial.math.lamar.edu/classes/de/seriessolutions.aspx

万字长文让你看够幂级数相关推荐

  1. 万字长文带你看尽深度学习中的各种卷积网络

    来源:AI科技评论 摘要:深度学习中的各种卷积网络大家知多少? 深度学习中的各种卷积网络大家知多少?对于那些听说过却又对它们没有特别清晰的认识的小伙伴们,这篇文章非常值得一读.Kunlun Bai 是 ...

  2. 万字长文带你看尽深度学习中的12种卷积网络

    转自 | AI科技评论 作者 | Kunlun Bai 深度学习中的各种卷积网络大家知多少?对于那些听说过却又对它们没有特别清晰的认识的小伙伴们,Kunlun Bai 这篇文章非常值得一读.Kunlu ...

  3. uiautomation遍历windows所有窗口_万字长文!滑动窗口看这篇就够了!

    大家好,我是小浩.今天是小浩算法 "365刷题计划" 滑动窗口系列 - 整合篇.之前给大家讲解过一些滑动窗口的题目,但未作系统整理. 所以我就出了这个整合合集,整合工作中除了保留原 ...

  4. 强化学习入门这一篇就够了!!!万字长文

    强化学习 强化学习入门这一篇就够了万字长文带你明明白白学习强化学习... 强化学习入门这一篇就够了 强化学习 前言 一.概率统计知识回顾 1.1 随机变量和观测值 1.2 概率密度函数 1.3 期望 ...

  5. 万字长文:关于sourcemap,这篇文章就够了

    王志远,微医前端技术部医疗支撑组 前言 而今,只要是工程化的项目,大多离不开 sourcemap 的身影,一言蔽之:构建处理前的代码和处理后的代码之间的桥梁.但却很少有同学真的去深入了解它的运作原理, ...

  6. 万字长文干货,面试官角度看招聘

    ????  这是第 53 篇不掺水的原创,想要了解更多,请戳上方蓝色字体:政采云前端团队 关注我们吧- 本文首发于政采云前端团队博客:万字长文干货,面试官角度看招聘 https://www.zoo.t ...

  7. 一周 AIGC 丨谷歌正面反击 GPT-4,Claude 一分钟看完万字长文,Stability AI 发布文生动画工具...

    AIGC 再进化,谷歌在 2023 年 I/O 开发者大会上宣布面向所有用户开放 MusicLM 模型,输入文字描述即可生成音乐.GPT4 最强对手 Anthropic Claude 史诗升级,百页资 ...

  8. 文字组合生成器_万字长文神器,原来只是固定数据库排列组合而成

    作为一个媒体狗,每天起床的第一件事就是找选题,写稿,写稿,还是写稿. 近日,雷锋网小编听说了一个写文章神器,据说只要输入任意关键词,马上就能拥有万字长文.这样的好事怎么能错过,小编马上探奇试了一下,结 ...

  9. Jeaf Dean万字长文回顾2020谷歌技术发展(上)

    转载自:新智元 编辑:QJP,小匀   [导读]2021年已经度过十余天,谷歌Jeff Dean也在酝酿后在Google Blog发表了一篇万字长文,回顾了谷歌AI2020年的发展与成就,同时,也展望 ...

最新文章

  1. 无法嵌入互操作类型...请改用适用的接口 解决办法
  2. 单片机模块学习之数码管
  3. ERP实施实记(六)之生管课
  4. Hdu 1753 大明A+B 高精度小数相加
  5. SQL(三)- 连接查询
  6. (二)Linux 权限
  7. HCIE-RS面试--STP选举原理,状态机和接口角色
  8. UISwitch的使用 - IOS
  9. 适用于Android的最佳笔记应用程序以及如何制作自己的应用程序
  10. 2019年,北上广等一线城市的IT岗位饱和了么?
  11. TestCenter测试管理工具功能详解六(K)
  12. 2020-04-08
  13. 我国的社保到底是多交好,还是少交好?
  14. Laravel:whereIn子查询
  15. 2021-09-05(第9期)
  16. 在vscode中打开.md文件
  17. 学习《华为基本法》(13):市场营销
  18. Launcher3-桌面布局+主要的类+启动流程
  19. 淡淡的感动——电影《听说》观后感
  20. java-net-php-python-jspm光影婚纱影楼系统设计与实现系统计算机毕业设计程序

热门文章

  1. java正则测试_Java的正则表达式
  2. matlab如何模拟竹蜻蜓飞行,JSBSim_Matlab 将 与 进行联合仿真 模拟飞行计算 247万源代码下载- www.pudn.com...
  3. 如何在freemarker寻找元素_如何让你的网站ui设计更加优秀
  4. 实用:前端小白的切图技巧
  5. 从输入url到显示网页,后台发生了什么?
  6. 洛谷 P1207 [USACO1.2]双重回文数 Dual Palindromes
  7. Jsp之五 过滤器与监听器
  8. 【Linux】linux中删除指定文件外所有其他文件(夹)的问题
  9. Intel® oneAPI Toolkit编译VASP
  10. 不动产登记进入倒计时 哪些房子必须要卖掉?