垃圾回收机制概述

Java语言中一个显著的特点就是引入了垃圾回收机制,使c++程序员最头疼的内存管理的问题迎刃而解,它使得Java程序员在编写程序的时候不再需要考虑内存管理。由于有个垃圾回收机制,Java中的对象不再有“作用域”的概念,只有对象的引用才有“作用域”。垃圾回收可以有效的防止内存泄露,有效的使用空闲的内存。

ps:内存泄露是指该内存空间使用完毕之后未回收,在不涉及复杂数据结构的一般情况下,Java 的内存泄露表现为一个内存对象的生命周期超出了程序需要它的时间长度,我们有时也将其称为“对象游离”。

垃圾回收简要过程

这里必须点出一个很重要的误区:不可达的对象并不会马上就会被直接回收,而是至少要经过两次标记的过程。
第一次被标记过的对象,会检查该对象是否重写了finalize()方法。如果重写了该方法,则将其放入一个F-Query队列中,否则,直接将对象加入“即将回收”集合。在第二次标记之前,F-Query队列中的所有对象会逐个执行finalize()方法,但是不保证该队列中所有对象的finalize()方法都能被执行,这是因为JVM创建一个低优先级的线程去运行此队列中的方法,很可能在没有遍历完之前,就已经被剥夺了运行的权利。那么运行finalize()方法的意义何在呢?这是对象避免自己被清理的最后手段:如果在执行finalize()方法的过程中,使得此对象重新与GC Roots引用链相连,则会在第二次标记过程中将此对象从F-Query队列中清除,避免在这次回收中被清除,恢复成了一个“正常”的对象。但显然这种好事不能无限的发生,对于曾经执行过一次finalize()的对象来说,之后如果再被标记,则不会再执行finalize()方法,只能等待被清除的命运,之后,GC将对F-Queue中的对象进行第二次小规模的标记,将队列中重新与GC Roots引用链恢复连接的对象清除出“即将回收”集合。所有此集合中的内容将被回收。

下面是一个手动回收的程序,一般情况下我们无需手动操作,

public class JVMDemo05 {public static void main(String[] args) {JVMDemo05 jvmDemo05 = new JVMDemo05();//jvmDemo05 = null;System.gc();}protected void finalize() throws Throwable {System.out.println("gc在回收对象...");}
}

垃圾回收机制算法

(1).引用计数算法:

给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器都为0的对象就是不再被使用的,垃圾收集器将回收该对象使用的内存。

引用计数算法实现简单,效率很高,微软的COM技术、ActionScript、Python等都使用了引用计数算法进行内存管理,但是引用计数算法对于对象之间相互循环引用问题难以解决,因此java并没有使用引用计数算法。

优点:

引用计数收集器可以很快的执行,交织在程序运行中。对程序需要不被长时间打断的实时环境比较有利。

缺点:

无法检测出循环引用。如父对象有一个对子对象的引用,子对象反过来引用父对象。这样,他们的引用计数永远不可能为0.而且每次加减非常浪费内存。

标记清除算法

标记-清除(Mark-Sweep)算法顾名思义,主要就是两个动作,一个是标记,另一个就是清除。
标记就是根据特定的算法(如:引用计数算法,可达性分析算法等)标出内存中哪些对象可以回收,哪些对象还要继续用。
标记指示回收,那就直接收掉;标记指示对象还能用,那就原地不动留下。


最基础的垃圾收集算法,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成之后统一回收掉所有被标记的对象。

标记-清除算法的缺点有两个:首先,效率问题,标记和清除效率都不高。其次,标记清除之后会产生大量的不连续的内存碎片,空间碎片太多会导致当程序需要为较大对象分配内存时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

复制算法

S0和s1将可用内存按容量分成大小相等的两块,每次只使用其中一块,当这块内存使用完了,就将还存活的对象复制到另一块内存上去,然后把使用过的内存空间一次清理掉。这样使得每次都是对其中一块内存进行回收,内存分配时不用考虑内存碎片等复杂情况,只需要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。

复制算法的缺点显而易见,可使用的内存降为原来一半。

复制算法用于在新生代垃圾回收

标记-整理算法

标记-整理算法在标记-清除算法基础上做了改进,标记阶段是相同的标记出所有需要回收的对象,在标记完成之后不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,在移动过程中清理掉可回收的对象,这个过程叫做整理。

标记-整理算法相比标记-清除算法的优点是内存被整理以后不会产生大量不连续内存碎片问题。

复制算法在对象存活率高的情况下就要执行较多的复制操作,效率将会变低,而在对象存活率高的情况下使用标记-整理算法效率会大大提高。

标记压缩法在标记清除基础之上做了优化,把存活的对象压缩到内存一端,而后进行垃圾清理。(java中老年代使用的就是标记压缩法)

分代收集算法

根据内存中对象的存活周期不同,将内存划分为几块,java的虚拟机中一般把内存划分为新生代和年老代,当新创建对象时一般在新生代中分配内存空间,当新生代垃圾收集器回收几次之后仍然存活的对象会被移动到年老代内存中,当大对象在新生代中无法找到足够的连续内存时也直接在年老代中创建。

对于新生代和老年代来说,新生代回收频率很高,但是每次回收耗时很短,而老年代回收频率较低,但是耗时会相对较长,所以应该尽量减少老年代的GC.

垃圾回收时的停顿现象

垃圾回收的任务是识别和回收垃圾对象进行内存清理,为了让垃圾回收器可以更高效的执行,大部分情况下,会要求系统进如一个停顿的状态。停顿的目的是为了终止所有的应用线程,只有这样的系统才不会有新垃圾的产生。同时停顿保证了系统状态在某一个瞬间的一致性,也有利于更好的标记垃圾对象。因此在垃圾回收时,都会产生应用程序的停顿。

什么是Java垃圾回收器

Java垃圾回收器是Java虚拟机(JVM)的三个重要模块(另外两个是解释器和多线程机制)之一,为应用程序提供内存的自动分配(Memory Allocation)、自动回收(Garbage Collect)功能,这两个操作都发生在Java堆上(一段内存快)。某一个时点,一个对象如果有一个以上的引用(Rreference)指向它,那么该对象就为活着的(Live),否则死亡(Dead),视为垃圾,可被垃圾回收器回收再利用。垃圾回收操作需要消耗CPU、线程、时间等资源,所以容易理解的是垃圾回收操作不是实时的发生(对象死亡马上释放),当内存消耗完或者是达到某一个指标(Threshold,使用内存占总内存的比列,比如0.75)时,触发垃圾回收操作。有一个对象死亡的例外,java.lang.Thread类型的对象即使没有引用,只要线程还在运行,就不会被回收。

串行回收器(Serial Collector)

单线程执行回收操作,回收期间暂停所有应用线程的执行,client模式下的默认回收器,通过-XX:+UseSerialGC命令行可选项强制指定。参数可以设置使用新生代串行和老年代串行回收器
年轻代的回收算法(Minor Collection)

把Eden区的存活对象移到To区,To区装不下直接移到年老代,把From区的移到To区,To区装不下直接移到年老代,From区里面年龄很大的升级到年老代。 回收结束之后,Eden和From区都为空,此时把From和To的功能互换,From变To,To变From,每一轮回收之前To都是空的。设计的选型为复制。

年老代的回收算法(Full Collection)
年老代的回收分为三个步骤,标记(Mark)、清除(Sweep)、合并(Compact)。标记阶段把所有存活的对象标记出来,清除阶段释放所有死亡的对象,合并阶段 把所有活着的对象合并到年老代的前部分,把空闲的片段都留到后面。设计的选型为合并,减少内存的碎片。

并行回收器(ParNew回收器)

并行回收器在串行回收器基础上做了改进,他可以使用多个线程同时进行垃
圾回收,对于计算能力强的计算机而言,可以有效的缩短垃圾回收所需的尖
际时间。

ParNew回收器是一个工作在新生代的垃圾收集器,他只是简单的将串行回收
器多线程快他的回收策略和算法和串行回收器一样。

使用XX:+UseParNewGC 新生代ParNew回收器,老年代则使用市行回收器
ParNew回收器工作时的线程数量可以使用XX:ParaleiGCThreads参数指
定,一般最好和计算机的CPU相当,避免过多的栽程影响性能。

java垃圾回收理解与算法相关推荐

  1. JAVA垃圾回收-可达性分析算法

    在java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行.那么很显然一个简单的办法就是通过引用计数来判断一个对象是否可以被回收.不失一般性,如果一个对象没有任何引用与之关联 ...

  2. java jvm垃圾回收算法_深入理解JVM虚拟机2:JVM垃圾回收基本原理和算法

    本文转自互联网,侵删 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 喜欢的话麻烦点下Star哈 文章将同步到我的个人博客: www.how ...

  3. java垃圾回收根对象_Java垃圾回收怎么理解?

    展开全部 Java的堆是一个运行时数据区,类的实例(对象)从中62616964757a686964616fe58685e5aeb931333339653664分配空间.Java虚拟机(JVM)的堆中储 ...

  4. 深入理解 Java 垃圾回收机制

    转载自 http://www.cnblogs.com/andy-zcx/p/5522836.html 深入理解 Java 垃圾回收机制 一:垃圾回收机制的意义 java  语言中一个显著的特点就是引入 ...

  5. 6种java垃圾回收算法_被说烂了的Java垃圾回收算法,我带来了最“清新脱俗”的详细图解...

    一.概况 理解Java虚拟机垃圾回收机制的底层原理,是系统调优与线上问题排查的基础,也是一个高级Java程序员的基本功,本文就针对Java垃圾回收这一主题做一些整理与记录.Java垃圾回收器的种类繁多 ...

  6. [牛感悟系列]JAVA(1)理解JAVA垃圾回收

    理解JAVA垃圾回收的好处是什么?满足求知欲是一方面,编写更好的JAVA应用是另外一方面. 如果一个人对垃圾回收过程感兴趣,那表明他在应用程序开发领域有相当程度的经验.如果一个人在思考如何选择正确的垃 ...

  7. axis2 webService开发 附深入理解 Java 垃圾回收机制

    相关文章: axis web服务(axis2安装和eclipse.tomcat结合开发) axis2 webService开发 axis2 webService开发(打包aar文件) 使用Axis2开 ...

  8. 6种java垃圾回收算法_Java垃圾回收机制

    Java垃圾回收机制 说到垃圾回收(Garbage Collection,GC),很多人就会自然而然地把它和Java联系起来.在Java中,程序员不需要去关心内存动态分配和垃圾回收的问题,这一切都交给 ...

  9. 深入理解JVM虚拟机2:JVM垃圾回收基本原理和算法

    JVM GC基本原理与GC算法 Java的内存分配与回收全部由JVM垃圾回收进程自动完成.与C语言不同,Java开发者不需要自己编写代码实现垃圾回收.这是Java深受大家欢迎的众多特性之一,能够帮助程 ...

最新文章

  1. 常见http状态码说明(转)
  2. 《windows核心编程系列》十八谈谈windows钩子
  3. BCP 导入导出数据库数据
  4. pythonopencv图像形态_Python+OpenCV图像处理之其他形态学操作
  5. 浅谈Vue.js的优势
  6. XTU-oj 字符矩阵
  7. 爬梯:Docker全解析(二)
  8. Java枚举类 (详细解析java中的枚举类深入浅出)
  9. 护眼html颜色,在电脑中设置护眼颜色、更换网页背景色、一键护眼
  10. 论精力充沛与事业成功
  11. 数组取出使用某一个entiti
  12. html里的常用特殊符号表示大全
  13. angular浏览器兼容性问题解决方案
  14. 2023年软考高级信息系统项目管理师报名,这里靠谱
  15. AJP:22q11.2缺失综合征青少年gamma频带反应和远程通信中断的异常发育模式
  16. @kubernetes(k8s) 应用配置管理(ConfigMap、subPath、Secret)
  17. HR管理的本质是激发每一个人的善意
  18. getchar和putchar函数详解
  19. php毕业设计 基于php+mysql在线视频点播系统毕业设计开题报告功能参考
  20. 【美图 - 计算机视觉岗】2018 年在线笔试考点:选择 + 编程(顺时针旋转数组90°)

热门文章

  1. Linux 多用户和多用户边界
  2. crawler py
  3. OMM机房监控系统引领机房监控新趋势
  4. 问题管理——“斩草需除根”
  5. IIS6.0不支持ASP的解决办法
  6. 虚拟机管理解决方案-VMware篇
  7. TCP拥塞控制和TCP流量控制
  8. RocketMQ源码解析-Broker的HA实现
  9. gitlab mr wip 怎么弄成_基于GitLab的工作流程设计
  10. 调试代码和解决问题的总体思路和 技术路线应该持有的心态