点击我爱计算机视觉标星,更快获取CVML新技术


本文经授权转载自AINLP。

作者:光彩照人

学校:北京邮电大学

研究方向自然语言处理,精准营销,风险控制


前序:

  Google AI最新出品的论文Reformer 在ICLR 2020会议上获得高分,论文中对当前暴热的Transformer做两点革新:一个是局部敏感哈希(LSH);一个是可逆残差网络代替标准残差网络。本文主要介绍变革的第二部分,可逆残差网络。先从神经网络的反向传播讲起,然后是标准残差网络,最后自然过渡到可逆残差网络。读完本文相信你会对神经网络的架构发展有一个非常清晰的认识。

一、背景介绍

  当前所有的神经网络都采用反向传播的方式来训练,反向传播算法需要存储网络的中间结果来计算梯度,而且其对内存的消耗与网络单元数成正比。这也就意味着,网络越深越广,对内存的消耗越大,这将成为很多应用的瓶颈。由于GPU的显存受限,使得网络结构难以达到最优,因为有些网络结构可能达到上千层的深度。如果采用并行GPU的话,价格既昂贵又比较复杂,同时也不适合个人研究。


  上面是torchsummary截图,forword和bacword pass size就是需要保存的中间变量大小,可以看出这部分占据了大部分显存。如果不存储中间层结果,那么就可以大幅减少GPU的显存占用,有助于训练更深更广的网络。多伦多大学的Aidan N.Gomez和Mengye Ren提出了可逆残差神经网络,当前层的激活结果可由下一层的结果计算得出,也就是如果我们知道网络层最后的结果,就可以反推前面每一层的中间结果。这样我们只需要存储网络的参数和最后一层的结果即可,激活结果的存储与网络的深度无关了,将大幅减少显存占用。令人惊讶的是,实验结果显示,可逆残差网络的表现并没有显著下降,与之前的标准残差网络实验结果基本旗鼓相当。

  如果你已经对很多计算细节遗忘不清楚了,没关系,下面我们将先从BP反向传播、标准残差网络一步步讲起,本文的目的就是要带你从头到尾搞清楚。首先我们温故一下多元复合函数求导公式:

二、神经网络的反向传播(BP)

符号表示:

X1,X2,X3:表示3个输入层节点

Wtji:表示从t-1层到t层的权重参数,j表示t层的第j个节点,i表示t-1层的第i个节点

ati:表示t层的第i个激活后输出结果

g(x):表示激活函数

正向传播计算过程

<隐藏层>

<输出层>

反向传播:

以单个样本为例,假设输入向量是[x1,x2,x3],目标输出值是[y1,y2],代价函数用L表示。反向传播的总体原理就是根据总体输出误差,反向传播回网络,通过计算每一层节点的梯度,利用梯度下降法原理,更新每一层的网络权重w和偏置b,这也是网络学习的过程。误差反向传播的优点就是可以把繁杂的导数计算以数列递推的形式来表示, 简化了计算过程。

以平方误差来计算反向传播的过程,代价函数表示如下:

根据导数的链式法则反向求解隐藏->输出层、输入层->隐藏层的权重表示:

引入新的误差求导表示形式,称为神经单元误差:

l=2,3表示第几层,j表示某一层的第几个节点。替换表示后如下:

所以我们可以归纳出一般的计算公式:

从上述公式可以看出,如果神经单元误差δ可以求出来,那么总误差对每一层的权重w和偏置b的偏导数就可以求出来,接下来就可以利用梯度下降法来优化参数了。

求解每一层的δ:

输出层

隐藏层

也就是说,我们根据输出层的神经误差单元δ就可以直接求出隐藏层的神经误差单元,进而省去了隐藏层的繁杂的求导过程,我们可以得出更一般的计算过程:

从而得出l层神经单元误差和l+1层神经单元误差的关系。这就是误差反向传播算法,只要求出输出层的神经单元误差,其它层的神经单元误差就不需要计算偏导数了,而可以直接通过上述公式得出。

 三、残差网络(Residual Network)

残差网络主要可以解决两个问题:1)梯度消失问题;2)网络退化问题。其结构如下图

上述结构就是一个两层网络组成的残差块,残差块可以由2、3层甚至更多层组成,但是如果是一层的,就变成线性变换了,没什么意义了。上述图可以写成公式如下:

F(x)=W* ReLU(W* X)

所以在第二层进入激活函数ReLU之前F(x)+X组成新的输入,也叫恒等映射,就是在这个残差块输入是X的情况下输出依然是X,这样其目标就是学习让F(X)=0。

为什么要额外加一个X呢,而不是让模型直接学习F(x)=X?

  因为让F(x)=0比较容易,初始化参数W非常小接近0,就可以让输出接近0,同时输出如果是负数,经过第一层Relu后输出依然0,都能使得最后的F(X)=0,也就是有多种情况都可以使得F(x)=0;但是让F(x)=x确实非常难的,因为参数都必须刚刚好才能使得最后输出为X。

恒等映射有什么作用?

  恒等映射就可以解决网络退化的问题,当网络层数越来越深的时候,网络的精度却在下降,也就是说网络自身存在一个最优的层度结构,太深太浅都能使得模型精度下降。有了恒等映射存在,网络就能够自己学习到哪些层是冗余的,就可以无损通过这些层,理论上讲再深的网络都不影响其精度,解决了网络退化问题。

为什么可以解决梯度消失问题呢?

  以两个残差块的结构实例图来分析,其中每个残差块有2层神经网络组成,如下图:

假设激活函数ReLU用g(x)函数来表示,样本实例是[X1,Y1],即输入是X1,目标值是Y1,损失函数还是采用平方损失函数,则每一层的计算如下:

下面我们对第一个残差块的权重参数求导,根据链式求导法则,公式如下:

我们可以看到求导公式中多了一个+1项,这就将原来的链式求导中的连乘变成了连加状态,可以有效避免梯度消失了。

四、可逆残差网络(Reversible Residual Network)

1)可逆块结构

可逆神经网络将每一层分割成两部分,分别为x1和x2,每一个可逆块的输入是(x1,x2),输出是(y1,y2)。其结构如下:

正向计算图示:

公式表示:

逆向计算图示:

公式表示:

其中F和G都是相似的残差函数,参考上图残差网络。可逆块的跨距只能为1,也就是说可逆块必须一个接一个连接,中间不能采用其它网络形式衔接,否则的话就会丢失信息,并且无法可逆计算了,这点与残差块不一样。如果一定要采取跟残差块相似的结构,也就是中间一部分采用普通网络形式衔接,那中间这部分的激活结果就必须显式的存起来。

2)不用存储激活结果的反向传播

  为了更好地计算反向传播的步骤,我们修改一下上述正向计算和逆向计算的公式:

  尽管z1和y1的值是相同的,但是两个变量在图中却代表不同的节点,所以在反向传播中它们的总体导数是不一样的。Z1的导数包含通过y2产生的间接影响,而y2的导数却不受y2的任何影响。

  在反向传播计算流程中,先给出最后一层的激活值(y1,y2)和误差传播的总体导数(dL/dy1,dL/dy2),然后要计算出其输入值(x1,x2)和对应的导数(dL/dx1,dL/dx2),以及残差函数F和G中权重参数的总体导数,求解步骤如下:

3)计算开销

  一个N个连接的神经网络,正向计算的理论加乘开销为N,反向传播求导的理论加乘开销为2N(反向求导包含复合函数求导连乘),而可逆网络多一步需要反向计算输入值的操作,所以理论计算开销为4N,比普通网络开销约多出33%左右。但是在实际操作中,正向和反向的计算开销在GPU上差不多,可以都理解为N。那么这样的话,普通网络的整体计算开销为2N,可逆网络的整体开销为3N,也就是多出了约50%。

参考论文:The Reversible Residual Network:Backpropagation Without Storing Activations

CV细分方向交流群

52CV已经建立多个CV专业交流群,包括:目标跟踪、目标检测、语义分割、姿态估计、人脸识别检测、医学影像处理、超分辨率、神经架构搜索、GAN、强化学习等,扫码添加CV君拉你入群,如已经为CV君其他账号好友请直接私信,

(请务必注明相关方向,比如:目标检测

喜欢在QQ交流的童鞋,可以加52CV官方QQ群:805388940。

(不会时时在线,如果没能及时通过验证还请见谅)


长按关注我爱计算机视觉

大幅减少GPU显存占用:可逆残差网络(The Reversible Residual Network)相关推荐

  1. pytorch 优化GPU显存占用,避免out of memory

    pytorch 优化GPU显存占用,避免out of memory 分享一个最实用的招: 用完把tensor删掉,pytorch不会自动清理显存! 代码举例,最后多删除一个,gpu显存占用就会下降,训 ...

  2. 深度残差网络(Deep Residual Network )

    深度残差网络自从2015年提出以来,在众多比赛中表现优越,且最终获得CVPR 2016年Best Paper Award.大家想必也已经耳熟能详.在这里,只是再简要说说深度残差网络是怎样的网络,关于为 ...

  3. 模型占用GPU显存计算

    相关博客: https://blog.csdn.net/wz22881916/article/details/81054036 https://blog.csdn.net/sweetseven_/ar ...

  4. batchsize和数据量设置比例_Keras - GPU ID 和显存占用设定步骤

    初步尝试 Keras (基于 Tensorflow 后端)深度框架时, 发现其对于 GPU 的使用比较神奇, 默认竟然是全部占满显存, 1080Ti 跑个小分类问题, 就一下子满了. 而且是服务器上的 ...

  5. Keras - GPU ID 和显存占用设定

    Keras - GPU ID 和显存占用设定 初步尝试 Keras (基于 Tensorflow 后端)深度框架时, 发现其对于 GPU 的使用比较神奇, 默认竟然是全部占满显存, 1080Ti 跑个 ...

  6. 阿里 NIPS 2017 Workshop 论文:基于 TensorFlow 的深度模型训练 GPU 显存优化

    NIPS 2017 在美国长滩举办,场面非常热烈.阿里巴巴一篇介绍深度模型训练 GPU 显存优化的论文<Training Deeper Models by GPU Memory Optimiza ...

  7. 后向重计算在OneFlow中的实现:以时间换空间,大幅降低显存占用

    撰文 | 赵露阳 2016年,陈天奇团队提出了亚线性内存优化相关的"gradient/activation checkpointing(后向重计算)"等技术[1],旨在降低深度学习 ...

  8. 释放pytorch占用的gpu显存_Pytorch 节省显存的训练方法总结

    前言 最近的工作中,用到了Pytorch框架训练医学图像分割模型.精心设计的模型经常会因为显存不足而失败.减小模型训练过程中对显存的占用,可能我们能想到最简单的方法就是减小batchsize,减少卷积 ...

  9. ubuntu中显示本机的gpu_Ubuntu下实时查看Nvidia显卡显存占用情况和GPU温度

    一.查看Nvidia显卡显存占用情况 查看Nvidia显卡显存占用情况 nvidia-smi 效果如下: 显示的表格中: Fan: 风扇转速(0%–100%),N/A表示没有风扇 Temp: GPU温 ...

最新文章

  1. 支持的网卡列表_Windows 10的5G网卡折腾笔记(含采购链接)
  2. Faster R-CNN教程
  3. 学习Spring(六) -- Spring中Bean的作用域以及生命周期
  4. python的字典与集合
  5. git生成SSH-Key
  6. SAP CRM PPR调试截图,头都搞大了,希望这问题这辈子只遇到这次
  7. UIScrollViewDelegate-代理API详解
  8. matlab常用函数——数据类型函数
  9. CSS清除默认样式,成功入职腾讯
  10. 锐捷亮相GITC:请互联网企业为我点个赞!
  11. 怎样从php转向java_Github标星10.8K!Java 实战博客项目分享
  12. 书籍《智能交通》-观后感-2021年12月-下期分享
  13. 如果多个用户同时修改同一客户记录,而且先后提交修改,Oracle 怎样保证该客户记录...
  14. UpdateData()函数使用
  15. 【经验】CCF CSP认证问题
  16. 小米手机开启Root权限
  17. 犹太人的智慧书《塔木德》(Talmud)
  18. 做软件开发学好算法的重要性
  19. android配置参数详解,安卓手机CPU与GPU等配置参数含义详解【详细介绍】
  20. 一张图看懂光圈、快门、感光度的意义

热门文章

  1. MyBatis框架 注解
  2. 程序员都在用的IDEA插件(不断更新)
  3. html window设置,JavaScript Window
  4. python数据驱动测试_python数据驱动--Excel维护测试用例
  5. php 表单条件设置_PHP基础知识总结
  6. asp.net 获取全部在线用户_这款手绘风格的在线制图软件超棒
  7. visualstudiopython使用方法,使用python解析VisualStudio .csproj文件的最佳方法
  8. PHP占用内存越来越多,解决phpQuery占用内存过多的问题
  9. oracle绑定值的结尾,Oracle Sql字符串多余空格处理方法小记
  10. jupyter notebook python环境_jupyter Notebook环境搭建