《死磕 Java 并发编程》系列连载中,大家可以关注一波。

「死磕 Java 并发编程」阿里二面,面试官:说说 Java CAS 原理?

「死磕 Java 并发编程」面试官:说说什么是 Java 内存模型(JMM)?

「死磕 Java 并发编程」10张图告诉你Java并发多线程那些破事

目录

线程安全真的是线程的安全吗?

什么是 Atomic?

实现一个计数器

AtomicInteger 源码分析

AtomicLong 和 LongAdder 谁更牛?

总结


当我们谈论『线程安全』的时候,肯定都会想到 Atomic 类。不错,Atomic 相关类都是线程安全的,在讲 Atomic 类之前我想再聊聊『线程安全』这个概念。

线程安全真的是线程的安全吗?

初看『线程安全』这几个字,很容易望文生义,这不就是线程的安全吗?其实不是,线程本身没有好坏,没有『安全的线程』和『不安全的线程』之分,俗话说:人之初性本善,线程天生也是纯洁善良的,真正让线程变坏是因为访问的变量的原因,变量对于操作系统来说其实就是内存块,所以绕了这么一大圈,线程安全称为『内存的安全』可能更为贴切。

简而言之,线程访问的内存决定了这个线程是否是安全的。

变量大致可以分为局部变量共享变量,局部变量对于 JVM 来说是栈空间,大家都背过八股文,栈是线程私有的是非共享的,那自然也是内存安全的;共享变量对于 JVM 来说一般是存在于堆上,堆上的东西是所有线程共享的,如果不加任何限制自然是不安全的。

因为线程安全这个概念已经深入人心了,所以后面我们还是用线程安全来表达内存安全的含义。

那如何解决这种不安全呢?方法有很多,比如:加锁、Atomic 原子类等。

好了,咱们今天先来看看Atomic类

什么是 Atomic?

JavaJDK1.5开始提供java.util.concurrent.atomic包,这里包含了多个原子操作类。原子操作类提供了一个简单、高效、安全的方式去更新一个变量。

Atomic 包下的原子操作类有很多,可以大致分为四种类型:

  • 原子操作基本类型

  • 原子操作数组类型

  • 原子操作引用类型

  • 原子操作更新属性

Atomic原子操作类在源码中都使用了Unsafe类Unsafe类提供了硬件级别的原子操作,可以安全地直接操作内存变量。后面讲解源码时再详细介绍。

实现一个计数器

假如在业务代码中需要实现一个计数器的功能,啪地一下,很快我们就写出了以下的代码:

/*** Author: 公众号 爱笑的架构师*/
public class Counter {private int count;public void increase() {count++;}
}

increase方法对 count 变量进行递增。

当代码提交上库进行code review时,啪地一下,很快收到了检视意见(严重级别):

如果在多线程场景下,你的计数器可能有问题。

上大一的时候老师就讲过 count++ 是非原子性的,它实际上包含了三个操作:读数据,加一,写回数据。

再次修改代码,多线访问increase方法会有问题,那就给它加个锁吧,count变量修改了其他线程可能不能即时看到,那就给变量加个 volatile 吧。

吭哧吭哧,代码如下:

/*** Author: 公众号 爱笑的架构师*/
public class LockCounter {private volatile int count;public synchronized void increase() {count++;}
}

一顿操作猛如虎,再次提交代码后,依然收到了检视意见(建议级别):

加锁会影响效率,可以考虑使用原子操作类。

原子操作类?「黑人问号脸」,莫不是大佬知道我晚上有约会故意整我,不想合入代码吧。带着将信将疑的态度,打开百度谷歌,原来 AtomicInteger 可以轻松解决这个问题,手忙脚乱一顿复制粘贴代码搞定了,终于可以下班了。

/*** Author: 公众号 爱笑的架构师*/
public class AtomicCounter {private AtomicInteger count = new AtomicInteger(0);public void increase() {count.incrementAndGet();}
}

AtomicInteger 源码分析

调用AtomicInteger类incrementAndGet方法不用加锁可以实现安全的递增,这个好神奇,下面带领大家分析一下源码是这么实现的,等不及了等不及了。

打开源码,可以看到定义的incrementAndGet方法:

/**
* 在当前值的基础上自动加 1
*
* @return 更新后的值
*/
public final int incrementAndGet() {return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}

通过源码可以看到实际上是调用了 unsafe 的一个方法,unsafe 是什么待会再说。

我们再看看getAndAddInt方法的参数:第一个参数 this 是当前对象的引用;第二个参数valueOffset是用来记录value值在内存中的偏移地址,第三个参数是一个常量 1;

在 AtomicInteger 中定义了一个常量valueOffset和一个可变的成员变量 value

private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;static {try {valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));} catch (Exception ex) { throw new Error(ex); }
}private volatile int value;

value 变量保存当前对象的值,valueOffset 是变量的内存偏移地址,也是通过调用unsafe的方法获取。

public final class Unsafe {// ……省略其他方法public native long objectFieldOffset(Field f);
}

这里再说说 Unsafe 这个类,人如其名:不安全的类。打开 Unsafe 类会看到大部分方法都标识了 native,也就是说这些都是本地方法,本地方法强依赖于操作系统平台,一般都是采用C/C++语言编写,在调用 Unsafe 类的本地方法实际会执行这些方法,熟悉 C/C++的小伙伴可自行下载源码研究。

好了,我们再回到最开始,调用了 Unsafe 类的getAndAddInt方法:

public final class Unsafe {// ……省略其他方法public final int getAndAddInt(Object o, long offset, int delta) {int v;do {v = getIntVolatile(o, offset); // 循环 CAS 操作} while (!compareAndSwapInt(o, offset, v, v + delta));return v;}// 根据内存偏移地址获取当前值public native int getIntVolatile(Object o, long offset);// CAS 操作public final native boolean compareAndSwapInt(Object o, long offset,int expected,int x);
}

通过getIntVolatile方法获取当前 AtomicInteger 对象的value值,这是一个本地方法。

然后调用compareAndSwapInt进行 CAS 原子操作,尝试在当前值的基础上加 1,如果 CAS 失败会循环进行重试。

因此compareAndSwapInt方法是最核心的,详细实现大家可以自行找源码看。这里我们看看方法的参数,一共有四个参数:o 是指当前对象;offset 是指当前对象值的内存偏移地址;expected是期望值;x是修改后的值;

compareAndSwapInt方法的思路是拿到对象 o 和 offset 后会再去取对象实际的值,如果当前值与之前取的期望值是一致的就认为 value 没有被修改过,直接将 value 的值更新为 x,这样就完成了一次 CAS 操作,CAS 操作是通过操作系统保证原子性的。

如果当前值与期望值不一致,说明 value 值被修改过,那么就会重试 CAS 操作直到成功。

AtomicInteger类中还有很多其他的方法,如:

decrementAndGet()
getAndDecrement()
getAndIncrement()
accumulateAndGet()
// …… 省略

这些方法实现原理都是大同小异,希望大家可以举一反三理解其他的方法。

另外还有一些其他的类,如:AtomicLongAtomicReferenceAtomicIntegerArray等,这里也不再赘述,原理都是大同小异。

AtomicLong 和 LongAdder 谁更牛?

Java 在 jdk1.8版本 引入了 LongAdder 类,与 AtomicLong 一样可以实现加、减、递增、递减等线程安全操作,但是在高并发竞争非常激烈的场景下 LongAdder 的效率更胜一筹,后续单独用一篇文章进行介绍。

总结

讲了半天,可能有的小伙伴还是比较懵,Atomic 类到底是如何实现线程安全的?

在语言层面上,Atomic 类是没有做任何同步操作的,翻看源代码方法没有任何加锁,其实最大功劳还是在 CAS 身上。CAS 利用操作系统的硬件特性实现了原子性,利用 CPU 多核能力实现了硬件层面的阻塞。

只有 CAS 的原子性保证就一定是线程安全的吗?当然不是的,通过源码发现 value 变量还用了 volatile 修饰了,保证了线程可见性。

那有些小伙伴可能要问了,那是不是加锁就没有用了,非也,虽然基于 CAS 的线程安全机制很好很高效,但是这适合一些粒度比较小的需求才有效,如果遇到非常复杂的业务逻辑还是需要加锁操作的。

大家学会了吗?

Java 并发编程的知识非常多,同时也是 Java 面试的高频考点,面试官必问的,需要学习 Java 并发编程其他知识的小伙伴可以去下载『阿里师兄总结的Java知识笔记 总共 283 页,超级详细』。

作者:雷小帅

推荐一个Github 开源项目,『Java八股文』Java面试套路,Java进阶学习,打破内卷拿大厂Offer,升职加薪!

作者简介: ☕读过几年书:华中科技大学硕士毕业;

「死磕Java并发编程」说说Java Atomic 原子类的实现原理相关推荐

  1. **Java有哪些悲观锁的实现_「Java并发编程」何谓悲观锁与乐观锁,Java编程你会吗...

    何谓悲观锁与乐观锁 悲观锁 乐观锁 两种锁的使用场景 乐观锁常见的两种实现方式 1. 版本号机制 2. CAS算法 乐观锁的缺点 1 ABA 问题 2 循环时间长开销大 3 只能保证一个共享变量的原子 ...

  2. Java并发编程的艺术-Java并发编程基础

    第4章 Java并发编程基础 ​ Java从诞生开始就明智地选择了内置对多线程的支持,这使得Java语言相比同一时期的其他语言具有明显的优势.线程作为操作系统调度的最小单元,多个线程能够同时执行,这将 ...

  3. 【Java并发编程 四】Java的进程与线程

    什么是进程?进程是程序的⼀次执⾏过程,是系统运⾏程序的基本单位,因此进程是动态的.系统运行和关闭⼀个程序即是⼀个进程从创建,运⾏到消亡的过程.在 Java 中,当我们启动 main 函数时其实就是启动 ...

  4. java 原子数据类型_java并发编程(十一)----(JUC原子类)基本类型介绍

    上一节我们说到了基本原子类的简单介绍,这一节我们先来看一下基本类型: AtomicInteger, AtomicLong, AtomicBoolean.AtomicInteger和AtomicLong ...

  5. Java并发编程实战_[Java并发编程实战] 简介

    并发简史 在早期不包含操作系统的计算机中,程序都是单一的串行程序,从头至尾只能执行一个程序,并且这个程序访问这个计算机的所有资源.然而,随着技术的发展,操作系统出现了.它使得计算机程序有了进程,线程的 ...

  6. 《Java 并发编程实战》—— Java线程的生命周期

    09 | Java线程的生命周期 通用的线程生命周期:初始状态.可运行状态.运行状态.休眠状态和终止状态. 初始状态,指的是线程已经被创建,但是还不允许分配 CPU 执行.这个状态属于编程语言特有的, ...

  7. 《Java并发编程的艺术》之synchronized的底层实现原理

    在学习锁优化时,对象头(Mark Word) 是必不可缺的一环,因为synchronized 用的锁是存在对象头里的.32位的虚拟机上对象头占64位(8字节),64位的虚拟机上对象头占128位(16字 ...

  8. 【极客时间】《Java并发编程实战》学习笔记

    目录: 开篇词 | 你为什么需要学习并发编程? 内容来源:开篇词 | 你为什么需要学习并发编程?-极客时间 例如,Java 里 synchronized.wait()/notify() 相关的知识很琐 ...

  9. Java 并发编程——Executor框架和线程池原理

    Java 并发编程系列文章 Java 并发基础--线程安全性 Java 并发编程--Callable+Future+FutureTask java 并发编程--Thread 源码重新学习 java并发 ...

最新文章

  1. Attempt to invoke virtual method 'void android.support.v7.widget.RecyclerView.setLayoutManager(andro
  2. jzoj6312-Lottery【dp,前缀和】
  3. stixel world论文总结
  4. ARM Linux.2.6.34内核移植
  5. 配置ANDROID开发环境的方法
  6. “wget”不是内部或外部命令,也不是可运行的程序或批处理文件
  7. phpcms v9框架的目录结构分析
  8. vivado软件安装教程
  9. 2019,最坏的一年,最好的一年,交学费要趁早
  10. Linux系统下如何复制粘贴文件(待更新)
  11. Python(爬虫篇)--- 破解加密【一】JS加密破解
  12. 小学计算机管理员教学计划,小学教学计划汇总六篇
  13. hello树先生经典台词
  14. vlog拍摄与剪辑入门之路
  15. 据说Kivy可以将Python程序弄成App来玩,所以 安装Kivy。关于安装Kivy失败后的解决方案过程
  16. SQL语句执行顺序详解
  17. 深度解析CTM项目成功的原因
  18. 内江人物--(张大千、骆成骧)秀才、美女、黏鱼
  19. 根据出生日期计算年龄——基于Python的datetime库
  20. When you are old

热门文章

  1. epson 300k II快速打印技巧
  2. Jira+Jenkins+Gitlab自动化交付实践
  3. 【English Town】(三) 英语小镇Day3
  4. js中怎么添加图片以及在图片上添加链接
  5. 第一周CorelDRAW课总结
  6. VSCode同步上传代码到Gitee
  7. 编程培训c语言,最新C语言编程培训
  8. pl2303串口设备无法识别的问题
  9. Linux—账号管理及命令使用详解
  10. iscc2023-misc【详解】