数据库索引是如何实现的呢?

底层使用的是什么数据结构和算法呢?算法解析思考的过程比结论更重要。

1. 解决问题的前提是定义清楚问题
如何定义清楚问题呢?除了对问题进行详细的调研,还有一个办法,那就是,通过对一些模糊的需求进行假设,来限定要解决的问题的范围

如果你对数据库的操作非常了解,针对我们现在这个问题,你就能把索引的需求定义得非常清楚。但是,对于大部分软件工程师来说,我们可能只了解一小部分常用的 SQL 语句,所以,这里我们假设要解决的问题,只包含这样两个常用的需求:

根据某个值查找数据,
比如 select * from user where id=1234;
根据区间值来查找某些数据,
比如 select * from user where id > 1234 and id < 2345。

除了这些功能性需求之外,这种问题往往还会涉及一些非功能性需求,比如安全、性能、用户体验等等。限于专栏要讨论的主要是数据结构和算法,对于非功能性需求,我们着重考虑性能方面的需求。性能方面的需求,我们主要考察时间和空间两方面,也就是执行效率和存储空间。在执行效率方面,我们希望通过索引,查询数据的效率尽可能地高;在存储空间方面,我们希望索引不要消耗太多的内存空间。

2. 尝试用学过的数据结构解决这个问题
问题的需求大致定义清楚了,我们现在回想一下,能否利用已经学习过的数据结构解决这个问题呢?支持快速查询、插入等操作的动态数据结构,我们已经学习过散列表、平衡二叉查找树、跳表。

我们先来看散列表。散列表的查询性能很好,时间复杂度是 O(1)。但是,散列表不能支持按照区间快速查找数据。所以,散列表不能满足我们的需求。

我们再来看平衡二叉查找树。尽管平衡二叉查找树查询的性能也很高,时间复杂度是 O(logn)。而且,对树进行中序遍历,我们还可以得到一个从小到大有序的数据序列,但这仍然不足以支持按照区间快速查找数据。

我们再来看跳表。跳表是在链表之上加上多层索引构成的。它支持快速地插入、查找、删除数据,对应的时间复杂度是 O(logn)。并且,跳表也支持按照区间快速地查找数据。我们只需要定位到区间起点值对应在链表中的结点,然后从这个结点开始,顺序遍历链表,直到区间终点对应的结点为止,这期间遍历得到的数据就是满足区间值的数据。

这样看来,跳表是可以解决这个问题。实际上,数据库索引所用到的数据结构跟跳表非常相似,叫作 B+ 树。不过,它是通过二叉查找树演化过来的,而非跳表。为了给你还原发明 B+ 树的整个思考过程,所以,接下来,我还要从二叉查找树讲起,看它是如何一步一步被改造成 B+ 树的。

3. 改造二叉查找树来解决这个问题
为了让二叉查找树支持按照区间来查找数据,我们可以对它进行这样的改造:树中的节点并不存储数据本身,而是只是作为索引。除此之外,我们把每个叶子节点串在一条链表上,链表中的数据是从小到大有序的。经过改造之后的二叉树,就像图中这样,看起来是不是很像跳表呢?

改造之后,如果我们要求某个区间的数据。我们只需要拿区间的起始值,在树中进行查找,当查找到某个叶子节点之后,我们再顺着链表往后遍历,直到链表中的结点数据值大于区间的终止值为止。所有遍历到的数据,就是符合区间值的所有数据。


但是,我们要为几千万、上亿的数据构建索引,如果将索引存储在内存中,尽管内存访问的速度非常快,查询的效率非常高,但是,占用的内存会非常多。

比如,我们给一亿个数据构建二叉查找树索引,那索引中会包含大约 1 亿个节点,每个节点假设占用 16 个字节,那就需要大约 1GB 的内存空间。给一张表建立索引,我们需要 1GB 的内存空间。如果我们要给 10 张表建立索引,那对内存的需求是无法满足的。如何解决这个索引占用太多内存的问题呢?

我们可以借助时间换空间的思路,把索引存储在硬盘中,而非内存中。我们都知道,硬盘是一个非常慢速的存储设备。通常内存的访问速度是纳秒级别的,而磁盘访问的速度是毫秒级别的。读取同样大小的数据,从磁盘中读取花费的时间,是从内存中读取所花费时间的上万倍,甚至几十万倍。

这种将索引存储在硬盘中的方案,尽管减少了内存消耗,但是在数据查找的过程中,需要读取磁盘中的索引,因此数据查询效率就相应降低很多。

二叉查找树,经过改造之后,支持区间查找的功能就实现了。不过,为了节省内存,如果把树存储在硬盘中,那么每个节点的读取(或者访问),都对应一次磁盘 IO 操作。树的高度就等于每次查询数据时磁盘 IO 操作的次数(why)。

我们前面讲到,比起内存读写操作,磁盘 IO 操作非常耗时,所以我们优化的重点就是尽量减少磁盘 IO 操作,也就是,尽量降低树的高度。那如何降低树的高度呢?

我们来看下,如果我们把索引构建成 m 叉树,高度是不是比二叉树要小呢?如图所示,给 16 个数据构建二叉树索引,树的高度是 4,查找一个数据,就需要 4 个磁盘 IO 操作(如果根节点存储在内存中,其他节点存储在磁盘中),如果对 16 个数据构建五叉树索引,那高度只有 2,查找一个数据,对应只需要 2 次磁盘操作。如果 m 叉树中的 m 是 100,那对一亿个数据构建索引,树的高度也只是 3,最多只要 3 次磁盘 IO 就能获取到数据。磁盘 IO 变少了,查找数据的效率也就提高了。


如果我们将 m 叉树实现 B+ 树索引,用代码实现出来,就是下面这个样子(假设我们给 int 类型的数据库字段添加索引,所以代码中的 keywords 是 int 类型的):


/*** 这是B+树非叶子节点的定义。** 假设keywords=[3, 5, 8, 10]* 4个键值将数据分为5个区间:(-INF,3), [3,5), [5,8), [8,10), [10,INF)* 5个区间分别对应:children[0]...children[4]** m值是事先计算得到的,计算的依据是让所有信息的大小正好等于页的大小:* PAGE_SIZE = (m-1)*4[keywordss大小]+m*8[children大小]*/
public class BPlusTreeNode {public static int m = 5; // 5叉树public int[] keywords = new int[m-1]; // 键值,用来划分数据区间public BPlusTreeNode[] children = new BPlusTreeNode[m];//保存子节点指针
}/*** 这是B+树中叶子节点的定义。** B+树中的叶子节点跟内部节点是不一样的,* 叶子节点存储的是值,而非区间。* 这个定义里,每个叶子节点存储3个数据行的键值及地址信息。** k值是事先计算得到的,计算的依据是让所有信息的大小正好等于页的大小:* PAGE_SIZE = k*4[keyw..大小]+k*8[dataAd..大小]+8[prev大小]+8[next大小]*/
public class BPlusTreeLeafNode {public static int k = 3;public int[] keywords = new int[k]; // 数据的键值public long[] dataAddress = new long[k]; // 数据地址public BPlusTreeLeafNode prev; // 这个结点在链表中的前驱结点public BPlusTreeLeafNode next; // 这个结点在链表中的后继结点
}

我稍微解释一下这段代码。对于相同个数的数据构建 m 叉树索引,m 叉树中的 m 越大,那树的高度就越小,那 m 叉树中的 m 是不是越大越好呢?到底多大才最合适呢?不管是内存中的数据,还是磁盘中的数据,操作系统都是按页(一页大小通常是 4KB,这个值可以通过 getconfig PAGE_SIZE 命令查看)来读取的,一次会读一页的数据。如果要读取的数据量超过一页的大小,就会触发多次 IO 操作。所以,我们在选择 m 大小的时候,要尽量让每个节点的大小等于一个页的大小。读取一个节点,只需要一次磁盘 IO 操作。

尽管索引可以提高数据库的查询效率,但是,作为一名开发工程师,你应该也知道,索引有利也有弊,它也会让写入数据的效率下降。这是为什么呢?数据的写入过程,会涉及索引的更新,这是索引导致写入变慢的主要原因。

对于一个 B+ 树来说,m 值是根据页的大小事先计算好的,也就是说,每个节点最多只能有 m 个子节点。在往数据库中写入数据的过程中,这样就有可能使索引中某些节点的子节点个数超过 m,这个节点的大小超过了一个页的大小,读取这样一个节点,就会导致多次磁盘 IO 操作。我们该如何解决这个问题呢?

实际上,处理思路并不复杂。我们只需要将这个节点分裂成两个节点。但是,节点分裂之后,其上层父节点的子节点个数就有可能超过 m 个。不过这也没关系,我们可以用同样的方法,将父节点也分裂成两个节点。这种级联反应会从下往上,一直影响到根节点。这个分裂过程,你可以结合着下面这个图一块看,会更容易理解(图中的 B+ 树是一个三叉树。我们限定叶子节点中,数据的个数超过 2 个就分裂节点;非叶子节点中,子节点的个数超过 3 个就分裂节点)。

正是因为要时刻保证 B+ 树索引是一个 m 叉树,所以,索引的存在会导致数据库写入的速度降低。实际上,不光写入数据会变慢,删除数据也会变慢。

这是为什么呢?我们在删除某个数据的时候,也要对应地更新索引节点。这个处理思路有点类似跳表中删除数据的处理思路。频繁的数据删除,就会导致某些节点中,子节点的个数变得非常少,长此以往,如果每个节点的子节点都比较少,势必会影响索引的效率。

我们可以设置一个阈值。在 B+ 树中,这个阈值等于 m/2。如果某个节点的子节点个数小于 m/2,我们就将它跟相邻的兄弟节点合并。不过,合并之后节点的子节点个数有可能会超过 m。针对这种情况,我们可以借助插入数据时候的处理方法,再分裂节点。

文字描述不是很直观,我举了一个删除操作的例子,你可以对比着看下(图中的 B+ 树是一个五叉树。我们限定叶子节点中,数据的个数少于 2 个就合并节点;非叶子节点中,子节点的个数少于 3 个就合并节点。)。

数据库索引以及 B+ 树的由来,到此就讲完了。你有没有发现,B+ 树的结构和操作,跟跳表非常类似。理论上讲,对跳表稍加改造,也可以替代 B+ 树,作为数据库的索引实现的。

B+ 树发明于 1972 年,跳表发明于 1989 年,我们可以大胆猜想下,跳表的作者有可能就是受了 B+ 树的启发,才发明出跳表来的。不过,这个也无从考证了。

B+树的特点

- 每个节点中子节点的个数不能超过 m,也不能小于 m/2;
- 根节点的子节点个数可以不超过 m/2,这是一个例外;
- m 叉树只存储索引,并不真正存储数据,这个有点儿类似跳表;
- 通过链表将叶子节点串联在一起,这样可以方便按区间查找;
- 一般情况,根节点会被存储在内存中,其他节点存储在磁盘中。

思考

  • B+ 树中,将叶子节点串起来的链表,是单链表还是双向链表?为什么?

对于B+tree叶子节点,是用双向链表还是用单链表,得从具体的场景思考。我想,大部分同学在开发中遇到的数据库查询,都遇到过升序或降序问题,即类似这样的sql:
select name,age, … from where uid > startValue and uid < endValue
order by uid asc(或者desc),此时,数据底层实现有两种做法:
1)保证查出来的数据就是用户想要的顺序
2)不保证查出来的数据的有序性,查出来之后再排序
以上两种方案,不加思考,肯定选第一种,因为第二种做法浪费了时间(如果选用内存排序,还是考虑数据的量级)。那如何能保证查询出来的数据就是有序的呢?单链表肯定做不到,只能从头往后遍历,再想想,只能选择双向链表了。此时,可能有的同学又问了:双向链表,多出来了一倍的指针,不是会多占用空间嘛?
答案是肯定的。可是,我们再细想下,数据库索引本身都已经在磁盘中了,对于磁盘来说,这点空间已经微不足道了,用这点空间换来时间肯定划算呀。顺便提一下:在实际工程应用中,双向链表应用的场景非常广泛,毕竟能大量减少链表的遍历时间

  • 散列表也经常跟链表一块使用,如果我们把散列表中的结点,也用链表串起来,能否支持按照区间查找数据呢?

可以支持区间查询。java中linkedHashMap就是链表链表+HashMap的组合,用于实现缓存的lru算法比较方便,不过要支持区间查询需要在插入时维持链表的有序性,复杂度O(n).效率比跳表和b+tree差

参考

48 | B+树:MySQL数据库索引是如何实现的?

漫画:什么是B+树? - 知乎

Mysql 索引是如何实现的?相关推荐

  1. mysql索引空间太大_MySQL优化索引

    1.  MySQL如何使用索引 索引用于快速查找具有特定列值的行.如果没有索引,MySQL必须从第一行开始,然后遍历整个表以找到相关的行.表越大,花费越多.如果表中有相关列的索引,MySQL可以快速确 ...

  2. mysql索引教程_MySQL教程96-MySQL索引类型

    索引的类型和存储引擎有关,每种存储引擎所支持的索引类型不一定完全相同.MySQL 索引可以从存储方式.逻辑角度和实际使用的角度来进行分类. 存储方式区分 根据存储方式的不同,MySQL 中常用的索引在 ...

  3. mysql 树形结构_再读MySQL索引-《高性能MySQL》索引手记

    最近工作中经常和MySQL打交道,当数据量小的时候,不同查询方式以及是否使用索引并无大碍,当数据量随着业务的成长急剧加速时,索引的重要性不言而喻. 本篇文章以<高性能MySQL>中的索引章 ...

  4. MySQL索引背后的数据结构及算法原理【转】

    http://blog.codinglabs.org/articles/theory-of-mysql-index.html MySQL索引背后的数据结构及算法原理[转] 摘要 本文以MySQL数据库 ...

  5. mysql 索引合并

    索引合并是mysql底层为我们提供的智能算法.本文就介绍了mysql 索引合并的使用,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 索引合并是mysql底层为我们提 ...

  6. mysql中groupby会用到索引吗_开发人员不得不知的MySQL索引和查询优化

    本文主要总结了工作中一些常用的操作及不合理的操作,在对慢查询进行优化时收集的一些有用的资料和信息,本文适合有 MySQL 基础的开发人员. 索引相关 索引基数 基数是数据列所包含的不同值的数量,例如, ...

  7. mysql索引底层实现原理_mysql的索引底层之实现原理

    MySQL索引背后的数据结构及算法原理 一.定义 索引定义:索引(Index)是帮助MySQL高效获取数据的数据结构. 本质:索引是数据结构. 二.B-Tree m阶B-Tree满足以下条件: 1.每 ...

  8. 不会MySQL索引,面试官让回家等通知!

    " 你是不是对于 MySQL 索引的知识点一直都像大杂烩,好像什么都知道,如果进行深究的话可能一个也答不上来. 假如你去面试,面试官让你聊一下对索引的理解,然而你对索引的理解仅限于,检索数据 ...

  9. ElasticSearch 索引 VS MySQL 索引

    前言 这段时间在维护产品的搜索功能,每次在管理台看到 elasticsearch 这么高效的查询效率我都很好奇他是如何做到的. 这甚至比在我本地使用 MySQL 通过主键的查询速度还快. 为此我搜索了 ...

  10. mysql索引排序算法_MySQL中利用索引对数据进行排序的基础教程

    MySQL中,有两种方式生成有序结果集:一是使用filesort,二是按索引顺序扫描.利用索引进行排序操作是非常快的,而且可以利用同一索引同时进行查找和排序操作.当索引的顺序与ORDER BY中的列顺 ...

最新文章

  1. LeetCode简单题之1比特与2比特字符
  2. asp.net编程:asp.net中如何设置页面的编码
  3. Django websocket 长连接使用
  4. 阿里云 docker php mysql_PHP开发环境02 - 阿里云Ubuntu使用Docker配置PHP环境(只限于学习)...
  5. Codeforces Beta Round #1 A,B,C
  6. 解构给默认值_5个 JS 解构有趣的用途
  7. 网页中的各种高度说明
  8. GNS3中不同型号路由器支持的模块表
  9. 触发键盘_雷蛇这款光轴机械键盘开箱评测,光速触发,颜值爆表
  10. (02)Verilog HDL模块
  11. CSS 幻术 | 抗锯齿
  12. QQ桌球瞄准器开发(5)使用注册表保存配置
  13. 联想拯救者电脑高清壁纸
  14. harbor高可用部署
  15. java roundup函数_Excel函数(2)if、rand、round函数
  16. 股票-每日复盘-5-24
  17. 国家互联网信息办公室公布《互联网新闻信息服务单位内容管理从业人员管理办法》【软件网每日新闻播报│第10-31期】
  18. 有哪些赚钱的软件?说说我是如何每天赚上千元的!
  19. Oracle-数据库所有查询命令
  20. Unity3D for VR 学习(7): 360°全景照片

热门文章

  1. 从零开始搭建神经网络并将准确率提升至85%
  2. Linux查看文件第几行到第几行命令
  3. linux-清除登录系统成功记录的命令
  4. 显示器信号接口的发展历程
  5. linux查询redis版本_Docker安装Redis并介绍漂亮的可视化客户端进行操作
  6. dataframe 上下拼接_pandas DataFrame 的横向纵向拼接组合
  7. 返回json格式的编写(Msg)
  8. WebStorm 添加多个项目到当前工程目录
  9. 顺序执行命令需要哪个符号链接_18年MBA联考如何安排答题时间及顺序
  10. Layer弹窗回车执行确定按钮事件