霍尔传感器

  • 7.1 霍尔效应及霍尔元件
    • 7.1.1 霍尔效应
    • 7.1.2 霍尔元件
  • 7.2 霍尔传感器的测量转换电路
    • 7.2.1 霍尔传感器的基本电路
    • 7.2.2 霍尔传感器的集成电路
    • 7.2.3 基本误差及补偿
  • 7.3 其他磁传感器
    • 7.3.1 磁阻元件
    • 7.3.2 磁敏二极管
    • 7.3.3 磁敏三极管

霍尔传感器是基于霍尔效应的一种传感器,广泛用于电磁、压力、加速度、振动等方面的测量。其特点是体积小、功耗小、寿命长、安装方便,耐腐蚀和污染。1879年美国物理学家霍尔在试验中发现了金属材料具有霍尔效应,但是由于金属材料的霍尔效应太弱而没有得到应用。半导体出现后,研究人员开始使用半导体材料制成霍尔元件,而半导体的霍尔效应现象显著,从此霍尔传感器才得到应用和发展。

7.1 霍尔效应及霍尔元件

7.1.1 霍尔效应




7.1.2 霍尔元件

1.霍尔元件的结构

霍尔元件由霍尔片、引线和壳体组成。如图7-2所示,霍尔元件有4个引脚,其中引脚1、1′为激励电流的引线端子,称为激励电极,引脚2、2′为霍尔电压的引线端子,称为霍尔电极,在电路中通常有两种符号表示,如图7-2(c)所示。

2.霍尔元件的材料

常用霍尔元件的材料有锗、硅、砷化铟、锑化铟等半导体材料。其中N型锗容易加工制造,其霍尔系数、温度性能和线性度都较好。N型硅的线性度最好,其霍尔系数、温度性能与N型锗相近。锑化铟对温度最敏感,尤其在低温范围内温度系数大,但在室温时其霍尔系数较大。砷化铟的霍尔系数较小,温度系数也较小,输出特性线性度好。如表7-1所示为常用国产霍尔元件的技术参数。

3.霍尔元件的主要参数

(1)额定激励电流和最大允许激励电流

在给霍尔元件加激励电流时,霍尔元件的温度升高10℃,此时的激励电流称为额定激励电流,用符号IC表示。当激励电流增大时,霍尔电压也会随着增大。为了获得较大的霍尔电压,在应用中会采用较大的激励电流,但是激励电流过大,霍尔元件的功耗就会增大,霍尔元件的温度升高,会引起霍尔电压的温度漂移增大,影响测量精度,因此各种型号的霍尔元件都规定了对应的最大激励电流Im,它的数值从几毫安至十几毫安不等。

(2)输入电阻和输出电阻

霍尔元件两个激励电流端的电阻被称为输入电阻Ri,两个霍尔电压输出端子之间的电阻被称为输出电阻Ro。不同类型的霍尔元件,输入电阻和输出电阻的阻值一般从几十欧姆到几百欧姆不等。

(3)不等位电动势和不等位电阻

不等位电动势是指没有外加磁场时,霍尔元件在额定激励电流的作用下,霍尔元件输出的开路电压,一般用符号UM表示,产生这一现象的原因有:

· 霍尔电极安装位置不对称或不在同一等电位面上;
· 半导体材料不均匀造成了电阻率不均匀或是几何尺寸不均匀;
· 激励电极接触不良造成激励电流不均匀分布等。

(4)寄生直流电动势

当外加磁场为零时,给霍尔元件通上交流电流,霍尔电极端子会输出一个寄生直流电动势,是由控制电极和基片之间的非完全欧姆接触所产生的整流效应造成的。

(5)霍尔电压的温度系数

霍尔电压的温度系数α是指在一定磁感应强度和一定的控制电流下,温度每变化1℃时,霍尔电压产生的变化率。

7.2 霍尔传感器的测量转换电路

7.2.1 霍尔传感器的基本电路

7.2.2 霍尔传感器的集成电路

霍尔传感器的集成电路的特点是体积较小、灵敏度高、输出幅度较大、温漂小、对电源的稳定性要求较低等。常见的类型有线性型霍尔传感器的集成电路和开关型霍尔传感器的集成电路。

1.线性型霍尔传感器的集成电路

**线性型霍尔传感器的集成电路的内部电路由霍尔元件、恒流源、线性差动放大器组成,将这几部分集成制作在一个芯片上,使用时可以直接得到电压输出信号,比单独使用霍尔元件要方便。**比较典型的线性型霍尔传感器有UGN3501,如图7-4所示。图7-5所示为UGN3501的输出特性曲线。


如图7-6所示为双端差动输出的线性型霍尔传感器的特性曲线,当磁场为零时,输出电压等于零;当感受的磁场为正向(磁铁的S极对准霍尔元件的正面)时,输出信号为正;磁场反向时,输出信号为负。


2.开关型霍尔集成电路

开关型霍尔集成电路由霍尔元件、稳压电路、放大器、施密特触发器、OC门(集电极开路输出门)等组成,如图7-7 所示,将这些元件集成在一个芯片上就可制成该集成电路。当外加磁场强度超过预先设定的标准值时,NPN型OC门导通,由高电平变为低电平;当外加磁场强度低于标准值时,OC门截止,输出高电平。典型的开关型霍尔器件有UGN3020等。

如图7-8所示为施密特触发电路的输出特性,当回差越大时,该电路的抗振动干扰能力就越强。

7.2.3 基本误差及补偿

1.不等位电动势误差的补偿

不等位电动势是霍尔元件产生误差的原因之一,也是最普遍的一种,其产生的原因如下:
(1)制造过程中不可能保证霍尔元件的两个霍尔电极绝对对称地焊接在它的两侧,这就会导致霍尔元件的两个电极点不能完全位于同一个等位面上。
(2)由于半导体的电阻特性所造成。

在电路中可以把霍尔元件视为一个四臂电阻电桥,如图7-9所示,不等位电动势就相当于电桥的初始不平衡输出电压。


2.温度特性

霍尔元件的温度特性是指其内阻及霍尔电压与温度之间的关系,如图7-11和图7-12所示。


3.温度误差及其补偿

温度误差产生的原因有以下两种:
① 霍尔元件的材料是半导体,半导体对温度的变化非常敏感。半导体的载流子的浓度、迁移率、电阻率等参数都是温度的函数,因此容易受到温度的影响。
② 当温度发生变化时,霍尔元件的特性参数(如霍尔电动势、输入电阻和输出电阻等)都会发生变化,从而导致霍尔传感器产生温度误差。

减小霍尔元件的温度误差的方法有:
① 恒温措施补偿,包括以下两种:
· 将霍尔元件放在恒温器中;
· 将霍尔元件放在恒温的空调房中。
② 恒流源温度补偿霍尔元件的灵敏度与温度的关系为

7.3 其他磁传感器

7.3.1 磁阻元件

当霍尔元件置于与电流方向垂直的磁场中时,会出现霍尔效应,同时还会出现半导体电阻率增大的现象,这种现象称为磁阻效应。利用磁阻效应做成的元件被称为磁阻元件。

如图7-14 所示,在没有外加磁场作用时,电流方向为直线方向;在受到外加磁场作用后,电流的路径增长,电阻率就会增大,从而导致电阻增大。

磁阻元件具有阻抗低、阻值随磁场变化大、频率响应好、可非接触式测量、动态范围广及噪声小等优点,因此广泛应用于无触点开关、压力开关、角度传感器、转速传感器等场合。

7.3.2 磁敏二极管


7.3.3 磁敏三极管


传感器技术—霍尔传感器(学习笔记九)相关推荐

  1. 传感器技术—霍尔传感器(学习笔记九 补充)

    霍尔传感器 7.4 霍尔传感器的应用 7.4.1 霍尔压力传感器 7.4.2 霍尔加速度传感器 7.4.3 霍尔转速传感器 7.4.4 霍尔计数器 7.4.5 霍尔无触点开关 7.5 霍尔传感器实际应 ...

  2. 《传感器技术》考试学习笔记

    文章目录 一.选择题 二.简答题 1.什么是传感器?传感器的共性是哪些? 2.差动变气隙式传感器电感传感器的灵敏度推导过程是什么(推导公式)?与单极性进行比较它们的优缺点是哪些? 3.霍尔传感器如何进 ...

  3. IOS学习笔记(九)之UIAlertView(警告视图)和UIActionSheet(操作表视图)基本概念和使用方法...

    IOS学习笔记(九)之UIAlertView(警告视图)和UIActionSheet(操作表视图)基本概念和使用方法 Author:hmjiangqq Email:jiangqqlmj@163.com ...

  4. python3.4学习笔记(九) Python GUI桌面应用开发工具选择

    python3.4学习笔记(九) Python GUI桌面应用开发工具选择 Python GUI开发工具选择 - WEB开发者 http://www.admin10000.com/document/9 ...

  5. 吴恩达《机器学习》学习笔记九——神经网络相关(1)

    吴恩达<机器学习>学习笔记九--神经网络相关(1) 一. 非线性假设的问题 二. 神经网络相关知识 1.神经网络的大致历史 2.神经网络的表示 3.前向传播:向量化表示 三. 例子与直觉理 ...

  6. ROS学习笔记九:用C++编写ROS发布与订阅

    ROS学习笔记九:用C++编写ROS发布与订阅 本节主要介绍如何用C++编写一个简单的ROS发布与订阅. 编写发布节点 在之前创建的例子beginner_tutorials软件包中,在其目录下的src ...

  7. at24c16如何划分出多个读写区_AVR学习笔记九、基于AT24C16的数据存储实验

    Ema{@AVR 学习笔记九.基于 AT24C16 的数据存储实验 ------- 基于 LT_Mini_M16 9.1 用 I/O 口模拟 I2C 总线实现 AT24C16 的读写 9.1.1 .实 ...

  8. JavaScript学习笔记(九)(验证框架,layer弹出层)

    JavaScript学习笔记(九) 一.jQuery Validate验证框架 1.引入相关插件路径 2. 修改一些规则 3. 自定义验证规则 4.异步验证 整体代码 二.layer弹出层 1.引入相 ...

  9. OpenCV学习笔记(九)——图像轮廓(下)

    <OpenCV轻松入门:面向Python>学习笔记(九) 1-3 查找并绘制轮廓.矩特性及Hu矩 4-5 轮廓拟合及凸包 6. 利用形状场景算法比较轮廓 6.1 计算形状场景距离 6.2 ...

最新文章

  1. 建立jackrabbit内容仓库实例
  2. pytorch 笔记:手动实现AR (auto regressive)
  3. oracle 10g gateway 安装操作,Oracle 10g RAC启动节点报错 Default gateway is not defined
  4. mysql ddl 锁_MySQL Online DDL导致全局锁表案例分析
  5. linux查看nec进程状态,【linux】 /proc/PID/stat
  6. python中bytearray函数_Python内置函数bytearray()
  7. 计算机cad模板样例,教你如何新建适合自己的CAD模板
  8. HYSPLIT 教程 有关记录
  9. Mysql 分页,排序 打字练习
  10. Java游戏开发中应始终坚持的10项基本原则
  11. 文档没保存可以找回吗?文件丢失恢复方法
  12. 怎么在服务器上接无线路由器,从别人家拉网线再接无线路由器怎么设置?(二)...
  13. 亚马逊仓库部署机器人:每小时挑拣物品为过去三倍
  14. 十进制转换八进制代码c语言,利用栈将十进制转换为八进制(C语言)
  15. esp32-Arduino开发学习
  16. ENFJ型的人:什么样的人很适合人工智能方向
  17. CSDN博客大神汇总
  18. View UI——页面右上角添加浮动按钮(设置、退出全屏、进入全屏)
  19. UEFI.源码分析.DXE阶段的执行
  20. 九城加设网游防沉迷 3千名玩家声称罢玩魔兽

热门文章

  1. [渝粤题库]陕西师范大学《幼儿保健学》作业
  2. Redis GeoHash核心原理解析
  3. 软件定义网络(SDN)为网络交换机厂商带来商机
  4. 怎样提高自己的工作饱和度
  5. Electric p8激活教程
  6. 专注java分布式架构之Zeppelin不是飞艇
  7. rstudio安装后打不开_r语言和rstudio的安装
  8. 关于三菱软件GX developer和GX works的安装注意点
  9. Bootstrap学习与实践
  10. Armadillo 4.xx - 5.xx HWID Changer v.0.2 by TrueLies