写在前面

LSTM模型的一个常见用途是对长时间序列数据进行学习预测,例如得到了某商品前一年的日销量数据,我们可以用LSTM模型来预测未来一段时间内该商品的销量。但对于不熟悉神经网络或者对没有了解过RNN模型的人来说,想要看懂LSTM模型的原理是非常困难的,但有些时候我们不得不快速上手搭建一个LSTM模型来完成预测任务。下面我将对一个真实的时间序列数据集进行LSTM模型的搭建,不加入很多复杂的功能,快速的完成数据预测功能。

问题大概如下:某煤矿有一个监测井,我们每20分钟获取一次该监测井的地下水位埋深,共获取了30000多条真实数据,数据集包括采样日期,采样时间,LEVEL,温度,电导率,地下水位埋深等信息。使用采样日期、采样时间和地下水位埋深这三个信息训练LSTM模型,预测未来的水位高度。


数据预处理

首先读入数据,简单查看一下数据的前几行,代码如下:

data=pd.read_csv("data.csv")
print(data.head())

输出如下图所示:

很显然,对于我们有用的信息只有Date、Time、地下水位埋深这三列。而且为了规范数据集,我们将Date列和Time列连接起来,并转换为python中的datetime格式。所以先将Date列和Time列用空格连接起来,然后将保留Date列和地下水位埋深列,其他列全部删除,代码如下:

data=pd.read_csv("data.csv")
data['Date']=data['Date']+' '
data['Date']=data['Date']+data['Time']
data.drop(['Time','LEVEL','TEMPERATURE','CONDUCTIVITY','Num'],axis=1,inplace=True)
data['Date']=pd.to_datetime(data['Date'])
print(data.head())

打印处理后数据的前几列,如下图所示:

现在将Date列设为索引,即可绘制出地下水位埋深随时间变化的折线图,代码如下:

series = data.set_index(['Date'], drop=True)
plt.figure(figsize=(10, 6))series['地下水位埋深'].plot()
plt.show()

输出的折线图如下:

此时series中的数据可视为原始数据,下面要用它来构建训练神经网络的数据集。


构建数据集

1、首先将DataFrame格式的数据转换为二维数组的格式,例如将数据前三行进行转换后变成:[[4.6838],[4.6882],[4.7048]]。然后将其进行差分转换,就是除第一个数字外,其他数改为它本身与它前一个数的差值,例如前三行数据进行差分转换后为:[[4.6882-4.6838],[4.7048-4.6882]]。代码如下:

def difference(data_set,interval=1):diff=list()for i in range(interval,len(data_set)):value=data_set[i]-data_set[i-interval]diff.append(value)return pd.Series(diff)# 这里的series是之前数据预处理后得到的DateFrame型数据
raw_value=series.values
diff_value=difference(raw_value,1)

进行差分转换后,数据变成了这样的形式:

2、将时间序列形式的数据转换为监督学习集的形式,例如:[[10],[11],[12],[13],[14]]转换为[[0,10],[10,11],[11,12],[12,13],[13,14]],即把前一个数作为输入,后一个数作为对应输出。

def timeseries_to_supervised(data,lag=1):df=pd.DataFrame(data)columns=[df.shift(1)]columns.append(df)df=pd.concat(columns,axis=1)df.fillna(0,inplace=True)return dfsupervised=timeseries_to_supervised(diff_value,1)
supervised_value=supervised.values

解释一下函数体中的转换过程,首先将data转换为DataFrame格,shift(1)函数可以将数据整体下移一行,类似于原来是[10,11,12,13,14],执行shift(1)函数后成为:[NaN,10,11,12,13],溢出的数据直接丢弃。append()函数可以将两个DataFrame格式的数据连接起来,但两者又是分离的,类似于这样:[[NaN,10,11,12,13],[10,11,12,13,14]],只不过这里我用数组进行了类比。然后使用concat()函数将两个分离的DataFrame格式数据融合到一起,类似于这样:[[NaN,10],[10,11],[11,12],[12,13],[13,14]],但这里是数组形式的类比,不是DataFrame数据的真实情况。经过这一系列的处理后,数据变成了下面这个样子,可以跟上面的图进行对比来理解这里的操作过程:

3、将数据集分为训练集和测试集,这个问题下的数据有30000多条,就设置测试集为后6000条,代码如下:

testNum=6000
train,test=supervised_value[:-testNum],supervised_value[-testNum:]

4、将训练集和测试集中的数据都缩放到[-1,1]之间,可以加快收敛。

def scale(train,test):# 创建一个缩放器,将数据集中的数据缩放到[-1,1]的取值范围中scaler=MinMaxScaler(feature_range=(-1,1))# 使用数据来训练缩放器scaler=scaler.fit(train)# 使用缩放器来将训练集和测试集进行缩放train_scaled=scaler.transform(train)test_scaled=scaler.transform(test)return scaler,train_scaled,test_scaledscaler,train_scaled,test_scaled=scale(train,test)

其中MinMaxScaler是一种缩放器,初始化后,使用训练集数据来训练好这个缩放器,然后对训练集和数据集都进行缩放。这个缩放器在之后预测的时候还要用来进行逆缩放,将预测值还原到真实的量纲上。此时训练集变成了下图这个样子,数据集已经构建完成,下面开始训练LSTM模型。


训练LSTM模型

1、首先将训练集中的输入和输出两列分为x和y,并将输入列转换为三维数组,此时X是一个[N*1*1]的数组,代码如下:

X,y=train[:,0:-1],train[:,-1]
X=X.reshape(X.shape[0],1,X.shape[1])

此时的X是这样子的三维数组:

2、初始化LSTM模型并开始训练,设置神经元核心的个数,设置训练时输入数据的格式等等。对于预测时间序列类的问题,可直接使用下面的参数设置:

def fit_lstm(train,batch_size,nb_epoch,neurons):# 将数据对中的x和y分开X,y=train[:,0:-1],train[:,-1]# 将2D数据拼接成3D数据,形状为[N*1*1]X=X.reshape(X.shape[0],1,X.shape[1])model=Sequential()model.add(LSTM(neurons,batch_input_shape=(batch_size,X.shape[1],X.shape[2]),stateful=True))model.add(Dense(1))model.compile(loss='mean_squared_error',optimizer='adam')for i in range(nb_epoch):# shuffle是不混淆数据顺序his=model.fit(X,y,batch_size=batch_size,verbose=1,shuffle=False)# 每训练完一次就重置一次网络状态,网络状态与网络权重不同model.reset_states()return model# 构建一个LSTM模型并训练,样本数为1,训练次数为3,LSTM层神经元个数为4
lstm_model=fit_lstm(train_scaled,1,3,4)

此时lstm_model就是一个训练好的LSTM模型,我们可以使用它来进行测试。


模型的泛化

首先列出一条数据的处理过程:

1、将一条数据的输入和输出列分开,并且将输入进行变换,传入到预测函数中进行单步预测,详见注释,代码如下:

def forecast_lstm(model,batch_size,X):# 将形状为[1:]的,包含一个元素的一维数组X,转换形状为[1,1,1]的3D张量X=X.reshape(1,1,len(X))# 输出形状为1行一列的二维数组yhatyhat=model.predict(X,batch_size=batch_size)# 将yhat中的结果返回return yhat[0,0]# 取出测试集中的一条数据,并将其拆分为X和y
X,y=test[i,0:-1],test[i,-1]
# 将训练好的模型、测试数据传入预测函数中
yhat=forecast_lstm(lstm_model,1,X)

2、得到预测值后对其进行逆缩放和逆差分,将其还原到原来的取值范围内,详见注释,代码如下:

# 对预测的数据进行逆差分转换
def invert_difference(history,yhat,interval=1):return yhat+history[-interval]# 将预测值进行逆缩放,使用之前训练好的缩放器,x为一维数组,y为实数
def invert_scale(scaler,X,y):# 将X,y转换为一个list列表new_row=[x for x in X]+[y]# 将列表转换为数组array=np.array(new_row)# 将数组重构成一个形状为[1,2]的二维数组->[[10,12]]array=array.reshape(1,len(array))# 逆缩放输入的形状为[1,2],输出形状也是如此invert=scaler.inverse_transform(array)# 只需要返回y值即可return invert[0,-1]# 将预测值进行逆缩放
yhat=invert_scale(scaler,X,yhat)
# 对预测的y值进行逆差分
yhat=invert_difference(raw_value,yhat,len(test_scaled)+1-i)

遍历全部测试集数据,对每行数据执行以上操作,并将最终的预测值保存下来,代码如下:

predictions=list()
for i in range(len(test_scaled)):# 将测试集拆分为X和yX,y=test[i,0:-1],test[i,-1]# 将训练好的模型、测试数据传入预测函数中yhat=forecast_lstm(lstm_model,1,X)# 将预测值进行逆缩放yhat=invert_scale(scaler,X,yhat)# 对预测的y值进行逆差分yhat=invert_difference(raw_value,yhat,len(test_scaled)+1-i)# 存储正在预测的y值predictions.append(yhat)

预测结果的可视化

将测试集的y值和预测值绘制在同一张图表中,代码如下。这个问题的数据集非常大,LSTM的训练效果非常好,标准差大概为2,预测结果符合预期。

plt.plot(raw_value[-testNum:])
plt.plot(predictions)
plt.legend(['true','pred'])
plt.show()


完整代码

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.layers import LSTM
from keras.layers import Dense
from keras.models import Sequential
from sklearn.metrics import mean_squared_error
import numpy as np
import math# 数据的差分转换
def difference(data_set,interval=1):diff=list()for i in range(interval,len(data_set)):value=data_set[i]-data_set[i-interval]diff.append(value)return pd.Series(diff)# 对预测的数据进行逆差分转换
def invert_difference(history,yhat,interval=1):return yhat+history[-interval]# 将数据转换为监督学习集,移位后产生的NaN值补0
def timeseries_to_supervised(data,lag=1):df=pd.DataFrame(data)columns=[df.shift(i) for i in range(1,lag+1)]columns.append(df)df=pd.concat(columns,axis=1)df.fillna(0,inplace=True)return df# 将数据缩放到[-1,1]之间
def scale(train,test):# 创建一个缩放器,将数据集中的数据缩放到[-1,1]的取值范围中scaler=MinMaxScaler(feature_range=(-1,1))# 使用数据来训练缩放器scaler=scaler.fit(train)# 使用缩放器来将训练集和测试集进行缩放train_scaled=scaler.transform(train)test_scaled=scaler.transform(test)return scaler,train_scaled,test_scaled# 将预测值进行逆缩放,使用之前训练好的缩放器,x为一维数组,y为实数
def invert_scale(scaler,X,y):# 将X,y转换为一个list列表new_row=[x for x in X]+[y]# 将列表转换为数组array=np.array(new_row)# 将数组重构成一个形状为[1,2]的二维数组->[[10,12]]array=array.reshape(1,len(array))# 逆缩放输入的形状为[1,2],输出形状也是如此invert=scaler.inverse_transform(array)# 只需要返回y值即可return invert[0,-1]# 构建一个LSTM模型
def fit_lstm(train,batch_size,nb_epoch,neurons):# 将数据对中的x和y分开X,y=train[:,0:-1],train[:,-1]# 将2D数据拼接成3D数据,形状为[N*1*1]X=X.reshape(X.shape[0],1,X.shape[1])model=Sequential()model.add(LSTM(neurons,batch_input_shape=(batch_size,X.shape[1],X.shape[2]),stateful=True))model.add(Dense(1))model.compile(loss='mean_squared_error',optimizer='adam')for i in range(nb_epoch):# shuffle是不混淆数据顺序his=model.fit(X,y,batch_size=batch_size,verbose=1,shuffle=False)# 每训练完一次就重置一次网络状态,网络状态与网络权重不同model.reset_states()return model# 开始单步预测
def forecast_lstm(model,batch_size,X):# 将形状为[1:]的,包含一个元素的一维数组X,转换形状为[1,1,1]的3D张量X=X.reshape(1,1,len(X))# 输出形状为1行一列的二维数组yhatyhat=model.predict(X,batch_size=batch_size)# 将yhat中的结果返回return yhat[0,0]# 读取数据,将日期和时间列合并,其他列删除,合并后的列转换为时间格式,设为索引
data=pd.read_csv('data.csv')
data['Date']=data['Date']+' '
data['Date']=data['Date']+data['Time']
data.drop(['Num','LEVEL','TEMPERATURE','CONDUCTIVITY','Time'],axis=1,inplace=True)
data['Date']=pd.to_datetime(data['Date'])
series=data.set_index(['Date'],drop=True)# 将原数据转换为二维数组形式,例如:
# [[4.6838],[4.6882],[4.7048]]
raw_value=series.values
# 将数据进行差分转换,例如[[4.6838],[4.6882],[4.7048]]转换为[[4.6882-4.6838],[4.7048-4.6882]]
diff_value=difference(raw_value,1)
#
# 将序列形式的数据转换为监督学习集形式,例如[[10],[11],[12],[13]]
# 在此将其转换为监督学习集形式:[[0,10],[10,11],[11,12],[12,13]],
# 即前一个数作为输入,后一个数作为对应的输出
supervised=timeseries_to_supervised(diff_value,1)
supervised_value=supervised.values# 将数据集分割为训练集和测试集,设置后1000个数据为测试集
testNum=6000
train,test=supervised_value[:-testNum],supervised_value[-testNum:]# 将训练集和测试集都缩放到[-1,1]之间
scaler,train_scaled,test_scaled=scale(train,test)# 构建一个LSTM模型并训练,样本数为1,训练次数为5,LSTM层神经元个数为4
lstm_model=fit_lstm(train_scaled,1,1,4)
# 遍历测试集,对数据进行单步预测
predictions=list()
for i in range(len(test_scaled)):# 将测试集拆分为X和yX,y=test[i,0:-1],test[i,-1]# 将训练好的模型、测试数据传入预测函数中yhat=forecast_lstm(lstm_model,1,X)# 将预测值进行逆缩放yhat=invert_scale(scaler,X,yhat)# 对预测的y值进行逆差分yhat=invert_difference(raw_value,yhat,len(test_scaled)+1-i)# 存储正在预测的y值predictions.append(yhat)# 计算方差
rmse=mean_squared_error(raw_value[:testNum],predictions)
print("Test RMSE:",rmse)
plt.plot(raw_value[-testNum:])
plt.plot(predictions)
plt.legend(['true','pred'])
plt.show()

LSTM模型预测时间序列(快速上手)相关推荐

  1. LSTM模型预测时间序列性质的进件量---详细步骤以及例子

    此博客适合刚刚入门LSTM的朋友学习,牛逼的朋友请略过,哈哈... github路径: https://github.com/zhouliping3712/LSTM_Times_Series 一.LS ...

  2. bagging和时间序列预测_时间序列的LSTM模型预测——基于Keras

    一.问题背景     现实生活中,在一系列时间点上观测数据是司空见惯的活动,在农业.商业.气象军事和医疗等研究领域都包含大量的时间序列数据.时间序列的预测指的是基于序列的历史数据,以及可能对结果产生影 ...

  3. 时间序列深度学习:状态 LSTM 模型预测太阳黑子

    目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...

  4. 【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列...

    原文链接:http://tecdat.cn/?p=21773 时间序列(从现在起称为TS)被认为是数据科学领域中鲜为人知的技能之一(点击文末"阅读原文"获取完整代码数据). 视频: ...

  5. python预测股票 keras_使用LSTM模型预测股价基于Keras

    本期作者:Derrick Mwiti 本期翻译:HUDPinkPig 未经授权,严禁转载 编者按:本文介绍了如何使用LSTM模型进行时间序列预测.股票市场的数据由于格式规整和非常容易获得,是作为研究的 ...

  6. baostock证券数据集下使用LSTM模型预测A股走势

    baostock证券数据集下使用LSTM模型预测A股走势 作者信息:edencfc 更新日期:2022 年 11 月 10 日 摘要: 本示例将会演示如何使用飞桨完成多变量输入的时序数据预测任务.这个 ...

  7. R语言时间序列(time series)分析实战:使用ARIMA模型预测时间序列

    R语言时间序列(time series)分析实战:使用ARIMA模型预测时间序列 目录

  8. prophet模型预测时间序列

    prophet模型预测时间序列 prophet:facebook开源的的一个时间序列预测算法. 原理:基于时间序列分解和机器学习的拟合来做的. 把时间序列 分成不同时间间隔 和 整体趋势的组合. 间隔 ...

  9. Python中利用LSTM模型进行时间序列预测分析

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...

最新文章

  1. [Python3网络爬虫开发实战] 1.7.1-Charles的安装
  2. python菜鸟教程h-Python 命令行参数
  3. 10没有基于策略的qos_WebRTC QoS | NACK 格式与发送策略
  4. 【数据结构与算法】之深入解析“二叉树展开为链表”的求解思路与算法示例
  5. 通过调色板(QPalette)将readonly为true的QLineEdit颜色设置为灰色
  6. PaperNotes(15)-图神经网络、PyG极简版入门笔记
  7. 《电路分析导论(原书第12版)》一2.8 导体和绝缘体
  8. Android 系统(179)--- .ko 加载失败
  9. sql 表变量 临时表_SQL表变量概述
  10. java实例摘要(二)
  11. Improving Opencv 2:The Core Functionality :How to scan images, lookup tables
  12. 服务器系统上1068错误,一个backup exec 2012的真实故障案例,服务无法启动1068
  13. win7自定义html为桌面,Win7系统如何自定义个性桌面?
  14. Tessellation细分曲面技术(DX11)
  15. python3.8安装pyltp
  16. 最新八个免费Logo设计工具灵感网站,帮你搞定logo设计难题!
  17. 图形《R数据可视化手册》中文PDF源代码+《R数据科学》中文PDF源代码
  18. tableau用数据分组_对数据进行分组
  19. java filer,java – Filer的原始元素是否有用?
  20. android 华为手机拍照,华为手机拍照不行?可能是你模式不对!

热门文章

  1. EEG Artifacts
  2. 除了 P 站,程序员在摸鱼时还喜欢上这些网站...
  3. Shell脚本语言笔记
  4. 2018春c语言程序设计答案,2018年C语言程序设计期末考试题两份附答案.doc
  5. rpcinfo Connection refused 错误解决办法
  6. matlab读取hdf和hdf5格式文件
  7. 文艺产业在人工智能赋能之下,催生出了新的样貌
  8. 判断mysql的关键字_MySQL关键字以及保留字
  9. mysql中distinct关键字_MySQL关键字Distinct的详细介绍
  10. android自定义控件之滚动广告条