公众号后台回复“图书“,了解更多号主新书内容


 CDA数据分析师 出品  

作者:真达、Mika

数据:真达  

【导读】

今天教大家用Python分析保险产品交叉销售和哪些因素有关。

今天的内容是一期Python实战训练,我们来手把手教你用Python分析保险产品交叉销售和哪些因素有关。

点击下方视频,先睹为快:

01

实战背景

首先介绍下实战的背景:

这次的数据集来自kaggle:

https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction

我们的客户是一家保险公司,最近新推出了一款汽车保险。现在他们的需要是建立一个模型,用来预测去年的投保人是否会对这款汽车保险感兴趣。

我们知道,保险单指的是,保险公司承诺为特定类型的损失、损害、疾病或死亡提供赔偿保证,客户则需要定期向保险公司支付一定的保险费。

这里再进一步说明一下。

例如,你每年要为20万的健康保险支付2000元的保险费。那么你肯定会想,保险公司只收取5000元的保费,这种情况下,怎么能承担如此高的住院费用呢? 这时,“概率”的概念就出现了。例如,像你一样,可能有100名客户每年支付2000元的保费,但当年住院的可能只有少数人,(比如2-3人),而不是所有人。通过这种方式,每个人都分担了其他人的风险。

和医疗保险一样,买了车险的话,每年都需要向保险公司支付一定数额的保险费,这样在车辆发生意外事故时,保险公司将向客户提供赔偿(称为“保险金额”)。

我们要做的就是建立模型,来预测客户是否对汽车保险感兴趣。这对保险公司来说是非常有帮助的,公司可以据此制定沟通策略,接触这些客户,并优化其商业模式和收入。

02

数据理解

为了预测客户是否对车辆保险感兴趣,我们需要了解一些客户信息 (性别、年龄等)、车辆(车龄、损坏情况)、保单(保费、采购渠道)等信息。

数据划分为训练集和测试集,训练数据包含381109笔客户资料,每笔客户资料包含12个字段,1个客户ID字段、10个输入字段及1个目标字段-Response是否响应(1代表感兴趣,0代表不感兴趣)。测试数据包含127037笔客户资料;字段个数与训练数据相同,目标字段没有值。字段的定义可参考下文。

下面我们开始吧!

03

数据读入和预览

回复关键字“保险

获取本期详细数据和代码

首先开始数据读入和预览。

# 数据整理
import numpy as np
import pandas as pd # 可视化
import matplotlib.pyplot as plt
import seaborn as sns
import plotly as py
import plotly.graph_objs as go
import plotly.express as px
pyplot = py.offline.plot
from exploratory_data_analysis import EDAnalysis # 自定义
# 读入训练集
train = pd.read_csv('../data/train.csv')
train.head()

# 读入测试集
test = pd.read_csv('../data/test.csv')
test.head()

print(train.info())
print('-' * 50)
print(test.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 381109 entries, 0 to 381108
Data columns (total 12 columns):#   Column                Non-Null Count   Dtype
---  ------                --------------   -----  0   id                    381109 non-null  int64  1   Gender                381109 non-null  object 2   Age                   381109 non-null  int64  3   Driving_License       381109 non-null  int64  4   Region_Code           381109 non-null  float645   Previously_Insured    381109 non-null  int64  6   Vehicle_Age           381109 non-null  object 7   Vehicle_Damage        381109 non-null  object 8   Annual_Premium        381109 non-null  float649   Policy_Sales_Channel  381109 non-null  float6410  Vintage               381109 non-null  int64  11  Response              381109 non-null  int64
dtypes: float64(3), int64(6), object(3)
memory usage: 34.9+ MB
None
--------------------------------------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 127037 entries, 0 to 127036
Data columns (total 11 columns):#   Column                Non-Null Count   Dtype
---  ------                --------------   -----  0   id                    127037 non-null  int64  1   Gender                127037 non-null  object 2   Age                   127037 non-null  int64  3   Driving_License       127037 non-null  int64  4   Region_Code           127037 non-null  float645   Previously_Insured    127037 non-null  int64  6   Vehicle_Age           127037 non-null  object 7   Vehicle_Damage        127037 non-null  object 8   Annual_Premium        127037 non-null  float649   Policy_Sales_Channel  127037 non-null  float6410  Vintage               127037 non-null  int64
dtypes: float64(3), int64(5), object(3)
memory usage: 10.7+ MB
None

04

探索性分析

下面,我们基于训练数据集进行探索性数据分析。

1. 描述性分析

首先对数据集中数值型属性进行描述性统计分析。

desc_table = train.drop(['id', 'Vehicle_Age'], axis=1).describe().T
desc_table

通过描述性分析后,可以得到以下结论。

从以上描述性分析结果可以得出:

  • 客户年龄:客户的年龄范围在20 ~ 85岁之间,平均年龄是38岁,青年群体居多;

  • 是否有驾照:99.89%客户都持有驾照;

  • 之前是否投保:45.82%的客户已经购买了车辆保险;

  • 年度保费:客户的保费范围在2630 ~ 540165之间,平均的保费金额是30564。

  • 往来时长:此数据基于过去一年的数据,客户的往来时间范围在10~299天之间,平均往来时长为154天。

  • 是否响应:平均来看,客户对车辆保险感兴趣的概率为12.25%。

2. 目标变量的分布

训练集共有381109笔客户资料,其中感兴趣的有46710人,占比12.3%,不感兴趣的有334399人,占比87.7%。

train['Response'].value_counts()
0    334399
1     46710
Name: Response, dtype: int64
values = train['Response'].value_counts().values.tolist()# 轨迹
trace1 = go.Pie(labels=['Not interested', 'Interested'], values=values,hole=.5,marker={'line': {'color': 'white', 'width': 1.3}})
# 轨迹列表
data = [trace1]
# 布局
layout = go.Layout(title=f'Distribution_ratio of Response', height=600)
# 画布
fig = go.Figure(data=data, layout=layout)
# 生成HTML
pyplot(fig, filename='./html/目标变量分布.html')

3. 性别因素

从条形图可以看出,男性的客户群体对汽车保险感兴趣的概率稍高,是13.84%,相较女性客户高出3个百分点。

pd.crosstab(train['Gender'], train['Response'])

# 实例类
eda = EDAnalysis(data=train, id_col='id', target='Response')# 柱形图
fig = eda.draw_bar_stack_cat(colname='Gender')
pyplot(fig, filename='./html/性别与是否感兴趣.html')

4. 之前是否投保

没有购买汽车保险的客户响应概率更高,为22.54%,有购买汽车保险的客户则没有这一需求,感兴趣的概率仅为0.09%。

pd.crosstab(train['Previously_Insured'], train['Response'])

fig = eda.draw_bar_stack_cat(colname='Previously_Insured')
pyplot(fig, filename='./html/之前是否投保与是否感兴趣.html')

5. 车龄因素

车龄越大,响应概率越高,大于两年的车龄感兴趣的概率最高,为29.37%,其次是1~2年车龄,概率为17.38%。小于1年的仅为4.37%。

6. 车辆损坏情况

车辆曾经损坏过的客户有较高的响应概率,为23.76%,相比之下,客户过去车辆没有损坏的响应概率仅为0.52%

7. 不同年龄

从直方图中可以看出,年龄较高的群体和较低的群体响应的概率较低,30~60岁之前的客户响应概率较高。

通过可视化探索,我们大致可以知道:

车龄在1年以上,之前有车辆损坏的情况出现,且未购买过车辆保险的客户有较高的响应概率。

05

数据预处理

此部分工作主要包含字段选择,数据清洗和数据编码,字段的处理如下:

  • Region_Code和Policy_Sales_Channel:分类数过多,且不易解读,删除;

  • Annual_Premium:异常值处理

  • Gender、Vehicle_Age、Vehicle_Damage:分类型数据转换为数值型编码

# 删除字段
train = train.drop(['Region_Code', 'Policy_Sales_Channel'], axis=1) # 盖帽法处理异常值
f_max = train['Annual_Premium'].mean() + 3*train['Annual_Premium'].std()
f_min = train['Annual_Premium'].mean() - 3*train['Annual_Premium'].std() train.loc[train['Annual_Premium'] > f_max, 'Annual_Premium'] = f_max
train.loc[train['Annual_Premium'] < f_min, 'Annual_Premium'] = f_min # 数据编码
train['Gender'] = train['Gender'].map({'Male': 1, 'Female': 0})
train['Vehicle_Damage'] = train['Vehicle_Damage'].map({'Yes': 1, 'No': 0})
train['Vehicle_Age'] = train['Vehicle_Age'].map({'< 1 Year': 0, '1-2 Year': 1, '> 2 Years': 2})
train.head()

测试集做相同的处理:

# 删除字段
test = test.drop(['Region_Code', 'Policy_Sales_Channel'], axis=1)
# 盖帽法处理
test.loc[test['Annual_Premium'] > f_max, 'Annual_Premium'] = f_max
test.loc[test['Annual_Premium'] < f_min, 'Annual_Premium'] = f_min # 数据编码
test['Gender'] = test['Gender'].map({'Male': 1, 'Female': 0})
test['Vehicle_Damage'] = test['Vehicle_Damage'].map({'Yes': 1, 'No': 0})
test['Vehicle_Age'] = test['Vehicle_Age'].map({'< 1 Year': 0, '1-2 Year': 1, '> 2 Years': 2})
test.head()

06

数据建模

我们选择使用以下几种模型进行建置,并比较模型的分类效能。

首先在将训练集划分为训练集和验证集,其中训练集用于训练模型,验证集用于验证模型效果。首先导入建模库:

# 建模
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from lightgbm import LGBMClassifier# 预处理
from sklearn.preprocessing import StandardScaler, MinMaxScaler# 模型评估
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, f1_score, roc_auc_score
# 划分特征和标签
X = train.drop(['id', 'Response'], axis=1)
y = train['Response'] # 划分训练集和验证集(分层抽样)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, stratify=y, random_state=0)
print(X_train.shape, X_val.shape, y_train.shape, y_val.shape)
(304887, 8) (76222, 8) (304887,) (76222,)
# 处理样本不平衡,对0类样本进行降采样
from imblearn.under_sampling import RandomUnderSamplerunder_model = RandomUnderSampler(sampling_strategy={0:133759, 1:37368}, random_state=0)
X_train, y_train = under_model.fit_sample(X_train, y_train)
# 保存一份极值标准化的数据
mms = MinMaxScaler()X_train_scaled = pd.DataFrame(mms.fit_transform(X_train), columns=x_under.columns)
X_val_scaled = pd.DataFrame(mms.transform(X_val), columns=x_under.columns)# 测试集
X_test = test.drop('id', axis=1)
X_test_scaled = pd.DataFrame(mms.transform(X_test), columns=X_test.columns)

1. KNN算法

# 建立knn
knn = KNeighborsClassifier(n_neighbors=3, n_jobs=-1)
knn.fit(X_train_scaled, y_train)y_pred = knn.predict(X_val_scaled)print('Simple KNeighborsClassifier accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple KNeighborsClassifier f1_score: %.3f' % (f1_score(y_val, y_pred)))
print('Simple KNeighborsClassifier roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred)))
Simple KNeighborsClassifier accuracy:0.807
Simple KNeighborsClassifier f1_score: 0.337
Simple KNeighborsClassifier roc_auc_score: 0.632
# 对测试集评估
test_y = knn.predict(X_test_scaled)
test_y[:5]
array([0, 0, 1, 0, 0], dtype=int64)

2. Logistic回归

# Logistic回归
lr = LogisticRegression()
lr.fit(X_train_scaled, y_train)y_pred = lr.predict(X_val_scaled)print('Simple LogisticRegression accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple LogisticRegression f1_score: %.3f' % (f1_score(y_val, y_pred)))
print('Simple LogisticRegression roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred)))
Simple LogisticRegression accuracy:0.863
Simple LogisticRegression f1_score: 0.156
Simple LogisticRegression roc_auc_score: 0.536

3. 决策树

# 决策树
dtc = DecisionTreeClassifier(max_depth=10, random_state=0)
dtc.fit(X_train, y_train)y_pred = dtc.predict(X_val) print('Simple DecisionTreeClassifier accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple DecisionTreeClassifier f1_score: %.3f' % (f1_score(y_val, y_pred)))
print('Simple DecisionTreeClassifier roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred)))
Simple DecisionTreeClassifier accuracy:0.849
Simple DecisionTreeClassifier f1_score: 0.310
Simple DecisionTreeClassifier roc_auc_score: 0.603

4. 随机森林

# 决策树
rfc = RandomForestClassifier(n_estimators=100, max_depth=10, n_jobs=-1)
rfc.fit(X_train, y_train)y_pred = rfc.predict(X_val) print('Simple RandomForestClassifier accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple RandomForestClassifier f1_score: %.3f' % (f1_score(y_val, y_pred)))
print('Simple RandomForestClassifier roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred)))
Simple RandomForestClassifier accuracy:0.870
Simple RandomForestClassifier f1_score: 0.177
Simple RandomForestClassifier roc_auc_score: 0.545

5. LightGBM

lgbm = LGBMClassifier(n_estimators=100, random_state=0)
lgbm.fit(X_train, y_train)y_pred = lgbm.predict(X_val)print('Simple LGBM accuracy: %.3f' % (accuracy_score(y_val, y_pred)))
print('Simple LGBM f1_score: %.3f' % (f1_score(y_val, y_pred)))
print('Simple LGBM roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred)))
Simple LGBM accuracy: 0.857
Simple LGBM f1_score: 0.290
Simple LGBM roc_auc_score: 0.591

综上,以f1-score作为评价标准的情况下,KNN算法有较好的分类效能,这可能是由于数据样本本身不平衡导致,后续可以通过其他类别不平衡的方式做进一步处理,同时可以通过参数调整的方式来优化其他模型,通过调整预测的门槛值来增加预测效能等其他方式。

◆ ◆ ◆  ◆ ◆
麟哥新书已经在京东上架了,我写了本书:《拿下Offer-数据分析师求职面试指南》,目前京东正在举行100-40活动,大家可以用相当于原价5折的预购价格购买,还是非常划算的:
数据森麟公众号的交流群已经建立,许多小伙伴已经加入其中,感谢大家的支持。大家可以在群里交流关于数据分析&数据挖掘的相关内容,还没有加入的小伙伴可以扫描下方管理员二维码,进群前一定要关注公众号奥,关注后让管理员帮忙拉进群,期待大家的加入。管理员二维码:猜你喜欢● 卧槽!原来爬取B站弹幕这么简单● 厉害了!麟哥新书登顶京东销量排行榜!● 笑死人不偿命的知乎沙雕问题排行榜
● 用Python扒出B站那些“惊为天人”的阿婆主!● 你相信逛B站也能学编程吗

实例 | 分析38万条数据,用Python分析保险产品交叉销售和哪些因素有关相关推荐

  1. Python 分析 9 万条数据告诉你复仇者联盟谁才是绝对 C 位!

    <复联 4>国内上映第十天,程序员的江湖里开始流传这样一个故事,即: 漫威宇宙,其实就讲了一件事情.整个宇宙就好比一个项目组.其中有一群叫作美国队长.钢铁侠.惊奇队长.浩克.索尔等人在维护 ...

  2. Python分析9万条数据告诉你复仇者联盟谁才是绝对C位

    作者 | 罗昭成 责编 | 唐小引 转载自CSDN(ID:CSDNnews) <复联 4>国内上映第十天,程序员的江湖里开始流传这样一个故事,即: 漫威宇宙,其实就讲了一件事情.整个宇宙就 ...

  3. 复仇者联盟谁才是绝对 C 位?Python分析9万条数据告诉你答案

    作者 | 罗昭成 责编 | 唐小引 <复联 4>国内上映第十天,程序员的江湖里开始流传这样一个故事,即:漫威宇宙,其实就讲了一件事情.整个宇宙就好比一个项目组.其中有一群叫作美国队长.钢铁 ...

  4. EDG夺冠,用爬虫+数据分析+自然语言处理(情感分析)+数据可视化分析3万条数据:粉丝都疯了(唯一原创)

    原创不易,本文禁止抄袭.转载,违权必究! 目录 一.EDG夺冠信息 二.实战目标 2.1 网络爬虫 2.2 数据可视化(词云图) 2.3 自然语言处理(情感分析) 三.bilibili接口分析 四.编 ...

  5. python的歌曲评论数据分析_用Python分析44万条数据,揭秘如何成为网易云音乐评论区的网红段子手...

    有个段子讲"十年文案老司机,不如网易评论区,网易文豪遍地走,评论全部单身狗",网易云音乐的评论区也一直都是各类文案大神的聚集地. 那么我们普通用户到底如何成为网易云音乐评论里的热评 ...

  6. 5 多数据save_[Python] 通过采集两万条数据,对无名之辈影评分析

    点击上方"Python技术之巅",马上关注 真爱,请置顶或星标 一.说明 本文主要讲述采集猫眼电影用户评论进行分析,相关爬虫采集程序可以爬取多个电影评论. 运行环境:Win10/P ...

  7. 基于python的影评数据分析_[Python] 通过采集两万条数据,对《无名之辈》影评分析...

    一.说明 本文主要讲述采集猫眼电影用户评论进行分析,相关爬虫采集程序可以爬取多个电影评论. 运行环境:Win10/Python3.5. 分析工具:jieba.wordcloud.pyecharts.m ...

  8. 我们用Python分析了B站4万条数据评论,揭秘本山大叔《念诗之王》大热原因!...

    来源:恋习Python 本文约2000字,建议阅读10分钟. 我们通过Python大法通过获取B站:[春晚鬼畜]赵本山:我就是念诗之王!4万条数据评论,与大家一起看看其背后火起来的原因. 1990年本 ...

  9. [Python] 通过采集两万条数据,对《无名之辈》影评分析

    一.说明 本文主要讲述采集猫眼电影用户评论进行分析,相关爬虫采集程序可以爬取多个电影评论. 运行环境:Win10/Python3.5. 分析工具:jieba.wordcloud.pyecharts.m ...

最新文章

  1. 交换机SPAN功能配置
  2. ISA 2006 允许使用QQ
  3. php mysql 正则表达式_MYSQL使用正则表达式过滤数据_MySQL
  4. opengl三维图形绘制_Python matplotlib绘图示例 - 绘制三维图形
  5. sqlserver如何从周一计算周_纯零基础,花10周时间,完全搞定Python,有没有可能?...
  6. 腾讯视频怎么打开个人直播后台播放功能
  7. loaded the ViewController nib but the view outlet was not set. 处理方式
  8. Win10系统如何共享文件夹,教你怎么操作
  9. 个性化制作nodemcu-firmware(esp8266/esp8285 固件制作)----包含lua程序bin的制作
  10. csdn笔记怎么用看这里
  11. 金融计算器 android,TVM金融计算器
  12. python贴吧签到多账号版本最新可用
  13. matlab format rat,format rat
  14. 人工智能(AI)真的会带来大规模失业吗?
  15. 手机摄像头的等效焦距
  16. oracle escape关键字用法
  17. 华为 BGP协议基础配置与总结
  18. 前端面试查漏补缺--(三) 跨域及常见解决办法
  19. linux中的chmod命令详细介绍、使用及实例
  20. 解决因为在此系统上禁止运行脚本。(的问题)

热门文章

  1. java标签添加图片_Java添加图片(标签)
  2. C语言全网最详细的分支和循环语句讲解
  3. 唐福林:新浪微博的Redis大数据之路
  4. SEO究竟是什么?SEO的相关基础概念介绍
  5. 2022中国深圳国际医疗器械博览会
  6. 分享:Java 开发精美艺术二维码
  7. brpc源码学习(六)- brpc server 端整体流程
  8. Neo4j 完整版安装——neo4j-3.5.6
  9. 风雨哈佛路,我在折戟沉沙的路上浴火重生
  10. 投资理财的十大经典电影