目录

1 在设备树中描述网卡中断

2 dm9dev9000c.c

3 在设备树中描述触摸屏中断


1 在设备树中描述网卡中断

    srom-cs4@20000000 {compatible = "simple-bus";#address-cells = <1>;#size-cells = <1>;reg = <0x20000000 0x8000000>;ranges;ethernet@20000000 {compatible = "davicom,dm9000";reg = <0x20000000 0x2 0x20000004 0x2>;interrupt-parent = <&gpf>;interrupts = <7 IRQ_TYPE_EDGE_RISING>;local-mac-address = [00 00 de ad be ef];davicom,no-eeprom;};};

ethernet@2000000节点位于srom-cs4@20000000节点下面,srom-cs4@20000000节点的属性是simple-bus,对于simple-bus下面的子节点,他也会被创建为一个平台设备,它的平台设备里面compatible是"davicom,dm9000",我们以后将会根据这个值来找到他对应的驱动程序,然后我们需要修改驱动程序,为这个设备节点添加一个platform-driver,在platform-driver的probe函数里面把中断号7给确定下来。

2 dm9dev9000c.c

我们可以参考之前的按键驱动来修改,

static const struct of_device_id of_match_buttons[] = {{ .compatible = "jz2440_button", .data = NULL },{ /* sentinel */ }
};struct platform_driver buttons_drv = {.probe     = buttons_probe,.remove        = buttons_remove,.driver       = {.name   = "mybuttons",.of_match_table = of_match_buttons, /* 能支持哪些来自于dts的platform_device */}
};static int buttons_init(void)
{platform_driver_register(&buttons_drv);return 0;
}static void buttons_exit(void)
{platform_driver_unregister(&buttons_drv);
}module_init(buttons_init);
module_exit(buttons_exit);
MODULE_LICENSE("GPL");

我们修改成下面的代码

static const struct of_device_id of_match_dm9000[] = {{ .compatible = "davicom,dm9000", .data = NULL },{ /* sentinel */ }
};struct platform_driver dm9000_drv = {.probe      = dm9000drv_probe,.remove      = dm9000drv_remove,.driver     = {.name   = "dm9000",.of_match_table = of_match_dm9000, /* 能支持哪些来自于dts的platform_device */}
};static int dm9000drv_init(void)
{platform_driver_register(&dm9000_drv);return 0;
}static void dm9000drv_exit(void)
{platform_driver_unregister(&dm9000_drv);
}module_init(dm9000drv_init);
module_exit(dm9000drv_exit);
MODULE_LICENSE("GPL");

接下来我们要实现dm9000drv_probe,然后在这个函数里面确定中断号并调用之前的入口函数,我们仍然仿照之前按键的probe函数

static int buttons_probe(struct platform_device *pdev)
{struct device *dev = &pdev->dev;       struct device_node *dp_node = dev->of_node;struct resource      *res;int i;for (i = 0; i < sizeof(pins_desc)/sizeof(pins_desc[0]); i++){/* 根据platform_device的资源进行获得中断号,触发类型 */res = platform_get_resource(pdev, IORESOURCE_IRQ, i);if (res) {pins_desc[i].irq  = res->start;printk("get irq %d\n", pins_desc[i].irq);}else {printk("can not get irq res for eint0\n");return -1;}pins_desc[i].pin = of_get_named_gpio(dp_node, "eint-pins", i);printk("pins_desc[%d].pin = %d\n", i, pins_desc[i].pin);}return sixth_drv_init();
}static int buttons_remove(struct platform_device *pdev)
{sixth_drv_exit();return 0;
}

改成下面的样子

static int dm9000drv_probe(struct platform_device *pdev)
{struct device *dev = &pdev->dev;       struct device_node *dp_node = dev->of_node;struct resource      *res;int i;res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);if (res) {irq = res->start;printk("get dm9000 irq %d\n", irq);}else {printk("can not get irq res for dm9000\n");return -1;}return dm9000c_init();
}

修改后的完整的dm9dev9000c.c如下

/*dm9ks.c: Version 2.08 2007/02/12 A Davicom DM9000/DM9010 ISA NIC fast Ethernet driver for Linux.This program is free software; you can redistribute it and/ormodify it under the terms of the GNU General Public Licenseas published by the Free Software Foundation; either version 2of the License, or (at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.(C)Copyright 1997-2007 DAVICOM Semiconductor,Inc. All Rights Reserved.V2.00 Spenser - 01/10/2005- Modification for PXA270 MAINSTONE.- Modified dmfe_tx_done().- Add dmfe_timeout().
V2.01   10/07/2005  -Modified dmfe_timer()-Dected network speed 10/100M
V2.02   10/12/2005  -Use link change to chage db->Speed-dmfe_open() wait for Link OK
V2.03   11/22/2005  -Power-off and Power-on PHY in dmfe_init_dm9000()-support IOL
V2.04   12/13/2005  -delay 1.6s between power-on and power-off in dmfe_init_dm9000()-set LED mode 1 in dmfe_init_dm9000()-add data bus driving capability in dmfe_init_dm9000()(optional)
10/3/2006   -Add DM8606 read/write function by MDC and MDIO
V2.06   01/03/2007  -CONT_RX_PKT_CNT=0xFFFF-modify dmfe_tx_done function-check RX FIFO pointer-if using physical address, re-define I/O function-add db->cont_rx_pkt_cnt=0 at the front of dmfe_packet_receive()
V2.08   02/12/2007  -module parameter macro2.4  MODULE_PARM2.6  module_param-remove #include <linux/config>-fix dmfe_interrupt for kernel 2.6.20
V2.09 05/24/2007    -support ethtool and mii-tool
05/30/2007  -fix the driver bug when ifconfig eth0 (-)promisc and (-)allmulti.
06/05/2007  -fix dm9000b issue(ex. 10M TX idle=65mA, 10M harmonic)-add flow control function (option)
10/01/2007  -Add #include <asm/uaccess.h>-Modyfy dmfe_do_ioctl for kernel 2.6.7
11/23/2007  -Add TDBUG to check TX FIFO pointer shift- Remove check_rx_ready() - Add #define CHECKSUM to modify CHECKSUM function
12/20/2007  -Modify TX timeout routine(+)check TCR&0x01 *///#define CHECKSUM
//#define TDBUG     /* check TX FIFO pointer */
//#define RDBUG   /* check RX FIFO pointer */
//#define DM8606#define DRV_NAME    "dm9KS"
#define DRV_VERSION "2.09"
#define DRV_RELDATE "2007-11-22"#ifdef MODVERSIONS
#include <linux/modversions.h>
#endif//#include <linux/config.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/version.h>
#include <asm/dma.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <asm/uaccess.h>
#include <linux/interrupt.h>#ifdef CONFIG_ARCH_MAINSTONE
#include <asm/io.h>
#include <asm/hardware.h>
#include <asm/irq.h>
#endif#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/io.h>
//#include <asm/arch-s3c2410/regs-mem.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>#include "dm9000.h"/* Board/System/Debug information/definition ---------------- */#define DM9KS_ID       0x90000A46
#define DM9010_ID       0x90100A46
/*-------register name-----------------------*/
#define DM9KS_NCR       0x00    /* Network control Reg.*/
#define DM9KS_NSR       0x01    /* Network Status Reg.*/
#define DM9KS_TCR       0x02    /* TX control Reg.*/
#define DM9KS_RXCR      0x05    /* RX control Reg.*/
#define DM9KS_BPTR      0x08
#define DM9KS_FCTR      0x09
#define DM9KS_FCR           0x0a
#define DM9KS_EPCR      0x0b
#define DM9KS_EPAR      0x0c
#define DM9KS_EPDRL     0x0d
#define DM9KS_EPDRH     0x0e
#define DM9KS_GPR           0x1f    /* General purpose register */
#define DM9KS_CHIPR     0x2c
#define DM9KS_TCR2      0x2d
#define DM9KS_SMCR      0x2f    /* Special Mode Control Reg.*/
#define DM9KS_ETXCSR    0x30    /* Early Transmit control/status Reg.*/
#define DM9KS_TCCR      0x31    /* Checksum cntrol Reg. */
#define DM9KS_RCSR      0x32    /* Receive Checksum status Reg.*/
#define DM9KS_BUSCR     0x38
#define DM9KS_MRCMDX    0xf0
#define DM9KS_MRCMD     0xf2
#define DM9KS_MDRAL     0xf4
#define DM9KS_MDRAH     0xf5
#define DM9KS_MWCMD     0xf8
#define DM9KS_MDWAL     0xfa
#define DM9KS_MDWAH     0xfb
#define DM9KS_TXPLL     0xfc
#define DM9KS_TXPLH     0xfd
#define DM9KS_ISR           0xfe
#define DM9KS_IMR           0xff
/*---------------------------------------------*/
#define DM9KS_REG05     0x30    /* SKIP_CRC/SKIP_LONG */
#define DM9KS_REGFF     0xA3    /* IMR */
#define DM9KS_DISINTR   0x80#define DM9KS_PHY           0x40    /* PHY address 0x01 */
#define DM9KS_PKT_RDY       0x01    /* Packet ready to receive *//* Added for PXA of MAINSTONE */
#ifdef CONFIG_ARCH_MAINSTONE
#include <asm/arch/mainstone.h>
#define DM9KS_MIN_IO        (MST_ETH_PHYS + 0x300)
#define DM9KS_MAX_IO            (MST_ETH_PHYS + 0x370)
#define DM9K_IRQ        MAINSTONE_IRQ(3)
#else
#define DM9KS_MIN_IO        0x300
#define DM9KS_MAX_IO        0x370
#define DM9KS_IRQ       3
#endif#define DM9KS_VID_L       0x28
#define DM9KS_VID_H     0x29
#define DM9KS_PID_L     0x2A
#define DM9KS_PID_H     0x2B#define DM9KS_RX_INTR       0x01
#define DM9KS_TX_INTR       0x02
#define DM9KS_LINK_INTR     0x20#define DM9KS_DWORD_MODE    1
#define DM9KS_BYTE_MODE     2
#define DM9KS_WORD_MODE     0#define TRUE           1
#define FALSE           0
/* Number of continuous Rx packets */
#define CONT_RX_PKT_CNT     0xFFFF#define DMFE_TIMER_WUT  jiffies+(HZ*5)   /* timer wakeup time : 5 second */#ifdef DM9KS_DEBUG
#define DMFE_DBUG(dbug_now, msg, vaule)\
if (dmfe_debug||dbug_now) printk(KERN_ERR "dmfe: %s %x\n", msg, vaule)
#else
#define DMFE_DBUG(dbug_now, msg, vaule)\
if (dbug_now) printk(KERN_ERR "dmfe: %s %x\n", msg, vaule)
#endif#ifndef CONFIG_ARCH_MAINSTONE
#pragma pack(push, 1)
#endiftypedef struct _RX_DESC
{u8 rxbyte;u8 status;u16 length;
}RX_DESC;typedef union{u8 buf[4];RX_DESC desc;
} rx_t;
#ifndef CONFIG_ARCH_MAINSTONE
#pragma pack(pop)
#endifenum DM9KS_PHY_mode {DM9KS_10MHD   = 0, DM9KS_100MHD  = 1, DM9KS_10MFD   = 4,DM9KS_100MFD  = 5, DM9KS_AUTO    = 8,
};/* Structure/enum declaration ------------------------------- */
typedef struct board_info { u32 io_addr;/* Register I/O base address */u32 io_data;/* Data I/O address */u8 op_mode;/* PHY operation mode */u8 io_mode;/* 0:word, 2:byte */u8 Speed;    /* current speed */u8 chip_revision;int rx_csum;/* 0:disable, 1:enable */u32 reset_counter;/* counter: RESET */ u32 reset_tx_timeout;/* RESET caused by TX Timeout */int tx_pkt_cnt;int cont_rx_pkt_cnt;/* current number of continuos rx packets  */struct net_device_stats stats;struct timer_list timer;unsigned long timer_data;unsigned char srom[128];spinlock_t lock;struct mii_if_info mii;
} board_info_t;
/* Global variable declaration ----------------------------- */
/*static int dmfe_debug = 0;*/
static struct net_device * dmfe_dev = NULL;
static struct ethtool_ops dmfe_ethtool_ops;
/* For module input parameter */
static int mode       = DM9KS_AUTO;
static int media_mode = DM9KS_AUTO;
static int  irq        = DM9KS_IRQ;
static int iobase     = DM9KS_MIN_IO;#if 0  // use physical address; Not virtual address
#ifdef outb#undef outb
#endif
#ifdef outw#undef outw
#endif
#ifdef outl#undef outl
#endif
#ifdef inb#undef inb
#endif
#ifdef inw#undef inw
#endif
#ifdef inl#undef inl
#endif
void outb(u8 reg, u32 ioaddr)
{(*(volatile u8 *)(ioaddr)) = reg;
}
void outw(u16 reg, u32 ioaddr)
{(*(volatile u16 *)(ioaddr)) = reg;
}
void outl(u32 reg, u32 ioaddr)
{(*(volatile u32 *)(ioaddr)) = reg;
}
u8 inb(u32 ioaddr)
{return (*(volatile u8 *)(ioaddr));
}
u16 inw(u32 ioaddr)
{return (*(volatile u16 *)(ioaddr));
}
u32 inl(u32 ioaddr)
{return (*(volatile u32 *)(ioaddr));
}
#endif/* function declaration ------------------------------------- */
int dmfe_probe1(struct net_device *);
static int dmfe_open(struct net_device *);
static int dmfe_start_xmit(struct sk_buff *, struct net_device *);
static void dmfe_tx_done(unsigned long);
static void dmfe_packet_receive(struct net_device *);
static int dmfe_stop(struct net_device *);
static struct net_device_stats * dmfe_get_stats(struct net_device *);
static int dmfe_do_ioctl(struct net_device *, struct ifreq *, int);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
static void dmfe_interrupt(int , void *, struct pt_regs *);
#else#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)static irqreturn_t dmfe_interrupt(int , void *, struct pt_regs *);#elsestatic irqreturn_t dmfe_interrupt(int irq, void *dev_id);/* for kernel 2.6.20 */#endif
#endif
static void dmfe_timer(struct timer_list *t);
static void dmfe_init_dm9000(struct net_device *);
static unsigned long cal_CRC(unsigned char *, unsigned int, u8);
u8 ior(board_info_t *, int);
void iow(board_info_t *, int, u8);
static u16 phy_read(board_info_t *, int);
static void phy_write(board_info_t *, int, u16);
static u16 read_srom_word(board_info_t *, int);
static void dm9000_hash_table(struct net_device *);
static void dmfe_timeout(struct net_device *);
static void dmfe_reset(struct net_device *);
static int mdio_read(struct net_device *, int, int);
static void mdio_write(struct net_device *, int, int, int);
static void dmfe_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
static int dmfe_get_settings(struct net_device *, struct ethtool_cmd *);
static int dmfe_set_settings(struct net_device *, struct ethtool_cmd *);
static u32 dmfe_get_link(struct net_device *);
static int dmfe_nway_reset(struct net_device *);
static uint32_t dmfe_get_rx_csum(struct net_device *);
static uint32_t dmfe_get_tx_csum(struct net_device *);
static int dmfe_set_rx_csum(struct net_device *, uint32_t );
static int dmfe_set_tx_csum(struct net_device *, uint32_t );#ifdef DM8606
#include "dm8606.h"
#endif//DECLARE_TASKLET(dmfe_tx_tasklet,dmfe_tx_done,0);/* DM9000 network baord routine ---------------------------- *//*Search DM9000 board, allocate space and register it
*/struct net_device * __init dmfe_probe(void)
{struct net_device *dev;int err;DMFE_DBUG(0, "dmfe_probe()",0);#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)dev = init_etherdev(NULL, sizeof(struct board_info));//ether_setup(dev);
#elsedev= alloc_etherdev(sizeof(struct board_info));
#endifif(!dev)return ERR_PTR(-ENOMEM);//SET_MODULE_OWNER(dev);err = dmfe_probe1(dev);if (err)goto out;
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)err = register_netdev(dev);if (err)goto out1;
#endifreturn dev;
out1:release_region(dev->base_addr,2);
out:
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)kfree(dev);
#elsefree_netdev(dev);
#endifreturn ERR_PTR(err);
}static const struct net_device_ops dm9k_netdev_ops = {.ndo_open       = dmfe_open,.ndo_stop      = dmfe_stop,.ndo_start_xmit        = dmfe_start_xmit,.ndo_tx_timeout      = dmfe_timeout,.ndo_set_rx_mode    = dm9000_hash_table,.ndo_do_ioctl      = dmfe_do_ioctl,.ndo_change_mtu        = eth_change_mtu,.ndo_get_stats      = dmfe_get_stats,//.ndo_set_features = dm9000_set_features,.ndo_validate_addr   = eth_validate_addr,.ndo_set_mac_address   = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER.ndo_poll_controller   = dm9000_poll_controller,
#endif
};int __init dmfe_probe1(struct net_device *dev)
{struct board_info *db;    /* Point a board information structure */u32 id_val;u16 i, dm9000_found = FALSE;u8 MAC_addr[6]={0x00,0x60,0x6E,0x33,0x44,0x55};u8 HasEEPROM=0,chip_info;DMFE_DBUG(0, "dmfe_probe1()",0);/* Search All DM9000 serial NIC */do {outb(DM9KS_VID_L, iobase); /* DM9000C的索引寄存器(cmd引脚为0) */id_val = inb(iobase + 4);  /* 读DM9000C的数据寄存器(cmd引脚为1) */outb(DM9KS_VID_H, iobase);id_val |= inb(iobase + 4) << 8;outb(DM9KS_PID_L, iobase);id_val |= inb(iobase + 4) << 16;outb(DM9KS_PID_H, iobase);id_val |= inb(iobase + 4) << 24;if (id_val == DM9KS_ID || id_val == DM9010_ID) {/* Request IO from system */if(!request_region(iobase, 2, dev->name))return -ENODEV;printk(KERN_ERR"<DM9KS> I/O: %x, VID: %x \n",iobase, id_val);dm9000_found = TRUE;/* Allocated board information structure */db = netdev_priv(dev);memset(db, 0, sizeof(struct board_info));dmfe_dev    = dev;db->io_addr  = iobase;db->io_data = iobase + 4;   db->chip_revision = ior(db, DM9KS_CHIPR);chip_info = ior(db,0x43);/* thisway.diy@163.com *///if((db->chip_revision!=0x1A) || ((chip_info&(1<<5))!=0) || ((chip_info&(1<<2))!=1)) return -ENODEV;/* driver system function */              dev->netdev_ops  = &dm9k_netdev_ops;dev->base_addr       = iobase;dev->irq       = irq;//dev->open       = &dmfe_open;//dev->hard_start_xmit     = &dmfe_start_xmit;dev->watchdog_timeo  = 5*HZ;    //dev->tx_timeout        = dmfe_timeout;//dev->stop      = &dmfe_stop;//dev->get_stats       = &dmfe_get_stats;//dev->set_multicast_list = &dm9000_hash_table;//dev->do_ioctl        = &dmfe_do_ioctl;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,28)dev->ethtool_ops = &dmfe_ethtool_ops;
#endif
#ifdef CHECKSUM//dev->features |=  NETIF_F_IP_CSUM;dev->features |=  NETIF_F_IP_CSUM|NETIF_F_SG;
#endifdb->mii.dev = dev;db->mii.mdio_read = mdio_read;db->mii.mdio_write = mdio_write;db->mii.phy_id = 1;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20)db->mii.phy_id_mask = 0x1F; db->mii.reg_num_mask = 0x1F;
#endif//db->msg_enable =(debug == 0 ? DMFE_DEF_MSG_ENABLE : ((1 << debug) - 1));/* Read SROM content */for (i=0; i<64; i++)((u16 *)db->srom)[i] = read_srom_word(db, i);/* Get the PID and VID from EEPROM to check */id_val = (((u16 *)db->srom)[4])|(((u16 *)db->srom)[5]<<16); printk("id_val=%x\n", id_val);if (id_val == DM9KS_ID || id_val == DM9010_ID) HasEEPROM =1;/* Set Node Address */for (i=0; i<6; i++){if (HasEEPROM) /* use EEPROM */dev->dev_addr[i] = db->srom[i];else    /* No EEPROM */dev->dev_addr[i] = MAC_addr[i];}}//end of if()iobase += 0x10;}while(!dm9000_found && iobase <= DM9KS_MAX_IO);return dm9000_found ? 0:-ENODEV;
}/*Open the interface.The interface is opened whenever "ifconfig" actives it.
*/
static int dmfe_open(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);u8 reg_nsr;int i;DMFE_DBUG(0, "dmfe_open", 0);/* thisway.diy@163.com */if (request_irq(dev->irq,&dmfe_interrupt, IRQF_TRIGGER_RISING,dev->name,dev)) return -EAGAIN;/* Initilize DM910X board */dmfe_init_dm9000(dev);
#ifdef DM8606// control DM8606printk("[8606]reg0=0x%04x\n",dm8606_read(db,0));printk("[8606]reg1=0x%04x\n",dm8606_read(db,0x1));
#endif /* Init driver variable */db->reset_counter   = 0;db->reset_tx_timeout    = 0;db->cont_rx_pkt_cnt = 0;/* check link state and media speed */db->Speed =10;i=0;do {reg_nsr = ior(db,DM9KS_NSR);if(reg_nsr & 0x40) /* link OK!! */{/* wait for detected Speed */mdelay(200);reg_nsr = ior(db,DM9KS_NSR);if(reg_nsr & 0x80)db->Speed =10;elsedb->Speed =100;break;}i++;mdelay(1);}while(i<3000);    /* wait 3 second  *///printk("i=%d  Speed=%d\n",i,db->Speed);    /* set and active a timer process *///init_timer(&db->timer);timer_setup(&db->timer, dmfe_timer, 0);db->timer.expires  = DMFE_TIMER_WUT;db->timer_data         = (unsigned long)dev;
//  db->timer.function   = &dmfe_timer;add_timer(&db->timer);    //Move to DM9000 initiallization was finished.netif_start_queue(dev);return 0;
}/* Set PHY operationg mode
*/
static void set_PHY_mode(board_info_t *db)
{
#ifndef DM8606u16 phy_reg0 = 0x1000;/* Auto-negotiation*/u16 phy_reg4 = 0x01e1;if ( !(db->op_mode & DM9KS_AUTO) ) // op_mode didn't auto sense */{ switch(db->op_mode) {case DM9KS_10MHD:  phy_reg4 = 0x21; phy_reg0 = 0x1000;break;case DM9KS_10MFD:  phy_reg4 = 0x41; phy_reg0 = 0x1100;break;case DM9KS_100MHD: phy_reg4 = 0x81; phy_reg0 = 0x3000;break;case DM9KS_100MFD: phy_reg4 = 0x101; phy_reg0 = 0x3100;break;default: break;} // end of switch} // end of if
#ifdef FLOW_CONTROLphy_write(db, 4, phy_reg4|(1<<10));
#elsephy_write(db, 4, phy_reg4);
#endif //end of FLOW_CONTROLphy_write(db, 0, phy_reg0|0x200);
#else/* Fiber mode */phy_write(db, 16, 0x4014);phy_write(db, 0, 0x2100);
#endif //end of DM8606if (db->chip_revision == 0x1A){//set 10M TX idle =65mA (TX 100% utility is 160mA)phy_write(db,20, phy_read(db,20)|(1<<11)|(1<<10));//:fix harmonic//For short code://PHY_REG 27 (1Bh) <- 0000hphy_write(db, 27, 0x0000);//PHY_REG 27 (1Bh) <- AA00hphy_write(db, 27, 0xaa00);//PHY_REG 27 (1Bh) <- 0017hphy_write(db, 27, 0x0017);//PHY_REG 27 (1Bh) <- AA17hphy_write(db, 27, 0xaa17);//PHY_REG 27 (1Bh) <- 002Fhphy_write(db, 27, 0x002f);//PHY_REG 27 (1Bh) <- AA2Fhphy_write(db, 27, 0xaa2f);//PHY_REG 27 (1Bh) <- 0037hphy_write(db, 27, 0x0037);//PHY_REG 27 (1Bh) <- AA37hphy_write(db, 27, 0xaa37);//PHY_REG 27 (1Bh) <- 0040hphy_write(db, 27, 0x0040);//PHY_REG 27 (1Bh) <- AA40hphy_write(db, 27, 0xaa40);//For long code://PHY_REG 27 (1Bh) <- 0050hphy_write(db, 27, 0x0050);//PHY_REG 27 (1Bh) <- AA50hphy_write(db, 27, 0xaa50);//PHY_REG 27 (1Bh) <- 006Bhphy_write(db, 27, 0x006b);//PHY_REG 27 (1Bh) <- AA6Bhphy_write(db, 27, 0xaa6b);//PHY_REG 27 (1Bh) <- 007Dhphy_write(db, 27, 0x007d);//PHY_REG 27 (1Bh) <- AA7Dhphy_write(db, 27, 0xaa7d);//PHY_REG 27 (1Bh) <- 008Dhphy_write(db, 27, 0x008d);//PHY_REG 27 (1Bh) <- AA8Dhphy_write(db, 27, 0xaa8d);//PHY_REG 27 (1Bh) <- 009Chphy_write(db, 27, 0x009c);//PHY_REG 27 (1Bh) <- AA9Chphy_write(db, 27, 0xaa9c);//PHY_REG 27 (1Bh) <- 00A3hphy_write(db, 27, 0x00a3);//PHY_REG 27 (1Bh) <- AAA3hphy_write(db, 27, 0xaaa3);//PHY_REG 27 (1Bh) <- 00B1hphy_write(db, 27, 0x00b1);//PHY_REG 27 (1Bh) <- AAB1hphy_write(db, 27, 0xaab1);//PHY_REG 27 (1Bh) <- 00C0hphy_write(db, 27, 0x00c0);//PHY_REG 27 (1Bh) <- AAC0hphy_write(db, 27, 0xaac0);//PHY_REG 27 (1Bh) <- 00D2hphy_write(db, 27, 0x00d2);//PHY_REG 27 (1Bh) <- AAD2hphy_write(db, 27, 0xaad2);//PHY_REG 27 (1Bh) <- 00E0hphy_write(db, 27, 0x00e0);//PHY_REG 27 (1Bh) <- AAE0hphy_write(db, 27, 0xaae0);//PHY_REG 27 (1Bh) <- 0000hphy_write(db, 27, 0x0000);}
}/* Initilize dm9000 board
*/
static void dmfe_init_dm9000(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);DMFE_DBUG(0, "dmfe_init_dm9000()", 0);spin_lock_init(&db->lock);iow(db, DM9KS_GPR, 0);   /* GPR (reg_1Fh)bit GPIO0=0 pre-activate PHY */mdelay(20);     /* wait for PHY power-on ready *//* do a software reset and wait 20us */iow(db, DM9KS_NCR, 3);udelay(20);       /* wait 20us at least for software reset ok */iow(db, DM9KS_NCR, 3);    /* NCR (reg_00h) bit[0] RST=1 & Loopback=1, reset on */udelay(20);        /* wait 20us at least for software reset ok *//* I/O mode */db->io_mode = ior(db, DM9KS_ISR) >> 6; /* ISR bit7:6 keeps I/O mode *//* Set PHY */db->op_mode = media_mode;set_PHY_mode(db);/* Program operating register */iow(db, DM9KS_NCR, 0);iow(db, DM9KS_TCR, 0);     /* TX Polling clear */iow(db, DM9KS_BPTR, 0x3f);    /* Less 3kb, 600us */iow(db, DM9KS_SMCR, 0);        /* Special Mode */iow(db, DM9KS_NSR, 0x2c); /* clear TX status */iow(db, DM9KS_ISR, 0x0f);  /* Clear interrupt status */iow(db, DM9KS_TCR2, 0x80);  /* Set LED mode 1 */if (db->chip_revision == 0x1A){ /* Data bus current driving/sinking capability  */iow(db, DM9KS_BUSCR, 0x01);  /* default: 2mA */}
#ifdef FLOW_CONTROLiow(db, DM9KS_BPTR, 0x37);iow(db, DM9KS_FCTR, 0x38);iow(db, DM9KS_FCR, 0x29);
#endif#ifdef DM8606iow(db,0x34,1);
#endifif (dev->features & NETIF_F_HW_CSUM){printk(KERN_INFO "DM9KS:enable TX checksum\n");iow(db, DM9KS_TCCR, 0x07);   /* TX UDP/TCP/IP checksum enable */}if (db->rx_csum){printk(KERN_INFO "DM9KS:enable RX checksum\n");iow(db, DM9KS_RCSR, 0x02); /* RX checksum enable */}#ifdef ETRANS/*If TX loading is heavy, the driver can try to anbel "early transmit".The programmer can tune the "Early Transmit Threshold" to get the optimization. (DM9KS_ETXCSR.[1-0])Side Effect: It will happen "Transmit under-run". When TX under-runalways happens, the programmer can increase the value of "Early Transmit Threshold". */iow(db, DM9KS_ETXCSR, 0x83);
#endif/* Set address filter table */dm9000_hash_table(dev);/* Activate DM9000/DM9010 */iow(db, DM9KS_IMR, DM9KS_REGFF); /* Enable TX/RX interrupt mask */iow(db, DM9KS_RXCR, DM9KS_REG05 | 1);  /* RX enable *//* Init Driver variable */db->tx_pkt_cnt      = 0;netif_carrier_on(dev);}/*Hardware start transmission.Send a packet to media from the upper layer.
*/
static int dmfe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{board_info_t *db = netdev_priv(dev);char * data_ptr;int i, tmplen;u16 MDWAH, MDWAL;#ifdef TDBUG /* check TX FIFO pointer */u16 MDWAH1, MDWAL1;u16 tx_ptr;#endifDMFE_DBUG(0, "dmfe_start_xmit", 0);if (db->chip_revision != 0x1A){   if(db->Speed == 10){if (db->tx_pkt_cnt >= 1) return 1;}else{if (db->tx_pkt_cnt >= 2) return 1;}}elseif (db->tx_pkt_cnt >= 2) return 1;/* packet counting */db->tx_pkt_cnt++;db->stats.tx_packets++;db->stats.tx_bytes+=skb->len;if (db->chip_revision != 0x1A){if (db->Speed == 10){if (db->tx_pkt_cnt >= 1) netif_stop_queue(dev);}else{if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);}}elseif (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);     /* Disable all interrupt */iow(db, DM9KS_IMR, DM9KS_DISINTR);MDWAH = ior(db,DM9KS_MDWAH);MDWAL = ior(db,DM9KS_MDWAL);/* Set TX length to reg. 0xfc & 0xfd */iow(db, DM9KS_TXPLL, (skb->len & 0xff));iow(db, DM9KS_TXPLH, (skb->len >> 8) & 0xff);/* Move data to TX SRAM */data_ptr = (char *)skb->data;outb(DM9KS_MWCMD, db->io_addr); // Write data into SRAM triggerswitch(db->io_mode){case DM9KS_BYTE_MODE:for (i = 0; i < skb->len; i++)outb((data_ptr[i] & 0xff), db->io_data);break;case DM9KS_WORD_MODE:tmplen = (skb->len + 1) / 2;for (i = 0; i < tmplen; i++)outw(((u16 *)data_ptr)[i], db->io_data);break;case DM9KS_DWORD_MODE:tmplen = (skb->len + 3) / 4;            for (i = 0; i< tmplen; i++)outl(((u32 *)data_ptr)[i], db->io_data);break;}#ifndef ETRANS/* Issue TX polling command */iow(db, DM9KS_TCR, 0x1); /* Cleared after TX complete*/
#endif#ifdef TDBUG /* check TX FIFO pointer */MDWAH1 = ior(db,DM9KS_MDWAH);MDWAL1 = ior(db,DM9KS_MDWAL);tx_ptr = (MDWAH<<8)|MDWAL;switch (db->io_mode){case DM9KS_BYTE_MODE:tx_ptr += skb->len;break;case DM9KS_WORD_MODE:tx_ptr += ((skb->len + 1) / 2)*2;break;case DM9KS_DWORD_MODE:tx_ptr += ((skb->len+3)/4)*4;break;}if (tx_ptr > 0x0bff)tx_ptr -= 0x0c00;if (tx_ptr != ((MDWAH1<<8)|MDWAL1))printk("[dm9ks:TX FIFO ERROR\n");#endif/* Saved the time stamp */
//  dev->trans_start = jiffies;db->cont_rx_pkt_cnt =0;/* Free this SKB */dev_kfree_skb(skb);/* Re-enable interrupt */iow(db, DM9KS_IMR, DM9KS_REGFF);return 0;
}/*Stop the interface.The interface is stopped when it is brought.
*/
static int dmfe_stop(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);DMFE_DBUG(0, "dmfe_stop", 0);/* deleted timer */del_timer(&db->timer);netif_stop_queue(dev); /* free interrupt */free_irq(dev->irq, dev);/* RESET devie */phy_write(db, 0x00, 0x8000);    /* PHY RESET *///iow(db, DM9KS_GPR, 0x01);  /* Power-Down PHY */iow(db, DM9KS_IMR, DM9KS_DISINTR);  /* Disable all interrupt */iow(db, DM9KS_RXCR, 0x00);   /* Disable RX *//* Dump Statistic counter */
#if FALSEprintk("\nRX FIFO OVERFLOW %lx\n", db->stats.rx_fifo_errors);printk("RX CRC %lx\n", db->stats.rx_crc_errors);printk("RX LEN Err %lx\n", db->stats.rx_length_errors);printk("RESET %x\n", db->reset_counter);printk("RESET: TX Timeout %x\n", db->reset_tx_timeout);printk("g_TX_nsr %x\n", g_TX_nsr);
#endifreturn 0;
}static void dmfe_tx_done(unsigned long unused)
{struct net_device *dev = dmfe_dev;board_info_t *db = netdev_priv(dev);int  nsr;DMFE_DBUG(0, "dmfe_tx_done()", 0);nsr = ior(db, DM9KS_NSR);if (nsr & 0x0c){if(nsr & 0x04) db->tx_pkt_cnt--;if(nsr & 0x08) db->tx_pkt_cnt--;if(db->tx_pkt_cnt < 0){printk(KERN_DEBUG "DM9KS:tx_pkt_cnt ERROR!!\n");while(ior(db,DM9KS_TCR) & 0x1){}db->tx_pkt_cnt = 0;}}else{while(ior(db,DM9KS_TCR) & 0x1){}db->tx_pkt_cnt = 0;}netif_wake_queue(dev);return;
}/*DM9000 insterrupt handlerreceive the packet to upper layer, free the transmitted packet
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
static void dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)
#else#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)static irqreturn_t dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)#elsestatic irqreturn_t dmfe_interrupt(int irq, void *dev_id) /* for kernel 2.6.20*/#endif
#endif
{struct net_device *dev = dev_id;board_info_t *db;int int_status,i;u8 reg_save;DMFE_DBUG(0, "dmfe_interrupt()", 0);/* A real interrupt coming */db = netdev_priv(dev);spin_lock(&db->lock);/* Save previous register address */reg_save = inb(db->io_addr);/* Disable all interrupt */iow(db, DM9KS_IMR, DM9KS_DISINTR); /* Got DM9000/DM9010 interrupt status */int_status = ior(db, DM9KS_ISR);       /* Got ISR */iow(db, DM9KS_ISR, int_status);        /* Clear ISR status */ /* Link status change */if (int_status & DM9KS_LINK_INTR) {netif_stop_queue(dev);for(i=0; i<500; i++) /*wait link OK, waiting time =0.5s */{phy_read(db,0x1);if(phy_read(db,0x1) & 0x4) /*Link OK*/{/* wait for detected Speed */for(i=0; i<200;i++)udelay(1000);/* set media speed */if(phy_read(db,0)&0x2000) db->Speed =100;else db->Speed =10;break;}udelay(1000);}netif_wake_queue(dev);//printk("[INTR]i=%d speed=%d\n",i, (int)(db->Speed));  }/* Received the coming packet */if (int_status & DM9KS_RX_INTR) dmfe_packet_receive(dev);/* Trnasmit Interrupt check */if (int_status & DM9KS_TX_INTR)dmfe_tx_done(0);if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT){iow(db, DM9KS_IMR, 0xa2);}else{/* Re-enable interrupt mask */ iow(db, DM9KS_IMR, DM9KS_REGFF);}/* Restore previous register address */outb(reg_save, db->io_addr); spin_unlock(&db->lock);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)return IRQ_HANDLED;
#endif
}/*Get statistics from driver.
*/
static struct net_device_stats * dmfe_get_stats(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);DMFE_DBUG(0, "dmfe_get_stats", 0);return &db->stats;
}
/** Process the ethtool ioctl command*/
static int dmfe_ethtool_ioctl(struct net_device *dev, void *useraddr)
{//struct dmfe_board_info *db = dev->priv;struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO };u32 ethcmd;if (copy_from_user(&ethcmd, useraddr, sizeof(ethcmd)))return -EFAULT;switch (ethcmd) {case ETHTOOL_GDRVINFO:strcpy(info.driver, DRV_NAME);strcpy(info.version, DRV_VERSION);sprintf(info.bus_info, "ISA 0x%lx %d",dev->base_addr, dev->irq);if (copy_to_user(useraddr, &info, sizeof(info)))return -EFAULT;return 0;}return -EOPNOTSUPP;
}
/*Process the upper socket ioctl command
*/
static int dmfe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{board_info_t *db = netdev_priv(dev);#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* for kernel 2.6.7 */struct mii_ioctl_data *data=(struct mii_ioctl_data *)&ifr->ifr_data; #endifint rc=0;DMFE_DBUG(0, "dmfe_do_ioctl()", 0);if (!netif_running(dev))return -EINVAL;if (cmd == SIOCETHTOOL)rc = dmfe_ethtool_ioctl(dev, (void *) ifr->ifr_data);else {spin_lock_irq(&db->lock);#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* for kernel 2.6.7 */rc = generic_mii_ioctl(&db->mii, data, cmd, NULL);#elserc = generic_mii_ioctl(&db->mii, if_mii(ifr), cmd, NULL);#endifspin_unlock_irq(&db->lock);}return rc;
}/* Our watchdog timed out. Called by the networking layer */
static void dmfe_timeout(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);int i;DMFE_DBUG(0, "dmfe_TX_timeout()", 0);printk("TX time-out -- dmfe_timeout().\n");db->reset_tx_timeout++;db->stats.tx_errors++;#if FALSEprintk("TX packet count = %d\n", db->tx_pkt_cnt); printk("TX timeout = %d\n", db->reset_tx_timeout);    printk("22H=0x%02x  23H=0x%02x\n",ior(db,0x22),ior(db,0x23));printk("faH=0x%02x  fbH=0x%02x\n",ior(db,0xfa),ior(db,0xfb));
#endifi=0;while((i++<100)&&(ior(db,DM9KS_TCR) & 0x01)){udelay(30);}if(i<100){db->tx_pkt_cnt = 0;netif_wake_queue(dev);}else{dmfe_reset(dev);}}static void dmfe_reset(struct net_device * dev)
{board_info_t *db = netdev_priv(dev);u8 reg_save;int i;/* Save previous register address */reg_save = inb(db->io_addr);netif_stop_queue(dev); db->reset_counter++;dmfe_init_dm9000(dev);db->Speed =10;for(i=0; i<1000; i++) /*wait link OK, waiting time=1 second */{if(phy_read(db,0x1) & 0x4) /*Link OK*/{if(phy_read(db,0)&0x2000) db->Speed =100;else db->Speed =10;break;}udelay(1000);}netif_wake_queue(dev);/* Restore previous register address */outb(reg_save, db->io_addr);}
/*A periodic timer routine
*/
static void dmfe_timer(struct timer_list *t)
{struct board_info *db = from_timer(db, t, timer);unsigned long data    = db->timer_data;struct net_device * dev = (struct net_device *)data;
//  board_info_t *db = netdev_priv(dev);DMFE_DBUG(0, "dmfe_timer()", 0);if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT){db->cont_rx_pkt_cnt=0;iow(db, DM9KS_IMR, DM9KS_REGFF);}/* Set timer again */db->timer.expires = DMFE_TIMER_WUT;add_timer(&db->timer);return;
}/*Received a packet and pass to upper layer
*/
static void dmfe_packet_receive(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);struct sk_buff *skb;u8 rxbyte;u16 i, GoodPacket, tmplen = 0, MDRAH, MDRAL;u32 tmpdata;rx_t rx;u16 * ptr = (u16*)&rx;u8* rdptr;DMFE_DBUG(0, "dmfe_packet_receive()", 0);db->cont_rx_pkt_cnt=0;do {/*store the value of Memory Data Read address register*/MDRAH=ior(db, DM9KS_MDRAH);MDRAL=ior(db, DM9KS_MDRAL);ior(db, DM9KS_MRCMDX);       /* Dummy read */rxbyte = inb(db->io_data);  /* Got most updated data */#ifdef CHECKSUM  if (rxbyte&0x2)         /* check RX byte */{    printk("dm9ks: abnormal!\n");dmfe_reset(dev); break;  }else { if (!(rxbyte&0x1))break;    }
#elseif (rxbyte==0)break;if (rxbyte>1){    printk("dm9ks: Rxbyte error!\n");dmfe_reset(dev);break;   }
#endif/* A packet ready now  & Get status/length */GoodPacket = TRUE;outb(DM9KS_MRCMD, db->io_addr);/* Read packet status & length */switch (db->io_mode) {case DM9KS_BYTE_MODE: *ptr = inb(db->io_data) + (inb(db->io_data) << 8);*(ptr+1) = inb(db->io_data) + (inb(db->io_data) << 8);break;case DM9KS_WORD_MODE:*ptr = inw(db->io_data);*(ptr+1)    = inw(db->io_data);break;case DM9KS_DWORD_MODE:tmpdata  = inl(db->io_data);*ptr = tmpdata;*(ptr+1)    = tmpdata >> 16;break;default:break;}/* Packet status check */if (rx.desc.status & 0xbf){GoodPacket = FALSE;if (rx.desc.status & 0x01) {db->stats.rx_fifo_errors++;printk(KERN_INFO"<RX FIFO error>\n");}if (rx.desc.status & 0x02) {db->stats.rx_crc_errors++;printk(KERN_INFO"<RX CRC error>\n");}if (rx.desc.status & 0x80) {db->stats.rx_length_errors++;printk(KERN_INFO"<RX Length error>\n");}if (rx.desc.status & 0x08)printk(KERN_INFO"<Physical Layer error>\n");}if (!GoodPacket){// drop this packet!!!switch (db->io_mode){case DM9KS_BYTE_MODE:for (i=0; i<rx.desc.length; i++)inb(db->io_data);break;case DM9KS_WORD_MODE:tmplen = (rx.desc.length + 1) / 2;for (i = 0; i < tmplen; i++)inw(db->io_data);break;case DM9KS_DWORD_MODE:tmplen = (rx.desc.length + 3) / 4;for (i = 0; i < tmplen; i++)inl(db->io_data);break;}continue;/*next the packet*/}skb = dev_alloc_skb(rx.desc.length+4);if (skb == NULL ){   printk(KERN_INFO "%s: Memory squeeze.\n", dev->name);/*re-load the value into Memory data read address register*/iow(db,DM9KS_MDRAH,MDRAH);iow(db,DM9KS_MDRAL,MDRAL);return;}else{/* Move data from DM9000 */skb->dev = dev;skb_reserve(skb, 2);rdptr = (u8*)skb_put(skb, rx.desc.length - 4);/* Read received packet from RX SARM */switch (db->io_mode){case DM9KS_BYTE_MODE:for (i=0; i<rx.desc.length; i++)rdptr[i]=inb(db->io_data);break;case DM9KS_WORD_MODE:tmplen = (rx.desc.length + 1) / 2;for (i = 0; i < tmplen; i++)((u16 *)rdptr)[i] = inw(db->io_data);break;case DM9KS_DWORD_MODE:tmplen = (rx.desc.length + 3) / 4;for (i = 0; i < tmplen; i++)((u32 *)rdptr)[i] = inl(db->io_data);break;}/* Pass to upper layer */skb->protocol = eth_type_trans(skb,dev);#ifdef CHECKSUMif((rxbyte&0xe0)==0)  /* receive packet no checksum fail */skb->ip_summed = CHECKSUM_UNNECESSARY;
#endifnetif_rx(skb);
//          dev->last_rx=jiffies;db->stats.rx_packets++;db->stats.rx_bytes += rx.desc.length;db->cont_rx_pkt_cnt++;
#ifdef RDBG /* check RX FIFO pointer */u16 MDRAH1, MDRAL1;u16 tmp_ptr;MDRAH1 = ior(db,DM9KS_MDRAH);MDRAL1 = ior(db,DM9KS_MDRAL);tmp_ptr = (MDRAH<<8)|MDRAL;switch (db->io_mode){case DM9KS_BYTE_MODE:tmp_ptr += rx.desc.length+4;break;case DM9KS_WORD_MODE:tmp_ptr += ((rx.desc.length+1)/2)*2+4;break;case DM9KS_DWORD_MODE:tmp_ptr += ((rx.desc.length+3)/4)*4+4;break;}if (tmp_ptr >=0x4000)tmp_ptr = (tmp_ptr - 0x4000) + 0xc00;if (tmp_ptr != ((MDRAH1<<8)|MDRAL1))printk("[dm9ks:RX FIFO ERROR\n");
#endifif (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT){dmfe_tx_done(0);break;}}}while((rxbyte & 0x01) == DM9KS_PKT_RDY);DMFE_DBUG(0, "[END]dmfe_packet_receive()", 0);}/*Read a word data from SROM
*/
static u16 read_srom_word(board_info_t *db, int offset)
{iow(db, DM9KS_EPAR, offset);iow(db, DM9KS_EPCR, 0x4);while(ior(db, DM9KS_EPCR)&0x1);   /* Wait read complete */iow(db, DM9KS_EPCR, 0x0);return (ior(db, DM9KS_EPDRL) + (ior(db, DM9KS_EPDRH) << 8) );
}#if 0
/*Set DM9000/DM9010 multicast address
*/
static void dm9000_hash_table(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);struct dev_mc_list *mcptr = dev->mc_list;int mc_cnt = dev->mc_count;u32 hash_val;u16 i, oft, hash_table[4];DMFE_DBUG(0, "dm9000_hash_table()", 0);/* enable promiscuous mode */if (dev->flags & IFF_PROMISC){//printk(KERN_INFO "DM9KS:enable promiscuous mode\n");iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)|(1<<1));return;}else{//printk(KERN_INFO "DM9KS:disable promiscuous mode\n");iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)&(~(1<<1)));}/* Receive all multicast packets */if (dev->flags & IFF_ALLMULTI){//printk(KERN_INFO "DM9KS:Pass all multicast\n");iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)|(1<<3));}else{//printk(KERN_INFO "DM9KS:Disable pass all multicast\n");iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)&(~(1<<3)));}/* Set Node address */for (i = 0, oft = 0x10; i < 6; i++, oft++)iow(db, oft, dev->dev_addr[i]);/* Clear Hash Table */for (i = 0; i < 4; i++)hash_table[i] = 0x0;/* broadcast address */hash_table[3] = 0x8000;/* the multicast address in Hash Table : 64 bits */for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {hash_val = cal_CRC((char *)mcptr->dmi_addr, 6, 0) & 0x3f; hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);}/* Write the hash table to MAC MD table */for (i = 0, oft = 0x16; i < 4; i++) {iow(db, oft++, hash_table[i] & 0xff);iow(db, oft++, (hash_table[i] >> 8) & 0xff);}
}#else/**  Set DM9000 multicast address*/
static void
dm9000_hash_table_unlocked(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);struct netdev_hw_addr *ha;int i, oft;u32 hash_val;u16 hash_table[4];u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;//dm9000_dbg(db, 1, "entering %s\n", __func__);for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)iow(db, oft, dev->dev_addr[i]);/* Clear Hash Table */for (i = 0; i < 4; i++)hash_table[i] = 0x0;/* broadcast address */hash_table[3] = 0x8000;if (dev->flags & IFF_PROMISC)rcr |= RCR_PRMSC;if (dev->flags & IFF_ALLMULTI)rcr |= RCR_ALL;/* the multicast address in Hash Table : 64 bits */netdev_for_each_mc_addr(ha, dev) {hash_val = ether_crc_le(6, ha->addr) & 0x3f;hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);}/* Write the hash table to MAC MD table */for (i = 0, oft = DM9000_MAR; i < 4; i++) {iow(db, oft++, hash_table[i]);iow(db, oft++, hash_table[i] >> 8);}iow(db, DM9000_RCR, rcr);
}static void
dm9000_hash_table(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);unsigned long flags;spin_lock_irqsave(&db->lock, flags);dm9000_hash_table_unlocked(dev);spin_unlock_irqrestore(&db->lock, flags);
}#endif
/*Calculate the CRC valude of the Rx packetflag = 1 : return the reverse CRC (for the received packet CRC)0 : return the normal CRC (for Hash Table index)
*/
static unsigned long cal_CRC(unsigned char * Data, unsigned int Len, u8 flag)
{   u32 crc = ether_crc_le(Len, Data);if (flag) return ~crc;return crc;
}static int mdio_read(struct net_device *dev, int phy_id, int location)
{board_info_t *db = netdev_priv(dev);return phy_read(db, location);
}static void mdio_write(struct net_device *dev, int phy_id, int location, int val)
{board_info_t *db = netdev_priv(dev);phy_write(db, location, val);
}/*Read a byte from I/O port
*/
u8 ior(board_info_t *db, int reg)
{outb(reg, db->io_addr);return inb(db->io_data);
}/*Write a byte to I/O port
*/
void iow(board_info_t *db, int reg, u8 value)
{outb(reg, db->io_addr);outb(value, db->io_data);
}/*Read a word from phyxcer
*/
static u16 phy_read(board_info_t *db, int reg)
{/* Fill the phyxcer register into REG_0C */iow(db, DM9KS_EPAR, DM9KS_PHY | reg);iow(db, DM9KS_EPCR, 0xc);  /* Issue phyxcer read command */while(ior(db, DM9KS_EPCR)&0x1); /* Wait read complete */iow(db, DM9KS_EPCR, 0x0);   /* Clear phyxcer read command *//* The read data keeps on REG_0D & REG_0E */return ( ior(db, DM9KS_EPDRH) << 8 ) | ior(db, DM9KS_EPDRL);}/*Write a word to phyxcer
*/
static void phy_write(board_info_t *db, int reg, u16 value)
{/* Fill the phyxcer register into REG_0C */iow(db, DM9KS_EPAR, DM9KS_PHY | reg);/* Fill the written data into REG_0D & REG_0E */iow(db, DM9KS_EPDRL, (value & 0xff));iow(db, DM9KS_EPDRH, ( (value >> 8) & 0xff));iow(db, DM9KS_EPCR, 0xa);  /* Issue phyxcer write command */while(ior(db, DM9KS_EPCR)&0x1);    /* Wait read complete */iow(db, DM9KS_EPCR, 0x0);   /* Clear phyxcer write command */
}
//====dmfe_ethtool_ops member functions====
static void dmfe_get_drvinfo(struct net_device *dev,struct ethtool_drvinfo *info)
{//board_info_t *db = (board_info_t *)dev->priv;strcpy(info->driver, DRV_NAME);strcpy(info->version, DRV_VERSION);sprintf(info->bus_info, "ISA 0x%lx irq=%d",dev->base_addr, dev->irq);
}
static int dmfe_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{board_info_t *db = netdev_priv(dev);spin_lock_irq(&db->lock);mii_ethtool_gset(&db->mii, cmd);spin_unlock_irq(&db->lock);return 0;
}
static int dmfe_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{board_info_t *db = netdev_priv(dev);int rc;spin_lock_irq(&db->lock);rc = mii_ethtool_sset(&db->mii, cmd);spin_unlock_irq(&db->lock);return rc;
}
/*
* Check the link state
*/
static u32 dmfe_get_link(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);return mii_link_ok(&db->mii);
}/*
* Reset Auto-negitiation
*/
static int dmfe_nway_reset(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);return mii_nway_restart(&db->mii);
}
/*
* Get RX checksum offload state
*/
static uint32_t dmfe_get_rx_csum(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);return db->rx_csum;
}
/*
* Get TX checksum offload state
*/
static uint32_t dmfe_get_tx_csum(struct net_device *dev)
{return (dev->features & NETIF_F_HW_CSUM) != 0;
}
/*
* Enable/Disable RX checksum offload
*/
static int dmfe_set_rx_csum(struct net_device *dev, uint32_t data)
{
#ifdef CHECKSUMboard_info_t *db = netdev_priv(dev);db->rx_csum = data;if(netif_running(dev)) {dmfe_stop(dev);dmfe_open(dev);} elsedmfe_init_dm9000(dev);
#elseprintk(KERN_ERR "DM9:Don't support checksum\n");
#endifreturn 0;
}
/*
* Enable/Disable TX checksum offload
*/
static int dmfe_set_tx_csum(struct net_device *dev, uint32_t data)
{
#ifdef CHECKSUMif (data)dev->features |= NETIF_F_HW_CSUM;elsedev->features &= ~NETIF_F_HW_CSUM;
#elseprintk(KERN_ERR "DM9:Don't support checksum\n");
#endifreturn 0;
}
//=========================================
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,28)  /* for kernel 2.4.28 */
static struct ethtool_ops dmfe_ethtool_ops = {.get_drvinfo     = dmfe_get_drvinfo,.get_settings       = dmfe_get_settings,.set_settings      = dmfe_set_settings,.get_link          = dmfe_get_link,.nway_reset        = dmfe_nway_reset,//.get_rx_csum       = dmfe_get_rx_csum,//.set_rx_csum      = dmfe_set_rx_csum,//.get_tx_csum      = dmfe_get_tx_csum,//.set_tx_csum      = dmfe_set_tx_csum,
};#endif//#ifdef MODULEMODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Davicom DM9000/DM9010 ISA/uP Fast Ethernet Driver");
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
MODULE_PARM(mode, "i");
MODULE_PARM(irq, "i");
MODULE_PARM(iobase, "i");
#else
module_param(mode, int, 0);
module_param(irq, int, 0);
module_param(iobase, int, 0);
#endif
MODULE_PARM_DESC(mode,"Media Speed, 0:10MHD, 1:10MFD, 4:100MHD, 5:100MFD");
MODULE_PARM_DESC(irq,"EtherLink IRQ number");
MODULE_PARM_DESC(iobase, "EtherLink I/O base address");/* Description: when user used insmod to add module, system invoked init_module()to initilize and register.
*/
int  dm9000c_init(void)
{volatile unsigned long *bwscon; // 0x48000000volatile unsigned long *bankcon4; // 0x48000014unsigned long val;iobase = (int)ioremap(0x20000000, 1024);  /* thisway.diy@163.com *///irq    = 7; //IRQ_EINT7;                  /* thisway.diy@163.com *//* 设置S3C2440的memory controller */bwscon   = ioremap(0x48000000, 4);bankcon4 = ioremap(0x48000014, 4);/* DW4[17:16]: 01-16bit* WS4[18]   : 0-WAIT disable* ST4[19]   : 0 = Not using UB/LB (The pins are dedicated nWBE[3:0])*/val = *bwscon;val &= ~(0xf<<16);val |= (1<<16);*bwscon = val;/** Tacs[14:13]: 发出片选信号之前,多长时间内要先发出地址信号*              DM9000C的片选信号和CMD信号可以同时发出,*              所以它设为0* Tcos[12:11]: 发出片选信号之后,多长时间才能发出读信号nOE*              DM9000C的T1>=0ns, *              所以它设为0* Tacc[10:8] : 读写信号的脉冲长度, *              DM9000C的T2>=10ns, *              所以它设为1, 表示2个hclk周期,hclk=100MHz,就是20ns* Tcoh[7:6]  : 当读信号nOE变为高电平后,片选信号还要维持多长时间*              DM9000C进行写操作时, nWE变为高电平之后, 数据线上的数据还要维持最少3ns*              DM9000C进行读操作时, nOE变为高电平之后, 数据线上的数据在6ns之内会消失*              我们取一个宽松值: 让片选信号在nOE放为高电平后,再维持10ns, *              所以设为01* Tcah[5:4]  : 当片选信号变为高电平后, 地址信号还要维持多长时间*              DM9000C的片选信号和CMD信号可以同时出现,同时消失*              所以设为0* PMC[1:0]   : 00-正常模式**///*bankcon4 = (1<<8)|(1<<6);  /* 对于DM9000C可以设Tacc为1, 对于DM9000E,Tacc要设大一点,比如最大值7  */*bankcon4 = (7<<8)|(1<<6);  /* MINI2440使用DM9000E,Tacc要设大一点 */iounmap(bwscon);iounmap(bankcon4);switch(mode) {case DM9KS_10MHD:case DM9KS_100MHD:case DM9KS_10MFD:case DM9KS_100MFD:media_mode = mode;break;default:media_mode = DM9KS_AUTO;}dmfe_dev = dmfe_probe();if(IS_ERR(dmfe_dev))return PTR_ERR(dmfe_dev);return 0;
}
/* Description: when user used rmmod to delete module, system invoked clean_module()to  un-register DEVICE.
*/
void  dm9000c_exit(void)
{struct net_device *dev = dmfe_dev;DMFE_DBUG(0, "clean_module()", 0);unregister_netdev(dmfe_dev);release_region(dev->base_addr, 2);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)kfree(dev);
#elsefree_netdev(dev);
#endifiounmap((void *)iobase);DMFE_DBUG(0, "clean_module() exit", 0);
}static int dm9000drv_probe(struct platform_device *pdev)
{struct device *dev = &pdev->dev;       struct device_node *dp_node = dev->of_node;struct resource      *res;int i;res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);if (res) {irq = res->start;printk("get dm9000 irq %d\n", irq);}else {printk("can not get irq res for dm9000\n");return -1;}return dm9000c_init();
}static int dm9000drv_remove(struct platform_device *pdev)
{dm9000c_exit();return 0;
}static const struct of_device_id of_match_dm9000[] = {{ .compatible = "davicom,dm9000", .data = NULL },{ /* sentinel */ }
};struct platform_driver dm9000_drv = {.probe      = dm9000drv_probe,.remove      = dm9000drv_remove,.driver     = {.name   = "dm9000",.of_match_table = of_match_dm9000, /* 能支持哪些来自于dts的platform_device */}
};static int dm9000drv_init(void)
{platform_driver_register(&dm9000_drv);return 0;
}static void dm9000drv_exit(void)
{platform_driver_unregister(&dm9000_drv);
}module_init(dm9000drv_init);
module_exit(dm9000drv_exit);
MODULE_LICENSE("GPL");//#endif

3 在设备树中描述触摸屏中断

    jz2440ts@5800000 {compatible = "jz2440,ts";reg = <0x58000000 0x100>;reg-names = "adc_ts_physical";interrupts = <1 31 9 3>, <1 31 10 3>;interrupt-names = "int_ts", "int_adc_s";clocks = <&clocks PCLK_ADC>;clock-names = "adc";};

这个节点的父节点就是根节点,他的中断控制器就是interrupt-controller。然后触摸屏中断描述里面 interrupts = <1 31 9 3>, <1 31 10 3>;,我们知道触摸屏使用两个中断,一个是触摸笔按下松开中断,另一个是ADC中断,

当我们的触摸笔按下后,他产生的中断先发给子中断控制器,再由子中断控制器发给interrupt-controller控制器,我们可以看一下内核中关于中断的文档介绍,就可以知道interrupts = <1 31 9 3>, <1 31 10 3>;表示什么意思

修改方法:
   根据设备节点的compatible属性, 
   在驱动程序中构造/注册 platform_driver,
   在 platform_driver 的 probe 函数中获得中断资源

实验方法:
以下是修改好的代码:
第6课第1节_网卡_触摸屏驱动\001th_dm9000\dm9dev9000c.c
第6课第1节_网卡_触摸屏驱动\002th_touchscreen\s3c_ts.c

分别上传到内核如下目录:
drivers/net/ethernet/davicom
drivers/input/touchscreen

a. 编译内核
b. 使用新的uImage启动
c. 测试网卡:
ifconfig eth0 192.168.1.101
ping 192.168.1.1

d. 测试触摸屏:
hexdump /dev/evetn0 // 然后点击触摸屏

使用设备树给DM9000网卡_触摸屏指定中断相关推荐

  1. 6.1使用设备树给DM9000网卡_触摸屏指定中断

    流程 修改方法: 根据设备节点的compatible属性,     在驱动程序中构造/注册 platform_driver,    在 platform_driver 的 probe 函数中获得中断资 ...

  2. 基于瑞芯微RV1109 Linux触摸屏GT911驱动调试心得(二)-设备树刷厂商给的触摸屏固件...

    之前调试触摸屏的文章如下: 基于瑞芯微RV1109 Linux触摸屏GT911驱动调试心得_Bruce.yang的嵌入式之旅-CSDN博客 由于之前调触摸屏一直都对不上点,然后厂商又给了我新的驱动代码 ...

  3. linux 视频教程 韦山东,韦东山 linux 设备树详解

    简 介 设备树视频录制完毕,29节,现在只要69元.学员对此课程的评价:这是最翔实最实惠最精益求精的设备树教程,感兴趣的了解一下, 以下是课程详情~ [设备树是什么?] 设备树是一种机制,用文本的方式 ...

  4. 从零开始之驱动发开、linux驱动(四十五、DM9000网卡驱动)

    这里我们肯定不是要从零开始编写网卡驱动的. 因为编写网卡驱动时,需要网络基础知识,特别是网络底层的知识,目前还没学. 将来我可能选择在,网络,图像视屏,或USB这个三个方向,选择一个深入钻研. 这里主 ...

  5. 嵌入式系统移植【8】——设备树和根文件系统移植

    Linux设备驱动移植 设备树 设备树是一种描述硬件信息的数据结构,Linux内核运行时可以通过设备树将硬件信息直接传递给Linux内核,而不再需要在Linux内核中包含大量的冗余编码 设备树语法概述 ...

  6. 基于linux2.6.30.4内核的DM9000网卡驱动编译成模块成功ping通

    基于linux2.6.30.4内核的DM9000网卡驱动编译成模块成功ping通 最近有个学生毕业设计需要实现基于ARM的DM9000网卡通信,但是linux2.6.30.4内核已经把DM9000网卡 ...

  7. 42.设备树---DTS的语法

    Device Tree Usage - 摩斯电码 - 博客园 设备树dts/dtsi格式_孤独行者的专栏-CSDN博客_dts格式 Linux设备树语法详解 - Abnor - 博客园 设备树笔记 - ...

  8. 奇小葩讲设备树(4/5)-- Linux设备树详解(四)kernel的解析

    uboot将一些参数,设备树文件传给内核,那么内核如何处理这些设备树文件呢?本章就kernel解析设备树的过程和原理,本章的主要内容以Device Tree相关的数据流分析为索引,对ARM linux ...

  9. 【正点原子MP157连载】第二十三章 Linux设备树-摘自【正点原子】STM32MP1嵌入式Linux驱动开发指南V1.7

    1)实验平台:正点原子STM32MP157开发板 2)购买链接:https://item.taobao.com/item.htm?&id=629270721801 3)全套实验源码+手册+视频 ...

最新文章

  1. Pycharm常用的使用方法
  2. python入门编程-对没有编程基础的人来说,直接学Python入门IT合适吗?
  3. poj 1006 生理周期
  4. 07- Firmware Update (FWU)
  5. Python初学的几个迷惑点
  6. mxnet基础到提高(15)--梯度与反向传播
  7. Java怎么学?Java的学习步骤分享
  8. 【Foreign】采蘑菇 [点分治]
  9. 北京重磅发布:杰青、优青放宽女性年龄限制,基金人才评审“同等条件下女性优先”...
  10. 设置linux拨号服务端,CentOS Linux上搭建PPPoE服务器及拨号设置
  11. 充满含金量的一场云原生Meetup,入场券免费发送中……
  12. android电视原理图,电视机工作原理
  13. C#读取文件-古文观止(总结一下)
  14. 挖掘频繁项集之FP-Growth算法
  15. 微信小程序云开发之初体验(详细教程)
  16. 二级路由添加网络打印机的方法
  17. mysql password_expired
  18. Nginx配之负载均衡、缓存、黑名单和灰度发布
  19. Kewail:三种常用的邮件内容传送编码
  20. 医疗实施-集成平台介绍

热门文章

  1. Hadoop将过时了?
  2. Microbiome杂志和主编介绍
  3. 学生台灯用led灯好还是荧光灯好?推荐几款高品质的LED灯
  4. 密钥策略的属性基加密(KP-ABE)
  5. python 字符画
  6. GitHub 全域数字年报:携手推动开源世界的超级协作
  7. PyQt5第一部分-窗口类:QWidget, QDeskWidget, QTabWidget, QMainWindow, QDialog
  8. Java工程师必备书单
  9. 前端开发,JavaScript实际开发过程中常用JS小技巧
  10. 激流勇进,数据库替代比预想要快得多