文本分类从入门到精通
本文整理自笔者年前在知乎上的一个回答:

大数据舆情情感分析,如何提取情感并使用什么样的工具?(贴情感标签)
1、我将数据筛选预处理好,然后分好词。
2、是不是接下来应该与与情感词汇本库对照,生成结合词频和情感词库的情感关键词库。
3、将信息与情感关键词库进行比对,对信息加以情感标记。
4、我想问实现前三步,需要什么工具的什么功能呢?据说用spss和武汉大学的ROST WordParser。该如何使用呢?https://www.zhihu.com/question/31471793/answer/542401478

情感分析说白了,就是一个文本(多)分类问题,我看一般的情感分析都是2类(正负面)或者3类(正面、中性和负面)。其实,这种粒度是远远不够的。本着“Talk is cheap, show you my code”的原则,我不扯咸淡,直接上代码给出解决方案(而且是经过真实文本数据验证了的:我用一个14个分类的例子来讲讲各类文本分类模型—从传统的机器学习文本分类模型到现今流行的基于深度学习的文本分类模型,最后给出一个超NB的模型集成,效果最优。

在这篇文章中,笔者将讨论自然语言处理中文本分类的相关问题。笔者将使用一个复旦大学开源的文本分类语料库,对文本分类的一般流程和常用模型进行探讨。首先,笔者会创建一个非常基础的初始模型,然后使用不同的特征进行改进。 接下来,笔者还将讨论如何使用深度神经网络来解决NLP问题,并在文章末尾以一般关于集成的一些想法结束这篇文章。

本文覆盖的文本分类方法有:

TF-IDF
Count Features
Logistic Regression
Naive Bayes
SVM
Xgboost
Grid Search
Word Vectors
Dense Network
LSTM
GRU
Ensembling
NOTE: 笔者并不能保证你学习了本notebook之后就能在NLP相关比赛中获得非常高的分数。 但是,如果你正确地“吃透”它,并根据实际情况适时作出一些调整,你可以获得非常高的分数。
废话不多说,让我们开始导入一些我将要使用的重要python模块。

#载入接下来分析用的库
import pandas as pd
import numpy as np
import xgboost as xgb
from tqdm import tqdm
from sklearn.svm import SVC
from keras.models import Sequential
from keras.layers.recurrent import LSTM, GRU
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.embeddings import Embedding
from keras.layers.normalization import BatchNormalization
from keras.utils import np_utils
from sklearn import preprocessing, decomposition, model_selection, metrics, pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import TruncatedSVD
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.naive_bayes import MultinomialNB
from keras.layers import GlobalMaxPooling1D, Conv1D, MaxPooling1D, Flatten, Bidirectional, SpatialDropout1D
from keras.preprocessing import sequence, text
from keras.callbacks import EarlyStopping
from nltk import word_tokenize
Using TensorFlow backend.
接下来是加载并检视数据集

data=pd.read_excel(‘/home/kesci/input/Chinese_NLP6474/复旦大学中文文本分类语料.xlsx’,‘sheet1’)
data.head()
分类 正文
0 艺术 【 文献号 】1-2432\n【原文出处】出版发行研究\n【原刊地名】京\n【原刊期号】1…
1 艺术 【 文献号 】1-2435\n【原文出处】扬州师院学报:社科版\n【原刊期号】199504…
2 艺术 【 文献号 】1-2785\n【原文出处】南通师专学报:社科版\n【原刊期号】199503…
3 艺术 【 文献号 】1-3021\n【原文出处】社会科学战线\n【原刊地名】长春\n【原刊期号】…
4 艺术 【 文献号 】1-3062\n【原文出处】上海文化\n【原刊期号】199505\n【原刊页…
data.info()
<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 9249 entries, 0 to 9248
Data columns (total 2 columns):
分类 9249 non-null object
正文 9249 non-null object
dtypes: object(2)
memory usage: 144.6+ KB
data.分类.unique()
array([‘艺术’, ‘文学’, ‘哲学’, ‘通信’, ‘能源’, ‘历史’, ‘矿藏’, ‘空间’, ‘教育’, ‘交通’, ‘计算机’,
‘环境’, ‘电子’, ‘农业’, ‘体育’, ‘时政’, ‘医疗’, ‘经济’, ‘法律’], dtype=object)
对文本数据的正文字段进行分词,这里是在Linux上运行的,可以开启jieba的并行分词模式,分词速度是平常的好多倍,具体看你的CPU核心数。

import jieba
jieba.enable_parallel(64) #并行分词开启
data[‘文本分词’] = data[‘正文’].apply(lambda i:jieba.cut(i) )
Building prefix dict from the default dictionary …
Dumping model to file cache /tmp/jieba.cache
Loading model cost 1.402 seconds.
Prefix dict has been built succesfully.
Process ForkPoolWorker-3:
Process ForkPoolWorker-4:
Process ForkPoolWorker-2:
Traceback (most recent call last):
Traceback (most recent call last):
Process ForkPoolWorker-1:
File “/opt/conda/lib/python3.5/multiprocessing/process.py”, line 252, in _bootstrap
self.run()
File “/opt/conda/lib/python3.5/multiprocessing/process.py”, line 252, in _bootstrap
self.run()
File “/opt/conda/lib/python3.5/multiprocessing/process.py”, line 93, in run
self._target(*self._args, **self._kwargs)
Traceback (most recent call last):
File “/opt/conda/lib/python3.5/multiprocessing/process.py”, line 93, in run
self._target(*self._args, **self._kwargs)
File “/opt/conda/lib/python3.5/multiprocessing/pool.py”, line 108, in worker
task = get()
File “/opt/conda/lib/python3.5/multiprocessing/pool.py”, line 108, in worker
task = get()
File “/opt/conda/lib/python3.5/multiprocessing/process.py”, line 252, in _bootstrap
self.run()
Traceback (most recent call last):
File “/opt/conda/lib/python3.5/multiprocessing/process.py”, line 93, in run
self._target(*self._args, **self._kwargs)
File “/opt/conda/lib/python3.5/multiprocessing/queues.py”, line 335, in get
res = self._reader.recv_bytes()
File “/opt/conda/lib/python3.5/multiprocessing/queues.py”, line 334, in get
with self._rlock:
File “/opt/conda/lib/python3.5/multiprocessing/process.py”, line 252, in _bootstrap
self.run()
File “/opt/conda/lib/python3.5/multiprocessing/process.py”, line 93, in run
self._target(*self._args, **self._kwargs)
File “/opt/conda/lib/python3.5/multiprocessing/connection.py”, line 216, in recv_bytes
buf = self._recv_bytes(maxlength)
File “/opt/conda/lib/python3.5/multiprocessing/pool.py”, line 108, in worker
task = get()
File “/opt/conda/lib/python3.5/multiprocessing/pool.py”, line 108, in worker
task = get()
File “/opt/conda/lib/python3.5/multiprocessing/queues.py”, line 334, in get
with self._rlock:
File “/opt/conda/lib/python3.5/multiprocessing/queues.py”, line 334, in get
with self._rlock:
File “/opt/conda/lib/python3.5/multiprocessing/synchronize.py”, line 96, in enter
return self._semlock.enter()
File “/opt/conda/lib/python3.5/multiprocessing/synchronize.py”, line 96, in enter
return self._semlock.enter()
File “/opt/conda/lib/python3.5/multiprocessing/connection.py”, line 407, in _recv_bytes
buf = self._recv(4)
KeyboardInterrupt
KeyboardInterrupt
File “/opt/conda/lib/python3.5/multiprocessing/connection.py”, line 379, in _recv
chunk = read(handle, remaining)
File “/opt/conda/lib/python3.5/multiprocessing/synchronize.py”, line 96, in enter
return self._semlock.enter()
KeyboardInterrupt
KeyboardInterrupt
值得注意的是,分词是任何中文文本分类的起点,分词的质量会直接影响到后面的模型效果。在这里,作为演示,笔者有点偷懒,其实你还可以:

设置可靠的自定义词典,以便分词更精准;
采用分词效果更好的分词器,如pyltp、THULAC、Hanlp等;
编写预处理类,就像下面要谈到的数字特征归一化,去掉文本中的#@¥%……&等等。
data[‘文本分词’] =[’ '.join(i) for i in data[‘文本分词’]]
data.head()
分类 正文 文本分词
0 艺术 【 文献号 】1-2432\n【原文出处】出版发行研究\n【原刊地名】京\n【原刊期号】1…  【 文献号 】 1 - 2432 \n 【 原文 出处 】 出版发行 研究 \n…
1 艺术 【 文献号 】1-2435\n【原文出处】扬州师院学报:社科版\n【原刊期号】199504…  【 文献号 】 1 - 2435 \n 【 原文 出处 】 扬州 师院 学报 :…
2 艺术 【 文献号 】1-2785\n【原文出处】南通师专学报:社科版\n【原刊期号】199503…  【 文献号 】 1 - 2785 \n 【 原文 出处 】 南通 师专 学报 :…
3 艺术 【 文献号 】1-3021\n【原文出处】社会科学战线\n【原刊地名】长春\n【原刊期号】…  【 文献号 】 1 - 3021 \n 【 原文 出处 】 社会科学 战线 \n…
4 艺术 【 文献号 】1-3062\n【原文出处】上海文化\n【原刊期号】199505\n【原刊页…  【 文献号 】 1 - 3062 \n 【 原文 出处 】 上海 文化 \n 【…
这是一个典型的文本多分类问题,需要将文本划分到给定的14个主题上。
针对该问题,笔者采用了kaggle上通用的 Multi-Class Log-Loss 作为评测指标(Evaluation Metric).

def multiclass_logloss(actual, predicted, eps=1e-15):
“”“对数损失度量(Logarithmic Loss Metric)的多分类版本。
:param actual: 包含actual target classes的数组
:param predicted: 分类预测结果矩阵, 每个类别都有一个概率
“””
# Convert ‘actual’ to a binary array if it’s not already:
if len(actual.shape) == 1:
actual2 = np.zeros((actual.shape[0], predicted.shape[1]))
for i, val in enumerate(actual):
actual2[i, val] = 1
actual = actual2

clip = np.clip(predicted, eps, 1 - eps)
rows = actual.shape[0]
vsota = np.sum(actual * np.log(clip))
return -1.0 / rows * vsota

接下来用scikit-learn中的LabelEncoder将文本标签(Text Label)转化为数字(Integer)

lbl_enc = preprocessing.LabelEncoder()
y = lbl_enc.fit_transform(data.分类.values)
在进一步研究之前,我们必须将数据分成训练和验证集。 我们可以使用scikit-learn的model_selection模块中的train_test_split来完成它。

xtrain, xvalid, ytrain, yvalid = train_test_split(data.文本分词.values, y,
stratify=y,
random_state=42,
test_size=0.1, shuffle=True)
print (xtrain.shape)
print (xvalid.shape)
(8324,)
(925,)
构建基础模型(Basic Models)
让我们先创建一个非常基础的模型。

这个非常基础的模型(very first model)基于 TF-IDF (Term Frequency - Inverse Document Frequency)+逻辑斯底回归(Logistic Regression)。

笔者将scikit-learn中的TfidfVectorizer类稍稍改写下,以便将文本中的数字特征统一表示成"#NUMBER",达到一定的降噪效果。

def number_normalizer(tokens):
“”" 将所有数字标记映射为一个占位符(Placeholder)。
对于许多实际应用场景来说,以数字开头的tokens不是很有用,
但这样tokens的存在也有一定相关性。 通过将所有数字都表示成同一个符号,可以达到降维的目的。
“”"
return (“#NUMBER” if token[0].isdigit() else token for token in tokens)

class NumberNormalizingVectorizer(TfidfVectorizer):
def build_tokenizer(self):
tokenize = super(NumberNormalizingVectorizer, self).build_tokenizer()
return lambda doc: list(number_normalizer(tokenize(doc)))

利用刚才创建的NumberNormalizingVectorizer类来提取文本特征,注意里面各类参数的含义,自己去sklearn官方网站找教程看

stwlist=[line.strip() for line in open(‘/home/kesci/input/stopwords7085/停用词汇总.txt’,
‘r’,encoding=‘utf-8’).readlines()]
tfv = NumberNormalizingVectorizer(min_df=3,
max_df=0.5,
max_features=None,
ngram_range=(1, 2),
use_idf=True,
smooth_idf=True,
stop_words = stwlist)

使用TF-IDF来fit训练集和测试集(半监督学习)

tfv.fit(list(xtrain) + list(xvalid))
xtrain_tfv = tfv.transform(xtrain)
xvalid_tfv = tfv.transform(xvalid)
#利用提取的TFIDF特征来fit一个简单的Logistic Regression
clf = LogisticRegression(C=1.0,solver=‘lbfgs’,multi_class=‘multinomial’)
clf.fit(xtrain_tfv, ytrain)
predictions = clf.predict_proba(xvalid_tfv)

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))
#print(classification_report(predictions, yvalid))
logloss: 0.607
做完第一个基础模型后,得出的 multiclass logloss 是0.607.

但笔者“贪婪”,想要获得更好的分数。 基于相同模型采用不同的特征,再看看结果如何。

我们也可以使用词汇计数(Word Counts)作为功能,而不是使用TF-IDF。 这可以使用scikit-learn中的CountVectorizer轻松完成。

ctv = CountVectorizer(min_df=3,
max_df=0.5,
ngram_range=(1,2),
stop_words = stwlist)

使用Count Vectorizer来fit训练集和测试集(半监督学习)

ctv.fit(list(xtrain) + list(xvalid))
xtrain_ctv = ctv.transform(xtrain)
xvalid_ctv = ctv.transform(xvalid)
#利用提取的word counts特征来fit一个简单的Logistic Regression

clf = LogisticRegression(C=1.0,solver=‘lbfgs’,multi_class=‘multinomial’)
clf.fit(xtrain_ctv, ytrain)
predictions = clf.predict_proba(xvalid_ctv)

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))

#print(classification_report(predictions, yvalid))
logloss: 0.732
貌似效果不佳,multiclass logloss达到了0.732!!!

接下来,让我们尝试一个非常简单的模型- 朴素贝叶斯,它在以前是非常有名的。

让我们看看当我们在这个数据集上使用朴素贝叶时会发生什么:

#利用提取的TFIDF特征来fitNaive Bayes
clf = MultinomialNB()
clf.fit(xtrain_tfv, ytrain)
predictions = clf.predict_proba(xvalid_tfv)

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))

#print(classification_report(predictions, yvalid))
logloss: 0.841
朴素贝叶斯模型的表现也不咋地!让我们在基于词汇计数的基础上使用朴素贝叶斯模型,看会发生什么?

#利用提取的word counts特征来fitNaive Bayes
clf = MultinomialNB()
clf.fit(xtrain_ctv, ytrain)
predictions = clf.predict_proba(xvalid_ctv)

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))

#print(classification_report(predictions, yvalid))
logloss: 3.780
3.780,这次效果差到爆! 传统文本分类算法里还有一个名叫支持向量机(SVM)。 SVM曾是很多机器学习爱好者的“最爱”。 因此,我们必须在此数据集上尝试SVM。

由于SVM需要花费大量时间,因此在应用SVM之前,我们将使用奇异值分解(Singular Value Decomposition )来减少TF-IDF中的特征数量。

同时,在使用SVM之前,我们还需要将数据标准化(Standardize Data )

#使用SVD进行降维,components设为120,对于SVM来说,SVD的components的合适调整区间一般为120~200
svd = decomposition.TruncatedSVD(n_components=120)
svd.fit(xtrain_tfv)
xtrain_svd = svd.transform(xtrain_tfv)
xvalid_svd = svd.transform(xvalid_tfv)

#对从SVD获得的数据进行缩放
scl = preprocessing.StandardScaler()
scl.fit(xtrain_svd)
xtrain_svd_scl = scl.transform(xtrain_svd)
xvalid_svd_scl = scl.transform(xvalid_svd)
现在是时候应用SVM模型进行文本分类了。 在运行以下单元格后,你可以去喝杯茶了—因为这将耗费大量的时间…

调用下SVM模型

clf = SVC(C=1.0, probability=True) # since we need probabilities
clf.fit(xtrain_svd_scl, ytrain)
predictions = clf.predict_proba(xvalid_svd_scl)

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))

#print(classification_report(predictions, yvalid))
logloss: 0.347
看起来,SVM在这些数据上表现还行。

在采用更高级的算法前,让我们再试试Kaggle上应用最流行的算法:xgboost!

基于tf-idf特征,使用xgboost

clf = xgb.XGBClassifier(max_depth=7, n_estimators=200, colsample_bytree=0.8,
subsample=0.8, nthread=10, learning_rate=0.1)
clf.fit(xtrain_tfv.tocsc(), ytrain)
predictions = clf.predict_proba(xvalid_tfv.tocsc())

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))

#print(classification_report(predictions, yvalid))
logloss: 0.182
效果不错,比SVM还牛呢!

基于word counts特征,使用xgboost

clf = xgb.XGBClassifier(max_depth=7, n_estimators=200, colsample_bytree=0.8,
subsample=0.8, nthread=10, learning_rate=0.1)
clf.fit(xtrain_ctv.tocsc(), ytrain)
predictions = clf.predict_proba(xvalid_ctv.tocsc())

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))

#print(classification_report(predictions, yvalid))
logloss: 0.154

基于tf-idf的svd特征,使用xgboost

clf = xgb.XGBClassifier(max_depth=7, n_estimators=200, colsample_bytree=0.8,
subsample=0.8, nthread=10, learning_rate=0.1)
clf.fit(xtrain_svd, ytrain)
predictions = clf.predict_proba(xvalid_svd)

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))

#print(classification_report(predictions, yvalid))
logloss: 0.394

再对经过数据标准化(Scaling)的tf-idf-svd特征使用xgboost

clf = xgb.XGBClassifier(nthread=10)
clf.fit(xtrain_svd_scl, ytrain)
predictions = clf.predict_proba(xvalid_svd_scl)

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))

#print(classification_report(predictions, yvalid))
logloss: 0.373
XGBoost的效果似乎挺棒的! 但我觉得还可以进一步优化,因为我还没有做过任何超参数优化。 我很懒,所以我会告诉你该怎么做,你可以自己做!)。 这将在下一节中讨论:

网格搜索(Grid Search)
网格搜索是一种超参数优化的技巧。 如果知道这个技巧,你可以通过获取最优的参数组合来产生良好的文本分类效果。

在本节中,我将讨论使用基于逻辑回归模型的网格搜索。

在开始网格搜索之前,我们需要创建一个评分函数,这可以通过scikit-learn的make_scorer函数完成的。

mll_scorer = metrics.make_scorer(multiclass_logloss, greater_is_better=False, needs_proba=True)
接下来,我们需要一个pipeline。 为了演示,我将使用由SVD(进行特征缩放)和逻辑回归模型组成的pipeline。

#SVD初始化
svd = TruncatedSVD()

Standard Scaler初始化

scl = preprocessing.StandardScaler()

再一次使用Logistic Regression

lr_model = LogisticRegression()

创建pipeline

clf = pipeline.Pipeline([(‘svd’, svd),
(‘scl’, scl),
(‘lr’, lr_model)])
接下来我们需要一个参数网格(A Grid of Parameters):

param_grid = {‘svd__n_components’ : [120, 180],
‘lr__C’: [0.1, 1.0, 10],
‘lr__penalty’: [‘l1’, ‘l2’]}
因此,对于SVD,我们评估120和180个分量(Components),对于逻辑回归,我们评估三个不同的学习率C值,其中惩罚函数为l1和l2。 现在,我们可以开始对这些参数进行网格搜索咯。

网格搜索模型(Grid Search Model)初始化

model = GridSearchCV(estimator=clf, param_grid=param_grid, scoring=mll_scorer,
verbose=10, n_jobs=-1, iid=True, refit=True, cv=2)

#fit网格搜索模型
model.fit(xtrain_tfv, ytrain) #为了减少计算量,这里我们仅使用xtrain
print(“Best score: %0.3f” % model.best_score_)
print(“Best parameters set:”)
best_parameters = model.best_estimator_.get_params()
for param_name in sorted(param_grid.keys()):
print(“\t%s: %r” % (param_name, best_parameters[param_name]))
Fitting 2 folds for each of 12 candidates, totalling 24 fits

OSError Traceback (most recent call last)
in ()
4
5 #fit网格搜索模型
----> 6 model.fit(xtrain_tfv, ytrain) #为了减少计算量,这里我们仅使用xtrain
7 print(“Best score: %0.3f” % model.best_score_)
8 print(“Best parameters set:”)

/opt/conda/lib/python3.5/site-packages/sklearn/model_selection/_search.py in fit(self, X, y, groups, **fit_params)
637 error_score=self.error_score)
638 for parameters, (train, test) in product(candidate_params,
–> 639 cv.split(X, y, groups)))
640
641 # if one choose to see train score, “out” will contain train score info

/opt/conda/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py in call(self, iterable)
787 # consumption.
788 self._iterating = False
–> 789 self.retrieve()
790 # Make sure that we get a last message telling us we are done
791 elapsed_time = time.time() - self._start_time

/opt/conda/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py in retrieve(self)
697 try:
698 if getattr(self._backend, ‘supports_timeout’, False):
–> 699 self._output.extend(job.get(timeout=self.timeout))
700 else:
701 self._output.extend(job.get())

/opt/conda/lib/python3.5/multiprocessing/pool.py in get(self, timeout)
642 return self._value
643 else:
–> 644 raise self._value
645
646 def _set(self, i, obj):

/opt/conda/lib/python3.5/multiprocessing/pool.py in _handle_tasks(taskqueue, put, outqueue, pool, cache)
422 break
423 try:
–> 424 put(task)
425 except Exception as e:
426 job, idx = task[:2]

/opt/conda/lib/python3.5/site-packages/sklearn/externals/joblib/pool.py in send(obj)
369 def send(obj):
370 buffer = BytesIO()
–> 371 CustomizablePickler(buffer, self._reducers).dump(obj)
372 self._writer.send_bytes(buffer.getvalue())
373 self._send = send

/opt/conda/lib/python3.5/site-packages/sklearn/externals/joblib/pool.py in call(self, a)
238 print(“Memmaping (shape=%r, dtype=%s) to new file %s” % (
239 a.shape, a.dtype, filename))
–> 240 for dumped_filename in dump(a, filename):
241 os.chmod(dumped_filename, FILE_PERMISSIONS)
242

/opt/conda/lib/python3.5/site-packages/sklearn/externals/joblib/numpy_pickle.py in dump(value, filename, compress, protocol, cache_size)
482 elif is_filename:
483 with open(filename, ‘wb’) as f:
–> 484 NumpyPickler(f, protocol=protocol).dump(value)
485 else:
486 NumpyPickler(filename, protocol=protocol).dump(value)

/opt/conda/lib/python3.5/pickle.py in dump(self, obj)
406 if self.proto >= 4:
407 self.framer.start_framing()
–> 408 self.save(obj)
409 self.write(STOP)
410 self.framer.end_framing()

/opt/conda/lib/python3.5/site-packages/sklearn/externals/joblib/numpy_pickle.py in save(self, obj)
276
277 # And then array bytes are written right after the wrapper.
–> 278 wrapper.write_array(obj, self)
279 return
280

/opt/conda/lib/python3.5/site-packages/sklearn/externals/joblib/numpy_pickle.py in write_array(self, array, pickler)
91 buffersize=buffersize,
92 order=self.order):
—> 93 pickler.file_handle.write(chunk.tostring(‘C’))
94
95 def read_array(self, unpickler):

OSError: [Errno 28] No space left on device
最终得分跟我们之前的SVM的结果相近。 这种技术可用于对xgboost甚至多项式朴素贝叶斯进行超参数调优。 我们将在这里使用tfidf数据,如下所示:

nb_model = MultinomialNB()

创建pipeline

clf = pipeline.Pipeline([(‘nb’, nb_model)])

搜索参数设置

param_grid = {‘nb__alpha’: [0.001, 0.01, 0.1, 1, 10, 100]}

网格搜索模型(Grid Search Model)初始化

model = GridSearchCV(estimator=clf, param_grid=param_grid, scoring=mll_scorer,
verbose=10, n_jobs=-1, iid=True, refit=True, cv=2)

fit网格搜索模型

model.fit(xtrain_tfv, ytrain) # 为了减少计算量,这里我们仅使用xtrain
print(“Best score: %0.3f” % model.best_score_)
print(“Best parameters set:”)
best_parameters = model.best_estimator_.get_params()
for param_name in sorted(param_grid.keys()):
print(“\t%s: %r” % (param_name, best_parameters[param_name]))
相比于之前的朴素贝叶斯,本次得分提高了8%!

自从2013年谷歌的Tomas Mikolov团队发明了word2vec以后,word2vec就成为了处理NLP问题的标配。word2vec训练向量空间模型的速度比以往的方法都快。许多新兴的词嵌入基于人工神经网络,而不是过去的n元语法模型和非监督式学习。

接下来,让我们来深入研究一下如何使用word2vec来进行NLP文本分类。

基于word2vec的词嵌入
在不深入细节的情况下,笔者将解释如何创建语句向量(Sentence Vectors),以及如何基于它们在其上创建机器学习模型。鄙人是GloVe向量,word2vec和fasttext的粉丝(但平时还是用word2vec较多)。在这篇文章中,笔者使用的文本分类模型是基于Word2vec词向量模型(100维)。

训练word2vec词向量:

X=data[‘文本分词’]
X=[i.split() for i in X]
X[:2]
[[‘\ufeff’,
‘【’,
‘文献号’,
‘】’,
‘1’,
‘-’,
‘2432’,
‘【’,
‘原文’,
‘出处’,
‘】’,
‘出版发行’,
‘研究’,
‘【’,
‘原刊’,
‘地名’,
‘】’,
‘京’,
‘【’,
‘原刊’,
‘期号’,
‘】’,
‘199601’,
‘【’,
‘原刊’,
‘页’,
‘号’,
‘】’,
‘40’,
‘-’,
‘41’,
‘【’,
‘分’,
‘类’,
‘号’,
‘】’,
‘Z1’,
‘【’,
‘分’,
‘类’,
‘名’,
‘】’,
‘出版’,
‘工作’,
‘、’,
‘图书’,
‘评介’,
‘【’,
‘作者’,
‘】’,
‘王益’,
‘【’,
‘复印’,
‘期号’,
‘】’,
‘199604’,
‘【’,
‘标题’,
‘】’,
‘美国’,
‘出版社’,
‘怎样’,
‘经营’,
‘管理’,
‘?’,
‘—’,
‘—’,
‘介绍’,
‘《’,
‘图书’,
‘出版’,
‘的’,
‘艺术’,
‘和’,
‘科学’,
‘》’,
‘【’,
‘正文’,
‘】’,
‘美国’,
‘出版’,
‘的’,
‘有关’,
‘图书’,
‘出版’,
‘的’,
‘专业书籍’,
‘,’,
‘概论’,
‘性’,
‘的’,
‘有’,
‘好几本’,
‘,’,
‘专讲’,
‘经营’,
‘管理’,
‘的’,
‘并不多’,
‘,’,
‘《’,
‘图书’,
‘出版’,
‘的’,
‘艺术’,
‘和’,
‘科学’,
‘》’,
‘(’,
‘The’,
‘Art’,
‘andScienceo’,
‘f’,
‘Book’,
‘Pblishing’,
‘)’,
‘是’,
‘经常’,
‘被’,
‘人’,
‘推荐’,
‘的’,
‘一本’,
‘。’,
‘作者’,
‘小’,
‘赫伯特’,
‘·’,
‘S’,
‘·’,
‘贝利’,
‘(’,
‘Herbert’,
‘·’,
‘S’,
‘·’,
‘Bailey’,
‘,’,
‘Jr’,
‘.’,
‘)’,
‘,’,
‘在’,
‘大学’,
‘文学系’,
‘毕业’,
‘之后’,
‘,’,
‘1946’,
‘年’,
‘进入’,
‘普林’,
‘斯顿’,
‘大学’,
‘出版社’,
‘当’,
‘了’,
‘8’,
‘年’,
‘编辑’,
‘,’,
‘1954’,
‘年’,
‘出任’,
‘该’,
‘出版社’,
‘社长’,
‘,’,
‘直至’,
‘1986’,
‘年’,
‘退休’,
‘,’,
‘从事’,
‘出版’,
‘工作’,
‘共’,
‘40’,
‘年’,
‘。’,
‘1970’,
‘年’,
‘,’,
‘他’,
‘写’,
‘了’,
‘这’,
‘本书’,
‘,’,
‘1980’,
‘年’,
‘再版’,
‘,’,
‘199’,
‘0’,
‘年三版’,
‘。’,
‘这’,
‘本书’,
‘,’,
‘广泛’,
‘地被’,
‘大学’,
‘采用’,
‘作’,
‘出版’,
‘课程’,
‘教材’,
‘,’,
‘也’,
‘被’,
‘出版社’,
‘工作人员’,
‘选作’,
‘参考’,
‘读物’,
‘。’,
‘从’,
‘1970’,
‘年’,
‘至’,
‘1990’,
‘年’,
‘,’,
‘时隔’,
‘20’,
‘年’,
‘,’,
‘他’,
‘认为’,
‘他’,
‘所’,
‘阐述’,
‘的’,
‘基本’,
‘原则’,
‘仍’,
‘是’,
‘正确’,
‘的’,
‘,’,
‘因而’,
‘出版’,
‘时’,
‘基本上’,
‘没有’,
‘修改’,
‘。’,
‘这’,
‘本书’,
‘是’,
‘作者’,
‘长期实践’,
‘经验’,
‘的’,
‘总结’,
‘,’,
‘他’,
‘也’,
‘从’,
‘管理科学’,
‘和’,
‘财会’,
‘科学’,
‘书籍’,
‘中’,
‘吸取’,
‘了’,
‘营养’,
‘,’,
‘并’,
‘听取’,
‘了’,
‘其他’,
‘出版家’,
‘的’,
‘意见’,
‘,’,
‘它’,
‘是’,
‘写给’,
‘出版社’,
‘的’,
‘社长’,
‘们’,
‘读’,
‘的’,
‘,’,
‘也’,
‘是’,
‘写给’,
‘出版社’,
‘所有’,
‘的’,
‘工作人员’,
‘读’,
‘的’,
‘。’,
‘有关’,
‘出版’,
‘工作’,
‘的’,
‘方方面面’,
‘,’,
‘它’,
‘都’,
‘涉及’,
‘到’,
‘了’,
‘。’,
‘他’,
‘对’,
‘各’,
‘项’,
‘工作’,
‘的’,
‘甜酸苦辣’,
‘好像’,
‘都’,
‘有’,
‘切身’,
‘的’,
‘体会’,
‘,’,
‘他’,
‘了解’,
‘其中’,
‘的’,
‘主要矛盾’,
‘和’,
‘麻烦’,
‘,’,
‘并’,
‘对’,
‘如何’,
‘解决’,
‘这些’,
‘问题’,
‘提出’,
‘了’,
‘很’,
‘好’,
‘的’,
‘建议’,
‘。’,
‘他’,
‘看’,
‘问题’,
‘全面’,
‘、’,
‘客观’,
‘,’,
‘立论’,
‘公正’,
‘,’,
‘处处’,
‘迸发出’,
‘智慧’,
‘的’,
‘火花’,
‘。’,
‘凡读’,
‘过’,
‘这’,
‘本书’,
‘的’,
‘人’,
‘,’,
‘都’,
‘会’,
‘感到’,
‘得益’,
‘。’,
‘美国’,
‘《’,
‘出版商’,
‘周刊’,
‘》’,
‘曾’,
‘在’,
‘书评’,
‘中’,
‘把’,
‘它’,
‘誉为’,
‘“’,
‘出版业’,
‘经营’,
‘管理’,
‘方面’,
‘不可’,
‘缺少’,
‘的’,
‘有’,
‘说服力’,
‘的’,
‘研究’,
‘著作’,
‘”’,
‘。’,
‘本书’,
‘从’,
‘论述’,
‘出版’,
‘工作’,
‘中’,
‘的’,
‘理性’,
‘和’,
‘非理性’,
‘开始’,
‘,’,
‘作者’,
‘认为’,
‘,’,
‘出版社’,
‘的’,
‘经营管理者’,
‘是’,
‘一个’,
‘有’,
‘理性’,
‘的’,
‘人’,
‘,’,
‘在’,
‘理性’,
‘的’,
‘环境’,
‘中’,
‘与’,
‘有’,
‘理性’,
‘的’,
‘人们’,
‘一道’,
‘工作’,
‘,’,
‘追求’,
‘可能’,
‘是’,
‘复杂’,
‘的’,
‘但’,
‘至少’,
‘可以’,
‘明确’,
‘表示’,
‘的’,
‘目标’,
‘,’,
‘而’,
‘整个’,
‘出版’,
‘活动’,
‘,’,
‘又’,
‘沉浸’,
‘在’,
‘非理性’,
‘的’,
‘大海’,
‘中’,
‘。’,
‘经营’,
‘管理’,
‘必须’,
‘把’,
‘非理性’,
‘因素’,
‘也’,
‘考虑’,
‘进去’,
‘,’,
‘而’,
‘不能’,
‘企图’,
‘将’,
‘其’,
‘纳入’,
‘既定’,
‘秩序’,
‘的’,
‘框架’,
‘之内’,
‘,’,
‘对’,
‘非理性’,
‘因素’,
‘,’,
‘要’,
‘在’,
‘内部’,
‘和’,
‘外部’,
‘和’,
‘它’,
‘生活’,
‘、’,
‘工作’,
‘在’,
‘一起’,
‘,’,
‘参与’,
‘进去’,
‘,’,
‘并且’,
‘试图’,
‘理解’,
‘它’,
‘,’,
‘甚至’,
‘促进’,
‘它’,
‘、’,
‘鼓励’,
‘它’,
‘、’,
‘批评’,
‘它’,
‘,’,
‘把’,
‘它’,
‘和’,
‘出版社’,
‘的’,
‘健康’,
‘现象’,
‘联系’,
‘起来’,
‘。’,
‘作者’,
‘认为’,
‘,’,
‘非理性’,
‘也’,
‘是’,
‘一种’,
‘重要’,
‘的’,
‘动力’,
‘,’,
‘许多’,
‘培育’,
‘出版业’,
‘成长’,
‘壮大’,
‘的’,
‘创造力’,
‘来自’,
‘非理性’,
‘,’,
‘来自’,
‘作’,
‘者’,
‘的’,
‘下意识’,
‘思想’,
‘的’,
‘活动’,
‘和’,
‘要求’,
‘;’,
‘我们’,
‘称之为’,
‘市场’,
‘的’,
‘读者群’,
‘同样’,
‘也’,
‘被’,
‘他们’,
‘特有’,
‘的’,
‘下意识’,
‘的’,
‘思想’,
‘和’,
‘要求’,
‘所’,
‘驱动’,
‘。’,
‘这些’,
‘观点’,
‘,’,
‘对’,
‘我们’,
‘来说’,
‘,’,
‘非常’,
‘陌生’,
‘,’,
‘但’,
‘可以’,
‘姑妄听之’,
‘,’,
‘以便’,
‘开阔’,
‘我们’,
‘的’,
‘思路’,
‘。’,
‘作者’,
‘在’,
‘随后’,
‘部分’,
‘中’,
‘论及’,
‘的’,
‘出版’,
‘工作’,
‘中’,
‘的’,
‘一些’,
‘原则’,
‘问题’,
‘,’,
‘例如’,
‘出版’,
‘的’,
‘文化’,
‘功能’,
‘和’,
‘企业’,
‘经营’,
‘的’,
‘关系’,
‘,’,
‘出版业’,
‘与’,
‘其他’,
‘行业’,
‘的’,
‘异同’,
‘,’,
‘盈利性’,
‘出版社’,
‘与’,
‘非盈利’,
‘出版社’,
‘的’,
‘区别’,
‘,’,
‘社会效益’,
‘与’,
‘经济效益’,
‘的’,
‘关系’,
‘,’,
‘质量’,
‘与’,
‘数量’,
‘的’,
‘关系’,
‘,’,
‘出版社’,
‘与’,
‘作者’,
‘的’,
‘关系’,
‘,’,
‘出版社’,
‘中领’,
‘导与’,
‘被’,
‘领导’,
‘的’,
‘关系’,
‘,’,
‘出版社’,
‘中’,
‘部门’,
‘与’,
‘部门’,
‘之间’,
‘的’,
‘沟通’,
‘与’,
‘协作’,
‘等’,
‘,’,
‘其’,
‘观点’,
‘倒’,
‘是’,
‘我们’,
‘很’,
‘熟悉’,
‘而且’,
‘容易’,
‘理解’,
‘的’,
‘;’,
‘甚至’,
‘有些’,
‘观点’,
‘与’,
‘我们’,
‘的’,
‘看法’,
‘是’,
‘相似’,
‘的’,
‘。’,
‘出版社’,
‘的’,
‘经营’,
‘管理’,
‘相当’,
‘复杂’,
‘,’,
‘既有’,
‘生产’,
‘,’,
‘又’,
‘有’,
‘销售’,
‘,’,
‘既有’,
‘精神’,
‘生产’,
‘,’,
‘又’,
‘有’,
‘物质’,
‘生产’,
‘,’,
‘而且’,
‘精神’,
‘生产’,
‘还是’,
‘主要’,
‘的’,
‘。’,
‘要’,
‘熟悉’,
‘出版社’,
‘的’,
‘全盘’,
‘业务’,
‘很’,
‘不’,
‘容易’,
‘,’,
‘但’,
‘作者’,
‘做到’,
‘了’,
‘这’,
‘一点’,
‘。’,
‘他’,
‘出身’,
‘于’,
‘编辑’,
‘,’,
‘认为’,
‘编辑’,
‘工作’,
‘也’,
‘在’,
‘经营’,
‘管理’,
‘的’,
‘范围’,
‘之内’,
‘,’,
‘但’,
‘在’,
‘本书’,
‘中’,
‘,’,
‘他’,
‘对’,
‘编辑’,
‘工作’,
‘却’,
‘着墨’,
‘不’,
‘多’,
‘。’,
‘他’,
‘强调’,
‘编辑’,
‘工’,
‘作’,
‘的’,
‘重要性’,
‘,’,
‘认为’,
‘出版’,
‘史是’,
‘出版’,
‘了’,
‘杰出’,
‘的’,
‘书’,
‘的’,
‘杰出’,
‘出版社’,
‘的’,
‘历史’,
‘;’,
‘出版社’,
‘所以’,
‘出名’,
‘,’,
‘是因为’,
‘出版’,
‘了’,
‘杰出’,
‘的’,
‘著作’,
‘,’,
‘而’,
‘不是’,
‘由于’,
‘经营’,
‘技巧’,
‘的’,
‘高明’,
‘,’,
‘当’,
‘然他’,
‘并’,
‘不’,
‘忽视’,
‘经营’,
‘管理’,
‘的’,
‘重要性’,
‘,’,
‘本书’,
‘毕竟’,
‘绝大部分’,
‘篇幅’,
‘是’,
‘谈’,
‘生产’,
‘、’,
‘销售’,
‘、’,
‘人事’,
‘、’,
‘财务’,
‘等’,
‘方面’,
‘的’,
‘事情’,
‘。’,
‘作者’,
‘精通’,
‘出版社’,
‘的’,
‘所有’,
‘各项’,
‘业务’,
‘,’,
‘并’,
‘不是’,
‘洞察’,
‘出版社’,
‘所有’,
‘各项’,
‘业务’,
‘的’,
‘细节’,
‘,’,
‘而是’,
‘对’,
‘各项’,
‘业务’,
‘都’,
‘有’,
‘深刻’,
‘的’,
‘了解’,
‘,’,
‘能够’,
‘进行’,
‘十分’,
‘精辟’,
‘的’,
‘分析’,
‘。’,
‘他’,
‘注意’,
‘出书’,
‘的’,
‘系统’,
‘,’,
‘认为’,
‘出版社’,
‘的’,
‘全部’,
‘出版物’,
‘应该’,
‘实际上’,
‘是’,
‘一套’,
‘或’,
‘若干套’,
‘丛书’,
‘。’,
‘出书’,
‘要’,
‘十分注意’,
‘质量’,
‘。’,
‘质量第一’,
‘,’,
‘但’,
‘并非’,
‘质量’,
‘是’,
‘唯一’,
‘。’,
‘有些’,
‘书’,
‘即使’,
‘是’,
‘能’,
‘赚钱’,
‘的’,
‘好书’,
‘,’,
‘但’,
‘如果’,
‘不’,
‘符合’,
‘出版社’,
‘出书’,
‘的’,
‘兴趣’,
‘、’,
‘品位’,
‘和’,
‘专业’,
‘范围’,
‘,’,
‘也’,
‘不’,
‘应该’,
‘出版’,
‘,’,
‘以免’,
‘有损于’,
‘出版社’,
‘的’,
‘形象’,
‘。’,
‘编辑’,
‘要’,
‘时刻’,
‘想到’,
‘是’,
‘为’,
‘作者’,
‘出书’,
‘而’,
‘不是’,
‘为’,
‘自己’,
‘出书’,
‘。’,
‘编辑’,
‘在’,
‘作者’,
‘面前’,
‘代表’,
‘出版社’,
‘但’,
‘要’,
‘注意’,
‘到’,
‘自己’,
‘不是’,
‘出版社’,
‘的’,
‘老板’,
‘。’,
‘美术设计’,
‘必须’,
‘在’,
‘经济实用’,
‘的’,
‘约束’,
‘下去’,
‘发掘’,
‘美的’,
‘特性’,
‘,’,
‘一本’,
‘精’,
‘美’,
‘图书’,
‘的’,
‘特性’,
‘就’,
‘在于’,
…],
[‘\ufeff’,
‘【’,
‘文献号’,
‘】’,
‘1’,
‘-’,
‘2435’,
‘【’,
‘原文’,
‘出处’,
‘】’,
‘扬州’,
‘师院’,
‘学报’,
‘:’,
‘社科’,
‘版’,
‘【’,
‘原刊’,
‘期号’,
‘】’,
‘199504’,
‘【’,
‘原刊’,
‘页’,
‘号’,
‘】’,
‘61’,
‘-’,
‘63’,
‘【’,
‘分’,
‘类’,
‘号’,
‘】’,
‘Z1’,
‘【’,
‘分’,
‘类’,
‘名’,
‘】’,
‘出版’,
‘工作’,
‘、’,
‘图书’,
‘评介’,
‘【’,
‘作者’,
‘】’,
‘王菊延’,
‘【’,
‘复印’,
‘期号’,
‘】’,
‘199604’,
‘【’,
‘标题’,
‘】’,
‘评’,
‘《’,
‘朱自清’,
‘散文’,
‘艺术论’,
‘》’,
‘【’,
‘正文’,
‘】’,
‘一’,
‘朱自清’,
‘是’,
‘中国’,
‘现代’,
‘文学史’,
‘上’,
‘负有’,
‘盛名’,
‘的’,
‘散文家’,
‘。’,
‘近’,
‘70’,
‘年来’,
‘,’,
‘文学’,
‘评论界’,
‘对’,
‘其’,
‘生活道路’,
‘、’,
‘思想’,
‘发展’,
‘和’,
‘艺术创作’,
‘的’,
‘研究’,
‘,’,
‘无疑’,
‘是’,
‘引人瞩目’,
‘的’,
‘。’,
‘但’,
‘也’,
‘毋庸讳言’,
‘,’,
‘囿于’,
‘理论体系’,
‘的’,
‘封闭’,
‘,’,
‘批评’,
‘视角’,
‘的’,
‘逼仄’,
‘以及’,
‘批评’,
‘方法’,
‘的’,
‘陈旧’,
‘,’,
‘这种’,
‘研究’,
‘实际上’,
‘长期’,
‘未能’,
‘攀抵’,
‘其’,
‘应有’,
‘的’,
‘高度’,
‘,’,
‘显露出’,
‘后滞’,
‘于’,
‘当前’,
‘文学’,
‘观念’,
‘开放’,
‘、’,
‘变革’,
‘形势’,
‘的’,
‘窘状’,
‘。’,
‘为了’,
‘弥补’,
‘上述’,
‘缺憾’,
‘,’,
‘吴周文’,
‘、’,
‘张王’,
‘飞’,
‘、’,
‘林道立’,
‘通力合作’,
‘,’,
‘适时地’,
‘推出’,
‘了’,
‘《’,
‘朱自清’,
‘散文’,
‘艺术论’,
‘》’,
‘(’,
‘江苏教育出版社’,
‘1’,
‘994’,
‘年’,
‘7’,
‘月’,
‘出版’,
‘)’,
‘。’,
‘这部’,
‘专著’,
‘的’,
‘面世’,
‘,’,
‘使’,
‘“’,
‘山重水复’,
‘”’,
‘的’,
‘朱自清’,
‘研究’,
‘平添’,
‘活力’,
‘,’,
‘步入’,
‘“’,
‘柳暗花明’,
‘”’,
‘的’,
‘新’,
‘境界’,
‘。’,
‘《’,
‘朱自清’,
‘散文’,
‘艺术论’,
‘》’,
‘具备’,
‘坚实’,
‘而’,
‘合理’,
‘的’,
‘批评’,
‘构架’,
‘,’,
‘除去’,
‘序言’,
‘、’,
‘附录’,
‘和’,
‘后记’,
‘以外’,
‘,’,
‘共分’,
‘11’,
‘章’,
‘。’,
‘首章’,
‘“’,
‘朱自清’,
‘论’,
‘”’,
‘,’,
‘对’,
‘全书’,
‘作’,
‘了’,
‘总’,
‘的’,
‘提挈’,
‘,’,
‘使’,
‘读者’,
‘对’,
‘这位’,
‘散文家’,
‘的’,
‘生平’,
‘、’,
‘思想’,
‘、’,
‘创作’,
‘历程’,
‘等’,
‘,’,
‘先’,
‘获取’,
‘一个’,
‘完整’,
‘的’,
‘印象’,
‘。’,
‘第’,
‘2’,
‘章至’,
‘第’,
‘10’,
‘章’,
‘,’,
‘旁征博引’,
‘、’,
‘条分缕析’,
‘,’,
‘对’,
‘朱自清’,
‘散文’,
‘“’,
‘审美’,
‘创造’,
‘工程’,
‘”’,
‘进行’,
‘多’,
‘侧面’,
‘、’,
‘深层次’,
‘的’,
‘探讨’,
‘与’,
‘阐释’,
‘;’,
‘让’,
‘读者’,
‘在’,
‘充分’,
‘了解’,
‘创作’,
‘主体’,
‘美学’,
‘原则’,
‘、’,
‘审美’,
‘心理’,
‘、’,
‘艺术’,
‘思维’,
‘方式’,
‘以及’,
‘审美’,
‘理想’,
‘与’,
‘人格’,
‘理想’,
‘的’,
‘基础’,
‘上’,
‘,’,
‘去’,
‘进’,
‘一步’,
‘认识’,
‘朱自清’,
‘“’,
‘美文’,
‘”’,
‘结构’,
‘、’,
‘语言’,
‘、’,
‘技巧’,
‘、’,
‘风格’,
‘等’,
‘方面’,
‘的’,
‘个性特征’,
‘。’,
‘第’,
‘11’,
‘章’,
‘“’,
‘名作’,
‘新论’,
‘”’,
‘,’,
‘是’,
‘与’,
‘上述’,
‘宏观’,
‘概览’,
‘相辅相成’,
‘的’,
‘微观’,
‘剖析’,
‘,’,
‘使’,
‘朱自清’,
‘那些’,
‘脍炙人口’,
‘的’,
‘散文’,
‘名篇’,
‘更添’,
‘异彩’,
‘,’,
‘给’,
‘读者’,
‘以新’,
‘的’,
‘阅读’,
‘感受’,
‘。’,
‘本书’,
‘作者’,
‘努力’,
‘运用’,
‘哲学’,
‘、’,
‘美学’,
‘、’,
‘文艺’,
‘心理学’,
‘交叉’,
‘结合’,
‘的’,
‘“’,
‘切入’,
‘”’,
‘方法’,
‘,’,
‘将’,
‘朱自清’,
‘及’,
‘其’,
‘散文’,
‘的’,
‘研究’,
‘,’,
‘从’,
‘“’,
‘文本’,
‘”’,
‘的’,
‘层面’,
‘拓展’,
‘到’,
‘“’,
‘人学’,
‘”’,
‘的’,
‘层面’,
‘,’,
‘从’,
‘社会学’,
‘批评’,
‘的’,
‘模式’,
‘升华’,
‘到’,
‘审美’,
‘创造’,
‘的’,
‘模式’,
‘。’,
‘这样’,
‘,’,
‘《’,
‘朱自清’,
‘散文’,
‘艺术论’,
‘》’,
‘便’,
‘实现’,
‘了’,
‘作者’,
‘的’,
‘初衷’,
‘—’,
‘—’,
‘回到’,
‘现代’,
‘散文’,
‘“’,
‘意在’,
‘表现’,
‘自己’,
‘”’,
‘的’,
‘美学’,
‘原则’,
‘,’,
‘回到’,
‘文学’,
‘审美’,
‘创造’,
‘的’,
‘自身’,
‘,’,
‘回到’,
‘文学批评’,
‘的’,
‘哲学’,
‘与’,
‘美学’,
‘。’,
‘二’,
‘艺术’,
‘创造’,
‘是’,
‘一项’,
‘繁复’,
‘的’,
‘工程’,
‘,’,
‘对’,
‘其’,
‘作出’,
‘精当’,
‘的’,
‘研究’,
‘,’,
‘必须’,
‘将’,
‘探索’,
‘的’,
‘目光’,
‘首先’,
‘投向’,
‘创作’,
‘主体’,
‘,’,
‘准确’,
‘地’,
‘阐释’,
‘作家’,
‘丰富’,
‘、’,
‘独特’,
‘的’,
‘艺术’,
‘心灵’,
‘,’,
‘是’,
‘如何’,
‘与’,
‘外部’,
‘客观’,
‘世界’,
‘相遇’,
‘合’,
‘、’,
‘相’,
‘投契’,
‘的’,
‘。’,
‘《’,
‘朱自清’,
‘散文’,
‘艺术论’,
‘》’,
‘正是’,
‘在’,
‘这’,
‘一点’,
‘上’,
‘显示’,
‘了’,
‘对’,
‘既往’,
‘研究’,
‘水准’,
‘的’,
‘超越’,
‘。’,
‘在’,
‘中国’,
‘现代’,
‘文学史’,
‘上’,
‘,’,
‘朱自清’,
‘第一次’,
‘提出’,
‘了’,
‘现代’,
‘散文’,
‘的’,
‘一条’,
‘美学’,
‘原则’,
‘:’,
‘“’,
‘意在’,
‘表现’,
‘自己’,
‘。’,
‘”’,
‘当然’,
‘,’,
‘明晰’,
‘地’,
‘指出’,
‘这一’,
‘有目共睹’,
‘的’,
‘现象’,
‘,’,
‘并’,
‘不十’,
‘分’,
‘困难’,
‘,’,
‘但’,
‘进一步’,
‘深刻’,
‘地’,
‘剖析’,
‘其’,
‘产生’,
‘的’,
‘历史背景’,
‘与’,
‘现实’,
‘背景’,
‘,’,
‘并’,
‘结合’,
‘具体’,
‘作品’,
‘揭示’,
‘朱自清’,
‘早期’,
‘散文’,
‘创作’,
‘中’,
‘“’,
‘苦恼’,
‘意识’,
‘”’,
‘的’,
‘三种’,
‘形态’,
‘,’,
‘以’,
‘证明’,
‘这’,
‘条’,
‘看似’,
‘漫不经心’,
‘提出’,
‘的’,
‘美学’,
‘原则’,
‘,’,
‘实乃’,
‘“’,
‘朱自清’,
‘散文’,
‘创作’,
‘审美’,
‘经验’,
‘的’,
‘一个’,
‘总结’,
‘”’,
‘,’,
‘便’,
‘不是’,
‘一般’,
‘评论者’,
‘所’,
‘能’,
‘轻易’,
‘企及’,
‘的’,
‘了’,
‘。’,
‘值得’,
‘称道’,
‘的’,
‘是’,
‘,’,
‘本书’,
‘对’,
‘“’,
‘意在’,
‘表现’,
‘自己’,
‘”’,
‘的’,
‘美学’,
‘原则’,
‘所’,
‘具备’,
‘的’,
‘理论’,
‘上’,
‘、’,
‘创作’,
‘上’,
‘的’,
‘不容忽视’,
‘的’,
‘意义’,
‘,’,
‘作’,
‘了’,
‘如下’,
‘精辟’,
‘的’,
‘概括’,
‘:’,
‘“’,
‘建立’,
‘了’,
‘以’,
‘作者’,
‘个性’,
‘为’,
‘本位’,
‘的’,
‘现代’,
‘散文’,
‘观念’,
‘”’,
‘,’,
‘“’,
‘沟通’,
‘了’,
‘现代’,
‘散文’,
‘与’,
‘外国’,
‘随笔’,
‘体’,
‘散文’,
‘之间’,
‘内在’,
‘的’,
‘精神’,
‘联系’,
‘”’,
‘,’,
‘“’,
‘揭示’,
‘了’,
‘现代’,
‘散文’,
‘表现’,
‘作者’,
‘人格’,
‘色彩’,
‘与’,
‘深层’,
‘精神’,
‘世界’,
‘的’,
‘审美’,
‘价值’,
‘”’,
‘等等’,
‘。’,
‘窃以为’,
‘,’,
‘将’,
‘朱自清’,
‘散文’,
‘创作’,
‘的’,
‘美学’,
‘原则’,
‘置放’,
‘于’,
‘如此’,
‘突出’,
‘的’,
‘地位’,
‘,’,
‘且’,
‘又’,
‘给予’,
‘如许’,
‘客观’,
‘、’,
‘准确’,
‘、’,
‘全面’,
‘、’,
‘富有’,
‘启迪’,
‘性’,
‘的’,
‘评价’,
‘,’,
‘这’,
‘在’,
‘朱自清’,
‘研究’,
‘史上’,
‘,’,
‘似乎’,
‘是’,
‘开拓’,
‘性’,
‘的’,
‘。’,
‘凡’,
‘熟读’,
‘朱自清’,
‘艺术性’,
‘散文’,
‘的’,
‘人’,
‘,’,
‘莫不’,
‘为’,
‘作品’,
‘中’,
‘那些’,
‘新颖’,
‘、’,
‘独特’,
‘、’,
‘生动’,
‘、’,
‘怪异’,
‘的’,
‘艺术’,
‘感觉’,
‘所’,
‘折服’,
‘。’,
‘然而’,
‘,’,
‘通常’,
‘的’,
‘情况’,
‘是’,
‘,’,
‘有些’,
‘评论者’,
‘在’,
‘获得’,
‘了’,
‘审美’,
‘鉴赏’,
‘的’,
‘愉悦’,
‘之后’,
‘,’,
‘便’,
‘停止’,
‘“’,
‘追踪’,
‘”’,
‘,’,
‘消弥’,
‘了’,
‘再’,
‘向前’,
‘跨越’,
‘一步’,
‘,’,
‘作’,
‘深层次’,
‘理论’,
‘探讨’,
‘的’,
‘欲念’,
‘。’,
‘《’,
‘朱自清’,
‘散文’,
‘艺术论’,
‘》’,
‘则’,
‘不然’,
‘,’,
‘在’,
‘精细’,
‘地’,
‘梳理’,
‘出朱’,
‘自清’,
‘艺术’,
‘感觉’,
‘的’,
‘种种’,
‘表现’,
‘形态’,
‘以后’,
‘,’,
‘又’,
‘执着’,
‘地向’,
‘纵深’,
‘锲进’,
‘,’,
‘终至’,
‘成功’,
‘地’,
‘追寻’,
‘出’,
‘这种’,
‘艺术’,
‘感觉’,
‘的’,
‘真正’,
‘源头’,
‘。’,
‘作者’,
‘认为’,
‘:’,
‘五官’,
‘协调’,
‘并用’,
‘、’,
‘极富’,
‘穿透力’,
‘的’,
‘独到’,
‘观察’,
‘,’,
‘求异’,
‘思维’,
‘、’,
‘沉醉’,
‘致幻’,
‘的’,
‘创造性’,
‘想象’,
‘,’,
‘以及’,
‘由’,
‘个人’,
‘遥远’,
‘回忆’,
‘、’,
‘附丽’,
‘着’,
‘美好’,
‘人格’,
‘理想’,
‘的’,
‘自然’,
‘景物’,
‘和’,
‘精神’,
‘深处’,
‘的’,
‘痛苦’,
‘所’,
‘引发’,
‘的’,
‘审美’,
‘心理’,
‘感’,
‘应’,
‘,’,
‘是’,
‘朱自清’,
‘散文’,
‘中’,
‘艺术’,
‘感觉’,
‘生成’,
‘、’,
‘活跃’,
‘的’,
‘三个’,
‘原因’,
‘。’,
‘显然’,
‘,’,
‘这样’,
‘的’,
‘阐述’,
‘,’,
‘既’,
‘没有’,
‘彻底’,
‘偏离’,
‘习见’,
‘的’,
‘理论体系’,
‘所’,
‘规范’,
‘的’,
‘“’,
‘通用’,
‘”’,
‘途径’,
‘,’,
‘又’,
‘推陈出新’,
‘、’,
‘别开生面’,
‘地以’,
‘审美’,
‘心理学’,
‘的’,
‘普遍规律’,
‘为’,
‘依据’,
‘、’,
‘作’,
‘后盾’,
‘,’,
‘因此’,
‘,’,
‘它’,
‘之’,
‘成为’,
‘一种’,
‘与’,
‘创作’,
‘主体’,
‘的’,
‘实践’,
‘过程’,
‘相吻合’,
‘的’,
‘科学论断’,
‘,’,
‘便是’,
‘必然’,
‘的’,
‘了’,
‘。’,
‘在’,
‘进行’,
‘艺术’,
‘创造’,
‘的’,
‘过程’,
‘中’,
‘,’,
‘艺术’,
‘思维’,
‘虽隐变’,
‘遁形’,
‘,’,
‘却’,
‘分明’,
…]]

训练word2vec词向量:

import gensim

model = gensim.models.Word2Vec(X,min_count =5,window =8,size=100) # X是经分词后的文本构成的list,也就是tokens的列表的列表
embeddings_index = dict(zip(model.wv.index2word, model.wv.vectors))

print(‘Found %s word vectors.’ % len(embeddings_index))
Found 119775 word vectors.
/opt/conda/lib/python3.5/site-packages/ipykernel_launcher.py:5: DeprecationWarning: Call to deprecated syn0 (Attribute will be removed in 4.0.0, use self.wv.vectors instead).
“”"
X是经分词后的文本构成的list,也就是tokens的列表的列表。

注意,Word2Vec还有3个值得关注的参数,iter是模型训练时迭代的次数,假如参与训练的文本量较少,就需要把这个参数调大一些;sg是模型训练算法的类别,1 代表 skip-gram,;0代表 CBOW;window控制窗口,它指当前词和预测词之间的最大距离,如果设得较小,那么模型学习到的是词汇间的功能性特征(词性相异),如果设置得较大,会学习到词汇之间的相似性特征(词性相同)的大小,假如语料够多,笔者一般会设置得大一些,8~10。

model[‘汽车’]
#该函数会将语句转化为一个标准化的向量(Normalized Vector)
#import nltk
#nltk.download(‘punkt’)

def sent2vec(s):
import jieba
jieba.enable_parallel() #并行分词开启
words = str(s).lower()
#words = word_tokenize(words)
words = jieba.lcut(words)
words = [w for w in words if not w in stwlist]
#words = [w for w in words if w.isalpha()]
M = []
for w in words:
try:
#M.append(embeddings_index[w])
M.append(model[w])
except:
continue
M = np.array(M)
v = M.sum(axis=0)
if type(v) != np.ndarray:
return np.zeros(300)
return v / np.sqrt((v ** 2).sum())

对训练集和验证集使用上述函数,进行文本向量化处理

xtrain_w2v = [sent2vec(x) for x in tqdm(xtrain)]
xvalid_w2v = [sent2vec(x) for x in tqdm(xvalid)]
0%| | 0/8324 [00:00<?, ?it/s]/opt/conda/lib/python3.5/site-packages/ipykernel_launcher.py:17: DeprecationWarning: Call to deprecated __getitem__ (Method will be removed in 4.0.0, use self.wv.getitem() instead).

0%| | 1/8324 [00:00<2:09:34, 1.07it/s]
0%| | 2/8324 [00:02<2:44:04, 1.18s/it]
0%| | 3/8324 [00:03<2:22:56, 1.03s/it]
0%| | 4/8324 [00:04<2:37:37, 1.14s/it]
0%| | 5/8324 [00:06<3:07:50, 1.35s/it]
0%| | 6/8324 [00:09<4:20:49, 1.88s/it]
0%| | 7/8324 [00:11<4:10:20, 1.81s/it]
0%| | 8/8324 [00:15<5:48:11, 2.51s/it]
0%| | 9/8324 [00:17<5:42:13, 2.47s/it]
0%| | 10/8324 [00:19<5:15:02, 2.27s/it]
0%| | 11/8324 [00:20<4:30:08, 1.95s/it]
0%| | 12/8324 [00:21<3:52:30, 1.68s/it]
0%| | 13/8324 [00:22<3:12:46, 1.39s/it]
0%| | 14/8324 [00:26<4:41:25, 2.03s/it]
0%| | 15/8324 [00:26<3:32:36, 1.54s/it]
0%| | 16/8324 [00:27<2:47:44, 1.21s/it]
0%| | 17/8324 [00:28<3:14:09, 1.40s/it]
0%| | 18/8324 [00:29<2:58:13, 1.29s/it]
0%| | 19/8324 [00:30<2:17:34, 1.01it/s]
0%| | 20/8324 [00:34<4:19:28, 1.87s/it]
0%| | 21/8324 [00:35<3:47:49, 1.65s/it]
0%| | 22/8324 [00:37<3:59:01, 1.73s/it]
0%| | 23/8324 [00:39<4:32:04, 1.97s/it]
0%| | 24/8324 [00:42<5:07:37, 2.22s/it]
0%| | 25/8324 [00:44<4:44:37, 2.06s/it]
0%| | 26/8324 [00:47<5:23:35, 2.34s/it]
0%| | 27/8324 [00:48<4:40:51, 2.03s/it]
0%| | 28/8324 [00:48<3:31:07, 1.53s/it]
0%| | 29/8324 [00:50<3:25:29, 1.49s/it]
0%| | 30/8324 [00:53<4:32:17, 1.97s/it]
0%| | 31/8324 [00:56<5:02:36, 2.19s/it]
0%| | 32/8324 [00:58<4:57:28, 2.15s/it]
0%| | 33/8324 [00:59<4:38:57, 2.02s/it]
0%| | 34/8324 [01:00<4:01:08, 1.75s/it]
0%| | 35/8324 [01:01<3:14:44, 1.41s/it]
0%| | 36/8324 [01:03<3:25:54, 1.49s/it]
0%| | 37/8324 [01:04<3:19:34, 1.44s/it]
0%| | 38/8324 [01:04<2:33:22, 1.11s/it]
0%| | 39/8324 [01:07<3:38:28, 1.58s/it]
0%| | 40/8324 [01:08<3:28:11, 1.51s/it]
0%| | 41/8324 [01:09<2:56:40, 1.28s/it]
1%| | 42/8324 [01:11<3:40:43, 1.60s/it]
1%| | 43/8324 [01:12<2:55:38, 1.27s/it]
1%| | 44/8324 [01:15<3:55:57, 1.71s/it]
1%| | 45/8324 [01:16<3:57:42, 1.72s/it]
1%| | 46/8324 [01:18<3:43:01, 1.62s/it]
1%| | 47/8324 [01:19<3:39:32, 1.59s/it]
1%| | 48/8324 [01:24<5:37:29, 2.45s/it]
1%| | 49/8324 [01:25<4:58:31, 2.16s/it]
1%| | 50/8324 [01:28<5:26:51, 2.37s/it]
1%| | 51/8324 [01:29<4:33:49, 1.99s/it]
1%| | 52/8324 [01:30<3:40:53, 1.60s/it]
1%| | 53/8324 [01:35<5:56:30, 2.59s/it]
1%| | 54/8324 [01:36<4:56:23, 2.15s/it]
1%| | 55/8324 [01:40<6:24:10, 2.79s/it]
1%| | 56/8324 [01:43<6:36:42, 2.88s/it]
1%| | 57/8324 [01:45<5:37:46, 2.45s/it]
1%| | 58/8324 [01:47<5:40:20, 2.47s/it]
1%| | 59/8324 [01:49<5:12:11, 2.27s/it]
1%| | 60/8324 [01:51<4:53:31, 2.13s/it]
1%| | 61/8324 [01:51<3:47:01, 1.65s/it]
1%| | 62/8324 [01:53<3:29:19, 1.52s/it]
1%| | 63/8324 [01:55<4:02:15, 1.76s/it]
1%| | 64/8324 [01:57<4:03:45, 1.77s/it]
1%| | 65/8324 [01:58<3:48:37, 1.66s/it]
1%| | 66/8324 [01:59<3:11:53, 1.39s/it]
1%| | 67/8324 [02:01<3:52:49, 1.69s/it]
1%| | 68/8324 [02:02<3:29:00, 1.52s/it]
1%| | 69/8324 [02:04<3:16:53, 1.43s/it]
1%| | 70/8324 [02:07<4:31:35, 1.97s/it]
1%| | 71/8324 [02:09<4:31:50, 1.98s/it]
1%| | 72/8324 [02:09<3:29:28, 1.52s/it]
1%| | 73/8324 [02:10<2:49:00, 1.23s/it]
1%| | 74/8324 [02:11<2:41:49, 1.18s/it]
1%| | 75/8324 [02:11<2:13:26, 1.03it/s]
1%| | 76/8324 [02:13<2:30:22, 1.09s/it]
1%| | 77/8324 [02:17<4:22:50, 1.91s/it]
1%| | 78/8324 [02:19<4:20:07, 1.89s/it]
1%| | 79/8324 [02:19<3:36:32, 1.58s/it]
1%| | 80/8324 [02:20<3:17:08, 1.43s/it]
1%| | 81/8324 [02:22<3:31:54, 1.54s/it]
1%| | 82/8324 [02:23<2:46:05, 1.21s/it]
1%| | 83/8324 [02:25<3:31:50, 1.54s/it]
1%| | 84/8324 [02:27<3:59:59, 1.75s/it]
1%| | 85/8324 [02:28<3:03:33, 1.34s/it]
1%| | 86/8324 [02:31<4:28:44, 1.96s/it]
1%| | 87/8324 [02:33<4:09:25, 1.82s/it]
1%| | 88/8324 [02:34<3:56:17, 1.72s/it]
1%| | 89/8324 [02:37<5:07:15, 2.24s/it]
1%| | 90/8324 [02:39<4:20:12, 1.90s/it]
1%| | 91/8324 [02:40<4:06:46, 1.80s/it]
1%| | 92/8324 [02:42<4:09:03, 1.82s/it]
1%| | 93/8324 [02:43<3:28:32, 1.52s/it]
1%| | 94/8324 [02:43<2:49:58, 1.24s/it]
1%| | 95/8324 [02:45<3:20:07, 1.46s/it]
1%| | 96/8324 [02:48<3:59:03, 1.74s/it]
1%| | 97/8324 [02:51<4:46:38, 2.09s/it]
1%| | 98/8324 [02:52<4:04:23, 1.78s/it]
1%| | 99/8324 [02:53<4:00:55, 1.76s/it]
1%| | 100/8324 [02:55<4:05:15, 1.79s/it]
1%| | 101/8324 [02:57<4:13:13, 1.85s/it]
1%| | 102/8324 [02:59<3:53:09, 1.70s/it]
1%| | 103/8324 [03:01<4:17:50, 1.88s/it]
1%| | 104/8324 [03:04<5:06:08, 2.23s/it]
1%|▏ | 105/8324 [03:07<5:17:54, 2.32s/it]
1%|▏ | 106/8324 [03:09<5:13:29, 2.29s/it]
1%|▏ | 107/8324 [03:09<4:03:47, 1.78s/it]
1%|▏ | 108/8324 [03:12<4:19:24, 1.89s/it]
1%|▏ | 109/8324 [03:13<4:12:23, 1.84s/it]
1%|▏ | 110/8324 [03:15<4:05:46, 1.80s/it]
1%|▏ | 111/8324 [03:15<3:11:38, 1.40s/it]
1%|▏ | 112/8324 [03:18<3:50:43, 1.69s/it]
1%|▏ | 113/8324 [03:19<3:45:38, 1.65s/it]
1%|▏ | 114/8324 [03:22<4:12:42, 1.85s/it]
1%|▏ | 115/8324 [03:22<3:18:36, 1.45s/it]
1%|▏ | 116/8324 [03:24<3:33:39, 1.56s/it]
1%|▏ | 117/8324 [03:26<4:07:31, 1.81s/it]
1%|▏ | 118/8324 [03:27<3:24:55, 1.50s/it]
1%|▏ | 119/8324 [03:30<4:08:37, 1.82s/it]
1%|▏ | 120/8324 [03:30<3:16:04, 1.43s/it]
1%|▏ | 121/8324 [03:33<3:52:00, 1.70s/it]
1%|▏ | 122/8324 [03:35<4:09:54, 1.83s/it]
1%|▏ | 123/8324 [03:37<4:18:24, 1.89s/it]
1%|▏ | 124/8324 [03:41<6:09:49, 2.71s/it]
2%|▏ | 125/8324 [03:43<5:24:37, 2.38s/it]
2%|▏ | 126/8324 [03:43<4:05:17, 1.80s/it]
2%|▏ | 127/8324 [03:45<4:16:18, 1.88s/it]
2%|▏ | 128/8324 [03:47<4:16:53, 1.88s/it]
2%|▏ | 129/8324 [03:49<4:11:04, 1.84s/it]
2%|▏ | 130/8324 [03:50<3:40:11, 1.61s/it]
2%|▏ | 131/8324 [03:51<2:56:56, 1.30s/it]
2%|▏ | 132/8324 [03:52<3:09:18, 1.39s/it]
2%|▏ | 133/8324 [03:53<2:49:30, 1.24s/it]
2%|▏ | 134/8324 [03:56<3:49:51, 1.68s/it]
2%|▏ | 135/8324 [03:58<4:17:23, 1.89s/it]
2%|▏ | 136/8324 [03:59<3:31:41, 1.55s/it]
2%|▏ | 137/8324 [04:00<3:27:41, 1.52s/it]
2%|▏ | 138/8324 [04:04<4:36:21, 2.03s/it]
2%|▏ | 139/8324 [04:06<4:37:43, 2.04s/it]
2%|▏ | 140/8324 [04:09<5:13:16, 2.30s/it]
2%|▏ | 141/8324 [04:13<6:26:02, 2.83s/it]
2%|▏ | 142/8324 [04:14<5:26:51, 2.40s/it]
2%|▏ | 143/8324 [04:16<5:11:06, 2.28s/it]
2%|▏ | 144/8324 [04:17<4:30:16, 1.98s/it]
2%|▏ | 145/8324 [04:19<4:01:55, 1.77s/it]
2%|▏ | 146/8324 [04:20<3:47:04, 1.67s/it]
2%|▏ | 147/8324 [04:22<3:48:08, 1.67s/it]
2%|▏ | 148/8324 [04:23<3:41:55, 1.63s/it]
2%|▏ | 149/8324 [04:25<3:40:27, 1.62s/it]
2%|▏ | 150/8324 [04:27<3:39:42, 1.61s/it]
2%|▏ | 151/8324 [04:30<4:47:55, 2.11s/it]
2%|▏ | 152/8324 [04:30<3:45:43, 1.66s/it]
2%|▏ | 153/8324 [04:32<3:35:30, 1.58s/it]
2%|▏ | 154/8324 [04:33<3:16:27, 1.44s/it]
2%|▏ | 155/8324 [04:36<4:28:58, 1.98s/it]
2%|▏ | 156/8324 [04:39<5:11:38, 2.29s/it]
2%|▏ | 157/8324 [04:40<4:27:47, 1.97s/it]
2%|▏ | 158/8324 [04:43<4:47:22, 2.11s/it]
2%|▏ | 159/8324 [04:45<5:05:57, 2.25s/it]
2%|▏ | 160/8324 [04:48<5:20:29, 2.36s/it]
2%|▏ | 161/8324 [04:50<4:49:23, 2.13s/it]
2%|▏ | 162/8324 [04:53<5:49:48, 2.57s/it]
2%|▏ | 163/8324 [04:55<5:28:10, 2.41s/it]
2%|▏ | 164/8324 [04:57<4:52:33, 2.15s/it]
2%|▏ | 165/8324 [04:59<4:58:06, 2.19s/it]
2%|▏ | 166/8324 [05:03<5:52:21, 2.59s/it]
2%|▏ | 167/8324 [05:04<4:59:04, 2.20s/it]
2%|▏ | 168/8324 [05:08<6:25:24, 2.84s/it]
2%|▏ | 169/8324 [05:09<5:20:22, 2.36s/it]
2%|▏ | 170/8324 [05:12<5:17:19, 2.34s/it]
2%|▏ | 171/8324 [05:14<5:24:19, 2.39s/it]
2%|▏ | 172/8324 [05:17<5:19:56, 2.35s/it]
2%|▏ | 173/8324 [05:19<5:38:47, 2.49s/it]
2%|▏ | 174/8324 [05:21<4:55:55, 2.18s/it]
2%|▏ | 175/8324 [05:23<5:13:18, 2.31s/it]
2%|▏ | 176/8324 [05:25<4:40:53, 2.07s/it]
2%|▏ | 177/8324 [05:29<6:08:34, 2.71s/it]
2%|▏ | 178/8324 [05:31<5:16:20, 2.33s/it]
2%|▏ | 179/8324 [05:32<4:45:57, 2.11s/it]
2%|▏ | 180/8324 [05:33<4:02:07, 1.78s/it]
2%|▏ | 181/8324 [05:34<3:10:12, 1.40s/it]
2%|▏ | 182/8324 [05:35<3:19:20, 1.47s/it]
2%|▏ | 183/8324 [05:37<3:45:23, 1.66s/it]
2%|▏ | 184/8324 [05:41<5:02:21, 2.23s/it]
2%|▏ | 185/8324 [05:44<5:35:38, 2.47s/it]
2%|▏ | 186/8324 [05:47<5:46:53, 2.56s/it]
2%|▏ | 187/8324 [05:48<5:07:54, 2.27s/it]
2%|▏ | 188/8324 [05:51<5:12:22, 2.30s/it]
2%|▏ | 189/8324 [05:55<6:24:45, 2.84s/it]
2%|▏ | 190/8324 [05:59<7:17:08, 3.22s/it]
2%|▏ | 191/8324 [06:02<7:00:03, 3.10s/it]
2%|▏ | 192/8324 [06:02<5:18:02, 2.35s/it]
2%|▏ | 193/8324 [06:03<4:05:24, 1.81s/it]
2%|▏ | 194/8324 [06:05<4:18:46, 1.91s/it]
2%|▏ | 195/8324 [06:07<4:23:56, 1.95s/it]
2%|▏ | 196/8324 [06:09<4:38:46, 2.06s/it]
2%|▏ | 197/8324 [06:13<5:37:54, 2.49s/it]
2%|▏ | 198/8324 [06:15<5:24:04, 2.39s/it]
2%|▏ | 199/8324 [06:17<4:45:10, 2.11s/it]
2%|▏ | 200/8324 [06:18<4:39:41, 2.07s/it]
2%|▏ | 201/8324 [06:24<6:44:10, 2.99s/it]
2%|▏ | 202/8324 [06:26<6:06:19, 2.71s/it]
2%|▏ | 203/8324 [06:26<4:43:45, 2.10s/it]
2%|▏ | 204/8324 [06:28<4:08:45, 1.84s/it]
2%|▏ | 205/8324 [06:29<3:53:06, 1.72s/it]
2%|▏ | 206/8324 [06:36<7:27:43, 3.31s/it]
2%|▏ | 207/8324 [06:38<6:25:36, 2.85s/it]
2%|▏ | 208/8324 [06:41<6:44:46, 2.99s/it]
3%|▎ | 209/8324 [06:43<5:53:05, 2.61s/it]
3%|▎ | 210/8324 [06:46<5:54:11, 2.62s/it]
3%|▎ | 211/8324 [06:48<5:31:30, 2.45s/it]
3%|▎ | 212/8324 [06:50<5:10:59, 2.30s/it]
3%|▎ | 213/8324 [06:53<5:39:58, 2.51s/it]
3%|▎ | 214/8324 [06:54<5:12:13, 2.31s/it]
3%|▎ | 215/8324 [06:55<4:08:36, 1.84s/it]
3%|▎ | 216/8324 [06:57<4:13:52, 1.88s/it]
3%|▎ | 217/8324 [06:58<3:55:07, 1.74s/it]
3%|▎ | 218/8324 [07:01<4:25:41, 1.97s/it]
3%|▎ | 219/8324 [07:06<6:13:06, 2.76s/it]
3%|▎ | 220/8324 [07:07<5:26:02, 2.41s/it]
3%|▎ | 221/8324 [07:08<4:37:14, 2.05s/it]
3%|▎ | 222/8324 [07:09<3:41:56, 1.64s/it]
3%|▎ | 223/8324 [07:12<4:14:16, 1.88s/it]
3%|▎ | 224/8324 [07:13<4:01:57, 1.79s/it]
3%|▎ | 225/8324 [07:17<5:25:45, 2.41s/it]
3%|▎ | 226/8324 [07:18<4:18:13, 1.91s/it]
3%|▎ | 227/8324 [07:20<4:22:01, 1.94s/it]
3%|▎ | 228/8324 [07:22<4:33:25, 2.03s/it]
3%|▎ | 229/8324 [07:25<5:25:24, 2.41s/it]
3%|▎ | 230/8324 [07:27<5:11:50, 2.31s/it]
3%|▎ | 231/8324 [07:29<4:27:58, 1.99s/it]
3%|▎ | 232/8324 [07:31<4:55:32, 2.19s/it]
3%|▎ | 233/8324 [07:32<3:56:13, 1.75s/it]
3%|▎ | 234/8324 [07:33<3:38:26, 1.62s/it]
3%|▎ | 235/8324 [07:36<4:40:45, 2.08s/it]
3%|▎ | 236/8324 [07:39<5:08:21, 2.29s/it]
3%|▎ | 237/8324 [07:41<5:04:02, 2.26s/it]
3%|▎ | 238/8324 [07:44<5:01:27, 2.24s/it]
3%|▎ | 239/8324 [07:45<4:26:28, 1.98s/it]
3%|▎ | 240/8324 [07:48<5:21:24, 2.39s/it]
3%|▎ | 241/8324 [07:50<5:08:44, 2.29s/it]
3%|▎ | 242/8324 [07:53<5:30:00, 2.45s/it]
3%|▎ | 243/8324 [07:57<6:20:49, 2.83s/it]
3%|▎ | 244/8324 [07:58<5:00:03, 2.23s/it]
3%|▎ | 245/8324 [08:00<5:16:25, 2.35s/it]
3%|▎ | 246/8324 [08:05<6:47:13, 3.02s/it]
3%|▎ | 247/8324 [08:07<5:56:35, 2.65s/it]
3%|▎ | 248/8324 [08:09<5:30:16, 2.45s/it]
3%|▎ | 249/8324 [08:13<6:33:04, 2.92s/it]
3%|▎ | 250/8324 [08:16<7:03:39, 3.15s/it]
3%|▎ | 251/8324 [08:17<5:24:13, 2.41s/it]
3%|▎ | 252/8324 [08:19<4:46:50, 2.13s/it]
3%|▎ | 253/8324 [08:21<4:44:48, 2.12s/it]
3%|▎ | 254/8324 [08:23<4:46:36, 2.13s/it]
3%|▎ | 255/8324 [08:27<5:59:35, 2.67s/it]
3%|▎ | 256/8324 [08:29<5:43:25, 2.55s/it]
3%|▎ | 257/8324 [08:30<4:27:53, 1.99s/it]
3%|▎ | 258/8324 [08:32<4:24:39, 1.97s/it]
3%|▎ | 259/8324 [08:33<3:47:41, 1.69s/it]
3%|▎ | 260/8324 [08:34<3:15:12, 1.45s/it]
3%|▎ | 261/8324 [08:35<3:09:25, 1.41s/it]
3%|▎ | 262/8324 [08:36<3:01:26, 1.35s/it]
3%|▎ | 263/8324 [08:38<3:26:56, 1.54s/it]
3%|▎ | 264/8324 [08:40<3:48:36, 1.70s/it]
3%|▎ | 265/8324 [08:43<4:27:37, 1.99s/it]
3%|▎ | 266/8324 [08:46<4:56:52, 2.21s/it]
3%|▎ | 267/8324 [08:49<5:26:06, 2.43s/it]
3%|▎ | 268/8324 [08:51<5:28:10, 2.44s/it]
3%|▎ | 269/8324 [08:54<5:55:46, 2.65s/it]
3%|▎ | 270/8324 [08:57<6:03:59, 2.71s/it]
3%|▎ | 271/8324 [09:00<5:57:09, 2.66s/it]
3%|▎ | 272/8324 [09:01<5:04:35, 2.27s/it]
3%|▎ | 273/8324 [09:02<4:37:17, 2.07s/it]
3%|▎ | 274/8324 [09:06<5:27:58, 2.44s/it]
3%|▎ | 275/8324 [09:09<5:41:16, 2.54s/it]
3%|▎ | 276/8324 [09:12<5:58:39, 2.67s/it]
3%|▎ | 277/8324 [09:16<7:02:26, 3.15s/it]
3%|▎ | 278/8324 [09:18<6:16:44, 2.81s/it]
3%|▎ | 279/8324 [09:21<6:36:57, 2.96s/it]
3%|▎ | 280/8324 [09:24<6:34:28, 2.94s/it]
3%|▎ | 281/8324 [09:25<5:14:19, 2.34s/it]
3%|▎ | 282/8324 [09:27<4:56:54, 2.22s/it]
3%|▎ | 283/8324 [09:29<5:04:28, 2.27s/it]
3%|▎ | 284/8324 [09:32<5:18:15, 2.38s/it]
3%|▎ | 285/8324 [09:37<7:13:32, 3.24s/it]
3%|▎ | 286/8324 [09:40<7:01:57, 3.15s/it]
3%|▎ | 287/8324 [09:42<6:13:24, 2.79s/it]
3%|▎ | 288/8324 [09:43<5:03:02, 2.26s/it]
3%|▎ | 289/8324 [09:44<4:02:31, 1.81s/it]
3%|▎ | 290/8324 [09:45<3:28:41, 1.56s/it]
3%|▎ | 291/8324 [09:48<4:22:10, 1.96s/it]
4%|▎ | 292/8324 [09:49<4:11:01, 1.88s/it]
4%|▎ | 293/8324 [09:51<4:14:46, 1.90s/it]
4%|▎ | 294/8324 [09:52<3:33:14, 1.59s/it]
4%|▎ | 295/8324 [09:56<5:04:35, 2.28s/it]
4%|▎ | 296/8324 [10:00<6:01:32, 2.70s/it]
4%|▎ | 297/8324 [10:01<4:59:27, 2.24s/it]
4%|▎ | 298/8324 [10:03<4:45:24, 2.13s/it]
4%|▎ | 299/8324 [10:06<5:06:20, 2.29s/it]
4%|▎ | 300/8324 [10:06<4:09:24, 1.87s/it]
4%|▎ | 301/8324 [10:09<4:35:48, 2.06s/it]
4%|▎ | 302/8324 [10:12<5:37:20, 2.52s/it]
4%|▎ | 303/8324 [10:15<5:41:59, 2.56s/it]
4%|▎ | 304/8324 [10:16<4:36:41, 2.07s/it]
4%|▎ | 305/8324 [10:19<5:09:16, 2.31s/it]
4%|▎ | 306/8324 [10:20<4:08:46, 1.86s/it]
4%|▎ | 307/8324 [10:23<4:56:49, 2.22s/it]
4%|▎ | 308/8324 [10:25<4:53:04, 2.19s/it]
4%|▎ | 309/8324 [10:27<4:35:17, 2.06s/it]
4%|▎ | 310/8324 [10:28<3:48:51, 1.71s/it]
4%|▎ | 311/8324 [10:29<3:35:14, 1.61s/it]
4%|▎ | 312/8324 [10:31<4:01:31, 1.81s/it]
4%|▍ | 313/8324 [10:36<5:48:18, 2.61s/it]
4%|▍ | 314/8324 [10:37<5:11:48, 2.34s/it]
4%|▍ | 315/8324 [10:39<4:50:31, 2.18s/it]
4%|▍ | 316/8324 [10:42<5:01:17, 2.26s/it]
4%|▍ | 317/8324 [10:44<4:44:44, 2.13s/it]
4%|▍ | 318/8324 [10:46<4:52:30, 2.19s/it]
4%|▍ | 319/8324 [10:47<4:29:29, 2.02s/it]
4%|▍ | 320/8324 [10:51<5:19:07, 2.39s/it]
4%|▍ | 321/8324 [10:54<5:49:13, 2.62s/it]
4%|▍ | 322/8324 [10:55<5:07:51, 2.31s/it]
4%|▍ | 323/8324 [10:57<4:28:18, 2.01s/it]
4%|▍ | 324/8324 [11:00<5:11:39, 2.34s/it]
4%|▍ | 325/8324 [11:03<5:44:31, 2.58s/it]
4%|▍ | 326/8324 [11:08<7:06:15, 3.20s/it]
4%|▍ | 327/8324 [11:10<6:50:26, 3.08s/it]
4%|▍ | 328/8324 [11:11<5:25:55, 2.45s/it]
4%|▍ | 329/8324 [11:14<5:32:03, 2.49s/it]
4%|▍ | 330/8324 [11:18<6:18:27, 2.84s/it]
4%|▍ | 331/8324 [11:20<6:09:37, 2.77s/it]
4%|▍ | 332/8324 [11:22<5:18:08, 2.39s/it]
4%|▍ | 333/8324 [11:23<4:42:13, 2.12s/it]
4%|▍ | 334/8324 [11:24<4:01:56, 1.82s/it]
4%|▍ | 335/8324 [11:31<7:24:22, 3.34s/it]
4%|▍ | 336/8324 [11:34<7:03:25, 3.18s/it]
4%|▍ | 337/8324 [11:36<6:18:42, 2.84s/it]
4%|▍ | 338/8324 [11:40<7:17:19, 3.29s/it]
4%|▍ | 339/8324 [11:43<6:39:06, 3.00s/it]
4%|▍ | 340/8324 [11:44<5:37:37, 2.54s/it]
4%|▍ | 341/8324 [11:48<6:43:56, 3.04s/it]
4%|▍ | 342/8324 [11:50<5:41:29, 2.57s/it]
4%|▍ | 343/8324 [11:55<7:30:58, 3.39s/it]
4%|▍ | 344/8324 [11:56<5:55:28, 2.67s/it]
4%|▍ | 345/8324 [11:59<5:48:47, 2.62s/it]
4%|▍ | 346/8324 [12:03<6:38:53, 3.00s/it]
4%|▍ | 347/8324 [12:06<6:47:09, 3.06s/it]
4%|▍ | 348/8324 [12:08<6:30:04, 2.93s/it]
4%|▍ | 349/8324 [12:14<7:58:38, 3.60s/it]
4%|▍ | 350/8324 [12:15<6:20:02, 2.86s/it]
4%|▍ | 351/8324 [12:16<5:04:07, 2.29s/it]
4%|▍ | 352/8324 [12:19<5:36:40, 2.53s/it]
4%|▍ | 353/8324 [12:21<5:05:09, 2.30s/it]
4%|▍ | 354/8324 [12:22<4:39:52, 2.11s/it]
4%|▍ | 355/8324 [12:25<5:10:11, 2.34s/it]
4%|▍ | 356/8324 [12:30<6:33:22, 2.96s/it]
4%|▍ | 357/8324 [12:33<6:50:29, 3.09s/it]
4%|▍ | 358/8324 [12:35<6:19:41, 2.86s/it]
4%|▍ | 359/8324 [12:40<7:43:24, 3.49s/it]
4%|▍ | 360/8324 [12:44<7:52:16, 3.56s/it]
4%|▍ | 361/8324 [12:45<6:20:57, 2.87s/it]
4%|▍ | 362/8324 [12:48<6:05:35, 2.75s/it]
4%|▍ | 363/8324 [12:51<6:24:42, 2.90s/it]
4%|▍ | 364/8324 [12:53<5:54:13, 2.67s/it]
4%|▍ | 365/8324 [12:55<5:21:33, 2.42s/it]
4%|▍ | 366/8324 [12:59<6:22:15, 2.88s/it]
4%|▍ | 367/8324 [13:01<5:46:53, 2.62s/it]
4%|▍ | 368/8324 [13:04<6:03:56, 2.74s/it]
4%|▍ | 369/8324 [13:08<7:13:07, 3.27s/it]
4%|▍ | 370/8324 [13:10<6:12:50, 2.81s/it]
4%|▍ | 371/8324 [13:14<6:43:12, 3.04s/it]
4%|▍ | 372/8324 [13:17<7:11:06, 3.25s/it]
4%|▍ | 373/8324 [13:21<7:13:39, 3.27s/it]
4%|▍ | 374/8324 [13:24<7:00:56, 3.18s/it]
5%|▍ | 375/8324 [13:25<5:43:11, 2.59s/it]
5%|▍ | 376/8324 [13:30<7:32:27, 3.42s/it]
5%|▍ | 377/8324 [13:32<6:11:35, 2.81s/it]
5%|▍ | 378/8324 [13:37<7:32:41, 3.42s/it]
5%|▍ | 379/8324 [13:38<6:07:03, 2.77s/it]
5%|▍ | 380/8324 [13:39<5:03:48, 2.29s/it]
5%|▍ | 381/8324 [13:43<6:30:40, 2.95s/it]
5%|▍ | 382/8324 [13:46<6:22:46, 2.89s/it]
5%|▍ | 383/8324 [13:47<5:13:14, 2.37s/it]
5%|▍ | 384/8324 [13:50<5:21:36, 2.43s/it]
5%|▍ | 385/8324 [13:52<5:08:37, 2.33s/it]
5%|▍ | 386/8324 [13:58<7:18:47, 3.32s/it]
5%|▍ | 387/8324 [14:00<6:27:25, 2.93s/it]
5%|▍ | 388/8324 [14:02<6:06:23, 2.77s/it]
5%|▍ | 389/8324 [14:05<6:26:49, 2.92s/it]
5%|▍ | 390/8324 [14:10<7:51:06, 3.56s/it]
5%|▍ | 391/8324 [14:15<8:36:11, 3.90s/it]
5%|▍ | 392/8324 [14:18<8:11:09, 3.72s/it]
5%|▍ | 393/8324 [14:22<7:49:55, 3.56s/it]
5%|▍ | 394/8324 [14:25<7:46:57, 3.53s/it]
5%|▍ | 395/8324 [14:27<6:55:54, 3.15s/it]
5%|▍ | 396/8324 [14:28<5:39:09, 2.57s/it]
5%|▍ | 397/8324 [14:31<5:39:13, 2.57s/it]
5%|▍ | 398/8324 [14:33<5:23:03, 2.45s/it]
5%|▍ | 399/8324 [14:38<6:39:59, 3.03s/it]
5%|▍ | 400/8324 [14:41<6:49:09, 3.10s/it]
5%|▍ | 401/8324 [14:44<6:35:22, 2.99s/it]
5%|▍ | 402/8324 [14:47<6:59:05, 3.17s/it]
5%|▍ | 403/8324 [14:49<5:53:17, 2.68s/it]
5%|▍ | 404/8324 [14:54<7:28:22, 3.40s/it]
5%|▍ | 405/8324 [15:00<9:31:16, 4.33s/it]
5%|▍ | 406/8324 [15:03<8:44:44, 3.98s/it]
5%|▍ | 407/8324 [15:09<10:01:31, 4.56s/it]
5%|▍ | 408/8324 [15:15<11:01:48, 5.02s/it]
5%|▍ | 409/8324 [15:21<11:10:15, 5.08s/it]
5%|▍ | 410/8324 [15:24<9:59:44, 4.55s/it]
5%|▍ | 411/8324 [15:30<10:44:35, 4.89s/it]
5%|▍ | 412/8324 [15:32<9:18:25, 4.23s/it]
5%|▍ | 413/8324 [15:34<7:36:04, 3.46s/it]
5%|▍ | 414/8324 [15:38<7:42:31, 3.51s/it]
5%|▍ | 415/8324 [15:41<7:48:38, 3.56s/it]
5%|▍ | 416/8324 [15:46<8:22:11, 3.81s/it]
xtrain_w2v = np.array(xtrain_w2v)
xvalid_w2v = np.array(xvalid_w2v)
让我们看看xgboost在Word2vec词向量特征的表现如何:

基于word2vec特征在一个简单的Xgboost模型上进行拟合

clf = xgb.XGBClassifier(nthread=10, silent=False)
clf.fit(xtrain_w2v, ytrain)
predictions = clf.predict_proba(xvalid_w2v)

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))

基于word2vec特征在一个简单的Xgboost模型上进行拟合

clf = xgb.XGBClassifier(max_depth=7, n_estimators=200, colsample_bytree=0.8,
subsample=0.8, nthread=10, learning_rate=0.1, silent=False)
clf.fit(xtrain_w2v, ytrain)
predictions = clf.predict_proba(xvalid_w2v)

print ("logloss: %0.3f " % multiclass_logloss(yvalid, predictions))
print(classification_report(predictions, yvalid))
我们可以看到,简单的对参数进行微调,就提高基于GloVe词向量特征的xgboost得分! 相信我,你还可以从中继续“压榨”出更优秀的表现!

深度学习(Deep Learning)
这是一个深度学习大行其道的时代! 文本分类问题在它的指引下得到了突飞猛进的发展! 在这里,我们将在GloVe功能上训练LSTM和简单的全连接网络(Dense Network)。
让我们先从全连接网络开始:

在使用神经网络前,对数据进行缩放

scl = preprocessing.StandardScaler()
xtrain_w2v_scl = scl.fit_transform(xtrain_w2v)
xvalid_w2v_scl = scl.transform(xvalid_w2v)

对标签进行binarize处理

ytrain_enc = np_utils.to_categorical(ytrain)
yvalid_enc = np_utils.to_categorical(yvalid)
#创建1个3层的序列神经网络(Sequential Neural Net)
model = Sequential()

model.add(Dense(300, input_dim=300, activation=‘relu’))
model.add(Dropout(0.2))
model.add(BatchNormalization())

model.add(Dense(300, activation=‘relu’))
model.add(Dropout(0.3))
model.add(BatchNormalization())

model.add(Dense(3))
model.add(Activation(‘softmax’))

模型编译

model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’)
model.fit(xtrain_w2v_scl, y=ytrain_enc, batch_size=64,
epochs=5, verbose=1,
validation_data=(xvalid_w2v_scl, yvalid_enc))
你需要不断的对神经网络的参数进行调优,添加更多层,增加Dropout以获得更好的结果。 在这里,笔者只是简单的实现下,追求速度而不是最终效果,并且它比没有任何优化的xgboost取得了更好的结果:)

为了更进一步,笔者使用LSTM,我们需要对文本数据进行Tokenize:

使用 keras tokenizer

token = text.Tokenizer(num_words=None)
max_len = 70

token.fit_on_texts(list(xtrain) + list(xvalid))
xtrain_seq = token.texts_to_sequences(xtrain)
xvalid_seq = token.texts_to_sequences(xvalid)

#对文本序列进行zero填充
xtrain_pad = sequence.pad_sequences(xtrain_seq, maxlen=max_len)
xvalid_pad = sequence.pad_sequences(xvalid_seq, maxlen=max_len)

word_index = token.word_index
#基于已有的数据集中的词汇创建一个词嵌入矩阵(Embedding Matrix)
embedding_matrix = np.zeros((len(word_index) + 1, 100))
for word, i in tqdm(word_index.items()):
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector

基于前面训练的Word2vec词向量,使用1个两层的LSTM模型

model = Sequential()
model.add(Embedding(len(word_index) + 1,
100,
weights=[embedding_matrix],
input_length=max_len,
trainable=False))
model.add(SpatialDropout1D(0.3))
model.add(LSTM(100, dropout=0.3, recurrent_dropout=0.3))

model.add(Dense(1024, activation=‘relu’))
model.add(Dropout(0.8))

model.add(Dense(1024, activation=‘relu’))
model.add(Dropout(0.8))

model.add(Dense(3))
model.add(Activation(‘softmax’))
model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’)
model.fit(xtrain_pad, y=ytrain_enc, batch_size=512, epochs=100, verbose=1, validation_data=(xvalid_pad, yvalid_enc))
现在,我们看到分数小于0.5。 我跑了很多个epochs都没有获得最优的结果,但我们可以使用early stopping来停止在最佳的迭代节点。

那我们该如何使用early stopping?

好吧,其实很简单的。 让我们再次compile模型:

基于前面训练的Word2vec词向量,使用1个两层的LSTM模型

model = Sequential()
model.add(Embedding(len(word_index) + 1,
100,
weights=[embedding_matrix],
input_length=max_len,
trainable=False))
model.add(SpatialDropout1D(0.3))
model.add(LSTM(100, dropout=0.3, recurrent_dropout=0.3))

model.add(Dense(1024, activation=‘relu’))
model.add(Dropout(0.8))

model.add(Dense(1024, activation=‘relu’))
model.add(Dropout(0.8))

model.add(Dense(3))
model.add(Activation(‘softmax’))
model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’)

#在模型拟合时,使用early stopping这个回调函数(Callback Function)
earlystop = EarlyStopping(monitor=‘val_loss’, min_delta=0, patience=3, verbose=0, mode=‘auto’)
model.fit(xtrain_pad, y=ytrain_enc, batch_size=512, epochs=100,
verbose=1, validation_data=(xvalid_pad, yvalid_enc), callbacks=[earlystop])
一个可能的问题是:为什么我会使用这么多的dropout? 嗯,fit模型时,没有或很少的dropout,你会出现过拟合(Overfit)

文本分类从入门到精通—代码展示相关推荐

  1. 文本分类从入门到精通

    在这篇文章中,笔者将讨论自然语言处理中文本分类的相关问题.笔者将使用一个复旦大学开源的文本分类语料库,对文本分类的一般流程和常用模型进行探讨.首先,笔者会创建一个非常基础的初始模型,然后使用不同的特征 ...

  2. 文本分类从入门到精通各种模型的学习——Jieba分词。

    结巴中文分词 Python中文分词组件 四种分词模式 精确模式:试图把句子最精确的切开,适合文本分析. 全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义: 搜索引擎模式: ...

  3. Pytorch TextCNN实现中文文本分类(附完整训练代码)

    Pytorch TextCNN实现中文文本分类(附完整训练代码) 目录 Pytorch TextCNN实现中文文本分类(附完整训练代码) 一.项目介绍 二.中文文本数据集 (1)THUCNews文本数 ...

  4. 二分类问题:基于BERT的文本分类实践!附完整代码

    Datawhale 作者:高宝丽,Datawhale优秀学习者 寄语:Bert天生适合做分类任务.文本分类有fasttext.textcnn等多种方法,但在Bert面前,就是小巫见大巫了. 推荐评论展 ...

  5. NLP之文本分类实战入门超详细教程

    目录 前言 一.数据加载 1.加载包 2.读取数据 二.文本处理 1.去除无用字符 2.文本分词 3.去除停用词 4.去除低频词 5.划分训练集和测试集 三.把文本转换成向量的形式 1.把文本转换成t ...

  6. 知否?知否?一文看懂深度文本分类之DPCNN原理与代码

    [导读]ACL2017年中,腾讯AI-lab提出了Deep Pyramid Convolutional Neural Networks for Text Categorization(DPCNN).论 ...

  7. CNN在文本分类的应用(内有代码实现) 论文Convolutional Neural Networks for Sentence Classification

    一.CNN文本分类简介 文本分类是NLP领域的一个重要子任务,文本分类的目标是自动的将文本打上已经定义好的标签,常见的文本分类任务有: 用户评论的情感识别 垃圾邮件过滤 用户查询意图识别 新闻分类 由 ...

  8. 使用条件随机场模型解决文本分类问题(附Python代码)

    对深度学习感兴趣,热爱Tensorflow的小伙伴,欢迎关注我们的网站!http://www.tensorflownews.com.我们的公众号:磐创AI. 一. 介绍 世界上每天都在生成数量惊人的文 ...

  9. 程序显示文本框_C++入门到精通(二),编写我们自己的Hello World程序

    上一章我们学习了如何创建一个"Hello World"示例程序,本章我们来自己手动写一个程序,参照我们上一篇文章的方法,我们创建一个控制台应用程序工程,在这里选择第一项" ...

最新文章

  1. centos 配置bond_Linux CentOS 7 多网卡配置bond模式 bond1 bond5 bond6
  2. 一文速览机器学习的类别(Python代码)
  3. python三维图的坐标_六维图见过么?Python 画出来了
  4. 国际10-20标准电极位置
  5. python代码架构_Python架构
  6. wxWidgets:wxStaticBoxSizer类用法
  7. 使用 Carla 和 Python 的自动驾驶汽车第 4 部分 —— 强化学习代理
  8. BugkuCTF-MISC题乌云邀请码
  9. SAP打印出库单需求
  10. 77种互联网盈利创新模式(7)
  11. python序列化-复习
  12. 21天学通c语言中用的编译器,21天学通C语言
  13. android phone驱动 华为,华为智能手机USB驱动
  14. 华氏摄氏转换 java_java 摄氏度 华氏度 转换
  15. 3ds max基础知识
  16. 洛谷P1046陶陶摘苹果题解--zhengjun
  17. 无法连接虚拟设备sata的原因
  18. 微信聊天记录备份:当前网络状况复杂和连接失败的解决办法
  19. 如果计算机电源突然断电 会导致,电脑突然断电问题
  20. 计算机仿真氢光谱实验,氢氘灯光谱 实验报告

热门文章

  1. Windows窗口消息介绍
  2. css flex换行且均匀分布
  3. 特异性敏感性的意义_敏感性特异性和有意义的分类
  4. SQLite查询记录总数
  5. dialog出现Uncaught RangeError: Maximum call stack size exceeded错误
  6. arcgis之合并碎小图斑到相邻大块图斑
  7. 慎用chrome密码记住功能
  8. 基于MATALB的多光谱影像与全色影像(高分辨率)的融合的几种方法
  9. 磁盘分区MBR和GPT格式详解(Linux)
  10. cocos2d-x3.x实现屏幕画线并添加刚体属性