Netty 是什么?

Netty是 一个异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。Netty是基于nio的,它封装了jdk的nio,让我们使用起来更加方法灵活。

Netty 的特点是什么?

  • 高并发:Netty 是一款基于 NIO(Nonblocking IO,非阻塞IO)开发的网络通信框架,对比于 BIO(Blocking I/O,阻塞IO),他的并发性能得到了很大提高。
  • 传输快:Netty 的传输依赖于零拷贝特性,尽量减少不必要的内存拷贝,实现了更高效率的传输。
  • 封装好:Netty 封装了 NIO 操作的很多细节,提供了易于使用调用接口。

Netty 的优势有哪些

  • 使用简单:封装了 NIO 的很多细节,使用更简单。
  • 功能强大:预置了多种编解码功能,支持多种主流协议。
  • 定制能力强:可以通过 ChannelHandler 对通信框架进行灵活地扩展。
  • 性能高:通过与其他业界主流的 NIO 框架对比,Netty 的综合性能最优。
  • 稳定:Netty 修复了已经发现的所有 NIO 的 bug,让开发人员可以专注于业务本身。
  • 社区活跃:Netty 是活跃的开源项目,版本迭代周期短,bug 修复速度快。

Netty 的应用场景有哪些

阿里分布式服务框架 Dubbo,默认使用 Netty 作为基础通信组件,还有 RocketMQ 也是使用 Netty 作为通讯的基础。

Netty 高性能表现在哪些方面

  • IO 线程模型:同步非阻塞,用最少的资源做更多的事。
  • 内存零拷贝:尽量减少不必要的内存拷贝,实现了更高效率的传输。
  • 内存池设计:申请的内存可以重用,主要指直接内存。内部实现是用一颗二叉查找树管理内存分配情况。
  • 串形化处理读写:避免使用锁带来的性能开销。
  • 高性能序列化协议:支持 protobuf 等高性能序列化协议。

BIO、NIO和AIO的区别

  • BIO:一个连接一个线程,客户端有连接请求时服务器端就需要启动一个线程进行处理。线程开销大。
  • 伪异步IO:将请求连接放入线程池,一对多,但线程还是很宝贵的资源。
  • NIO:一个请求一个线程,但客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。
  • AIO:一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理

各种IO之间的性能对比

NIO的组成?

Buffer

Buffer:与Channel进行交互,数据是从Channel读入缓冲区,从缓冲区写入Channel中的

Buffer 实现:

  • ByteBuffer
  • CharBuffer
  • DoubleBuffer
  • FloatBuffer
  • IntBuffer
  • LongBuffer
  • ShortBuffer

Buffer 重点方法:

  • flip方法 : 反转此缓冲区,将position给limit,然后将position置为0,其实就是切换读写模式
  • clear方法 :清除此缓冲区,将position置为0,把capacity的值给limit。
  • rewind方法 : 重绕此缓冲区,将position置为0

Channel

channel:所有的 IO 在NIO 中都从一个Channel 开始。Channel 有点象流。 数据可以从Channel读到Buffer中,也可以从Buffer 写到Channel中。

channel实现:

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

channel 代码实例

读数据:
int bytesRead = inChannel.read(buf);写数据:
int bytesWritten = inChannel.write(buf);  

Selector

Selector: Selector允许单线程处理多个 Channel。如果你的应用打开了多个连接(通道),但每个连接的流量都很低,使用Selector就会很方便。例如,在一个聊天服务器中。 要使用Selector,得向Selector注册Channel,然后调用它的select()方法。这个方法会一直阻塞到某个注册的通道有事件就绪。一旦这个方法返回,线程就可以处理这些事件,事件的例子有如新连接进来,数据接收等。 

Netty的线程模型

Netty通过Reactor模型(响应模式)基于多路复用器接收并处理用户请求,内部实现了两个线程池,boss线程池和work线程池,其中boss线程池的线程负责处理请求的accept事件,当接收到accept事件的请求时,把对应的socket封装到一个NioSocketChannel中,并交给work线程池,其中work线程池负责请求的read和write事件,由对应的Handler处理。

TCP 粘包/拆包的原因及解决方法

TCP是以流的方式来处理数据,一个完整的包可能会被TCP拆分成多个包进行发送,也可能把小的封装成一个大的数据包发送。

TCP粘包/分包的原因:

应用程序写入的字节大小大于套接字发送缓冲区的大小,会发生拆包现象,而应用程序写入数据小于套接字缓冲区大小,网卡将应用多次写入的数据发送到网络上,这将会发生粘包现象;

进行MSS大小的TCP分段,当TCP报文长度-TCP头部长度>MSS的时候将发生拆包
以太网帧的payload(净荷)大于MTU(1500字节)进行ip分片。

解决方法

消息定长:FixedLengthFrameDecoder类

包尾增加特殊字符分割:

行分隔符类:LineBasedFrameDecoder
或自定义分隔符类 :DelimiterBasedFrameDecoder
将消息分为消息头和消息体:LengthFieldBasedFrameDecoder类。分为有头部的拆包与粘包、长度字段在前且有头部的拆包与粘包、多扩展头部的拆包与粘包。

什么是 Netty 的零拷贝

Netty 的零拷贝主要包含三个方面:

  • Netty 的接收和发送 ByteBuffer 采用 DIRECT BUFFERS,使用堆外直接内存进行 Socket 读写,不需要进行字节缓冲区的二次拷贝。如果使用传统的堆内存(HEAP BUFFERS)进行 Socket 读写,JVM 会将堆内存 Buffer 拷贝一份到直接内存中,然后才写入 Socket 中。相比于堆外直接内存,消息在发送过程中多了一次缓冲区的内存拷贝。
  • Netty 提供了组合 Buffer 对象,可以聚合多个 ByteBuffer 对象,用户可以像操作一个 Buffer 那样方便的对组合 Buffer 进行操作,避免了传统通过内存拷贝的方式将几个小 Buffer 合并成一个大的 Buffer。
  • Netty 的文件传输采用了 transferTo 方法,它可以直接将文件缓冲区的数据发送到目标 Channel,避免了传统通过循环 write 方式导致的内存拷贝问题。

Netty 中有哪些重要组件

  • Channel:Netty 网络操作抽象类,它除了包括基本的 I/O 操作,如 bind、connect、read、write 等。
  • EventLoop:主要是配合 Channel 处理 I/O 操作,用来处理连接的生命周期中所发生的事情。
  • ChannelFuture:Netty 框架中所有的 I/O 操作都为异步的,因此我们需要 ChannelFuture 的 addListener()注册一个 ChannelFutureListener 监听事件,当操作执行成功或者失败时,监听就会自动触发返回结果。
  • ChannelHandler:充当了所有处理入站和出站数据的逻辑容器。ChannelHandler 主要用来处理各种事件,这里的事件很广泛,比如可以是连接、数据接收、异常、数据转换等。
  • ChannelPipeline:为 ChannelHandler 链提供了容器,当 channel 创建时,就会被自动分配到它专属的 ChannelPipeline,这个关联是永久性的。

Netty 发送消息有几种方式

Netty 有两种发送消息的方式:

  • 直接写入 Channel 中,消息从 ChannelPipeline 当中尾部开始移动;
  • 写入ChannelHandler 绑定的 ChannelHandlerContext 中,消息从 ChannelPipeline 中的下一个 ChannelHandler 中移动。

默认情况 Netty 起多少线程?何时启动?

Netty 默认是 CPU 处理器数的两倍,bind 完之后启动。

序列化协议是什么?支持那些序列化协议?

序列化(编码):是将对象序列化为二进制形式(字节数组),主要用于网络传输、数据持久化等;而反序列化(解码)则是将从网络、磁盘等读取的字节数组还原成原始对象,主要用于网络传输对象的解码,以便完成远程调用。

影响序列化性能的关键因素:序列化后的码流大小(网络带宽的占用)、序列化的性能(CPU资源占用);是否支持跨语言(异构系统的对接和开发语言切换)。

序列化协议

  • Java默认提供的序列化:无法跨语言、序列化后的码流太大、序列化的性能差
  • XML,优点:人机可读性好,可指定元素或特性的名称。缺点:序列化数据只包含数据本身以及类的结构,不包括类型标识和程序集信息;只能序列化公共属性和字段;不能序列化方法;文件庞大,文件格式复杂,传输占带宽。适用场景:当做配置文件存储数据,实时数据转换。
  • JSON,是一种轻量级的数据交换格式,优点:兼容性高、数据格式比较简单,易于读写、序列化后数据较小,可扩展性好,兼容性好、与XML相比,其协议比较简单,解析速度比较快。缺点:数据的描述性比XML差、不适合性能要求为ms级别的情况、额外空间开销比较大。适用场景(可替代XML):跨防火墙访问、可调式性要求高、基于Web browser的Ajax请求、传输数据量相对小,实时性要求相对低(例如秒级别)的服务。
  • Fastjson,采用一种“假定有序快速匹配”的算法。优点:接口简单易用、目前java语言中最快的json库。缺点:过于注重快,而偏离了“标准”及功能性、代码质量不高,文档不全。适用场景:协议交互、Web输出、Android客户端
  • Thrift,不仅是序列化协议,还是一个RPC框架。优点:序列化后的体积小, 速度快、支持多种语言和丰富的数据类型、对于数据字段的增删具有较强的兼容性、支持二进制压缩编码。缺点:使用者较少、跨防火墙访问时,不安全、不具有可读性,调试代码时相对困难、不能与其他传输层协议共同使用(例如HTTP)、无法支持向持久层直接读写数据,即不适合做数据持久化序列化协议。适用场景:分布式系统的RPC解决方案
  • Avro,Hadoop的一个子项目,解决了JSON的冗长和没有IDL的问题。优点:支持丰富的数据类型、简单的动态语言结合功能、具有自我描述属性、提高了数据解析速度、快速可压缩的二进制数据形式、可以实现远程过程调用RPC、支持跨编程语言实现。缺点:对于习惯于静态类型语言的用户不直观。适用场景:在Hadoop中做Hive、Pig和MapReduce的持久化数据格式。
  • Protobuf,将数据结构以.proto文件进行描述,通过代码生成工具可以生成对应数据结构的POJO对象和Protobuf相关的方法和属性。优点:序列化后码流小,性能高、结构化数据存储格式(XML JSON等)、通过标识字段的顺序,可以实现协议的前向兼容、结构化的文档更容易管理和维护。缺点:需要依赖于工具生成代码、支持的语言相对较少,官方只支持Java 、C++ 、python。适用场景:对性能要求高的RPC调用、具有良好的跨防火墙的访问属性、适合应用层对象的持久化

Netty 支持哪些心跳类型设置?

  • readerIdleTime:为读超时时间(即测试端一定时间内未接受到被测试端消息)。
  • writerIdleTime:为写超时时间(即测试端一定时间内向被测试端发送消息)。
  • allIdleTime:所有类型的超时时间。

Netty 和 Tomcat 的区别?

  • 作用不同:Tomcat 是 Servlet 容器,可以视为 Web 服务器,而 Netty 是异步事件驱动的网络应用程序框架和工具用于简化网络编程,例如TCP和UDP套接字服务器。
  • 协议不同:Tomcat 是基于 http 协议的 Web 服务器,而 Netty 能通过编程自定义各种协议,因为 Netty 本身自己能编码/解码字节流,所有 Netty 可以实现,HTTP 服务器、FTP 服务器、UDP 服务器、RPC 服务器、WebSocket 服务器、Redis 的 Proxy 服务器、MySQL 的 Proxy 服务器等等。

Reactor线程模型

Reactor是反应堆的意思,Reactor模型,是指通过一个或多个输入同时传递给服务处理器的服务请求的事件驱动处理模式。 服务端程序处理传入多路请求,并将它们同步分派给请求对应的处理线程,Reactor模式也叫Dispatcher模式,即I/O多了复用统一监听事件,收到事件后分发(Dispatch给某进程),是编写高性能网络服务器的必备技术之一。

Reactor模型中有2个关键组成:

  • Reactor Reactor在一个单独的线程中运行,负责监听和分发事件,分发给适当的处理程序来对IO事件做出反应。 它就像公司的电话接线员,它接听来自客户的电话并将线路转移到适当的联系人
  • Handlers 处理程序执行I/O事件要完成的实际事件,类似于客户想要与之交谈的公司中的实际官员。Reactor通过调度适当的处理程序来响应I/O事件,处理程序执行非阻塞操作

取决于Reactor的数量和Hanndler线程数量的不同,Reactor模型有3个变种

  • 单Reactor单线程
  • 单Reactor多线程
  • 主从Reactor多线程

可以这样理解,Reactor就是一个执行while (true) { selector.select(); …}循环的线程,会源源不断的产生新的事件,称作反应堆很贴切。

Netty线程模型

Netty主要基于主从Reactors多线程模型(如下图)做了一定的修改,其中主从Reactor多线程模型有多个Reactor:MainReactor和SubReactor:

  • MainReactor负责客户端的连接请求,并将请求转交给SubReactor
  • SubReactor负责相应通道的IO读写请求
  • 非IO请求(具体逻辑处理)的任务则会直接写入队列,等待worker threads进行处理

这里引用Doug Lee大神的Reactor介绍:Scalable IO in Java里面关于主从Reactor多线程模型的图

虽然Netty的线程模型基于主从Reactor多线程,借用了MainReactor和SubReactor的结构,但是实际实现上,SubReactor和Worker线程在同一个线程池中:

EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
ServerBootstrap server = new ServerBootstrap();
server.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class)

上面代码中的bossGroup 和workerGroup是Bootstrap构造方法中传入的两个对象,这两个group均是线程池

  • bossGroup线程池则只是在bind某个端口后,获得其中一个线程作为MainReactor,专门处理端口的accept事件,每个端口对应一个boss线程
  • workerGroup线程池会被各个SubReactor和worker线程充分利用

异步处理

异步的概念和同步相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。

Netty中的I/O操作是异步的,包括bind、write、connect等操作会简单的返回一个ChannelFuture,调用者并不能立刻获得结果,通过Future-Listener机制,用户可以方便的主动获取或者通过通知机制获得IO操作结果。

当future对象刚刚创建时,处于非完成状态,调用者可以通过返回的ChannelFuture来获取操作执行的状态,注册监听函数来执行完成后的操,常见有如下操作:

  • 通过isDone方法来判断当前操作是否完成
  • 通过isSuccess方法来判断已完成的当前操作是否成功
  • 通过getCause方法来获取已完成的当前操作失败的原因
  • 通过isCancelled方法来判断已完成的当前操作是否被取消
  • 通过addListener方法来注册监听器,当操作已完成(isDone方法返回完成),将会通知指定的监听器;如果future对象已完成,则理解通知指定的监听器

例如:下面的的代码中绑定端口是异步操作,当绑定操作处理完,将会调用相应的监听器处理逻辑

    serverBootstrap.bind(port).addListener(future -> {if (future.isSuccess()) {System.out.println(new Date() + ": 端口[" + port + "]绑定成功!");} else {System.err.println("端口[" + port + "]绑定失败!");}});

Netty架构设计

  • 传输服务 支持BIO和NIO
  • 容器集成 支持OSGI、JBossMC、Spring、Guice容器
  • 协议支持 HTTP、Protobuf、二进制、文本、WebSocket等一系列常见协议都支持。 还支持通过实行编码解码逻辑来实现自定义协议
  • Core核心 可扩展事件模型、通用通信API、支持零拷贝的ByteBuf缓冲对象

Netty模块组件

Bootstrap、ServerBootstrap

Bootstrap意思是引导,一个Netty应用通常由一个Bootstrap开始,主要作用是配置整个Netty程序,串联各个组件,Netty中Bootstrap类是客户端程序的启动引导类,ServerBootstrap是服务端启动引导类。

Future、ChannelFuture

正如前面介绍,在Netty中所有的IO操作都是异步的,不能立刻得知消息是否被正确处理,但是可以过一会等它执行完成或者直接注册一个监听,具体的实现就是通过Future和ChannelFutures,他们可以注册一个监听,当操作执行成功或失败时监听会自动触发注册的监听事件。

Channel

Netty网络通信的组件,能够用于执行网络I/O操作。 Channel为用户提供:

  • 当前网络连接的通道的状态(例如是否打开?是否已连接?)
  • 网络连接的配置参数 (例如接收缓冲区大小)
  • 提供异步的网络I/O操作(如建立连接,读写,绑定端口),异步调用意味着任何I / O调用都将立即返回,并且不保证在调用结束时所请求的I / O操作已完成。调用立即返回一个ChannelFuture实例,通过注册监听器到ChannelFuture上,可以I / O操作成功、失败或取消时回调通知调用方。
  • 支持关联I/O操作与对应的处理程序

不同协议、不同的阻塞类型的连接都有不同的 Channel 类型与之对应,下面是一些常用的 Channel 类型

  • NioSocketChannel,异步的客户端 TCP Socket 连接
  • NioServerSocketChannel,异步的服务器端 TCP Socket 连接
  • NioDatagramChannel,异步的 UDP 连接
  • NioSctpChannel,异步的客户端 Sctp 连接
  • NioSctpServerChannel,异步的 Sctp 服务器端连接 这些通道涵盖了 UDP 和 TCP网络 IO以及文件 IO.

Selector

Netty基于Selector对象实现I/O多路复用,通过 Selector, 一个线程可以监听多个连接的Channel事件, 当向一个Selector中注册Channel 后,Selector 内部的机制就可以自动不断地查询(select) 这些注册的Channel是否有已就绪的I/O事件(例如可读, 可写, 网络连接完成等),这样程序就可以很简单地使用一个线程高效地管理多个 Channel 。

NioEventLoop

NioEventLoop中维护了一个线程和任务队列,支持异步提交执行任务,线程启动时会调用NioEventLoop的run方法,执行I/O任务和非I/O任务:

  • I/O任务 即selectionKey中ready的事件,如accept、connect、read、write等,由processSelectedKeys方法触发。
  • 非IO任务 添加到taskQueue中的任务,如register0、bind0等任务,由runAllTasks方法触发。

两种任务的执行时间比由变量ioRatio控制,默认为50,则表示允许非IO任务执行的时间与IO任务的执行时间相等。

NioEventLoopGroup

NioEventLoopGroup,主要管理eventLoop的生命周期,可以理解为一个线程池,内部维护了一组线程,每个线程(NioEventLoop)负责处理多个Channel上的事件,而一个Channel只对应于一个线程。

ChannelHandler

ChannelHandler是一个接口,处理I / O事件或拦截I / O操作,并将其转发到其ChannelPipeline(业务处理链)中的下一个处理程序。

ChannelHandler本身并没有提供很多方法,因为这个接口有许多的方法需要实现,方便使用期间,可以继承它的子类:

  • ChannelInboundHandler用于处理入站I / O事件
  • ChannelOutboundHandler用于处理出站I / O操作

或者使用以下适配器类:

  • ChannelInboundHandlerAdapter用于处理入站I / O事件
  • ChannelOutboundHandlerAdapter用于处理出站I / O操作
  • ChannelDuplexHandler用于处理入站和出站事件

ChannelHandlerContext

保存Channel相关的所有上下文信息,同时关联一个ChannelHandler对象

ChannelPipline

保存ChannelHandler的List,用于处理或拦截Channel的入站事件和出站操作。 ChannelPipeline实现了一种高级形式的拦截过滤器模式,使用户可以完全控制事件的处理方式,以及Channel中各个的ChannelHandler如何相互交互。

下图引用Netty的Javadoc4.1中ChannelPipline的说明,描述了ChannelPipeline中ChannelHandler通常如何处理I/O事件。 I/O事件由ChannelInboundHandler或ChannelOutboundHandler处理,并通过调用ChannelHandlerContext中定义的事件传播方法(例如ChannelHandlerContext.fireChannelRead(Object)和ChannelOutboundInvoker.write(Object))转发到其最近的处理程序。

                                                 I/O Requestvia Channel orChannelHandlerContext|+---------------------------------------------------+---------------+|                           ChannelPipeline         |               ||                                                  \|/              ||    +---------------------+            +-----------+----------+    ||    | Inbound Handler  N  |            | Outbound Handler  1  |    ||    +----------+----------+            +-----------+----------+    ||              /|\                                  |               ||               |                                  \|/              ||    +----------+----------+            +-----------+----------+    ||    | Inbound Handler N-1 |            | Outbound Handler  2  |    ||    +----------+----------+            +-----------+----------+    ||              /|\                                  .               ||               .                                   .               || ChannelHandlerContext.fireIN_EVT() ChannelHandlerContext.OUT_EVT()||        [ method call]                       [method call]         ||               .                                   .               ||               .                                  \|/              ||    +----------+----------+            +-----------+----------+    ||    | Inbound Handler  2  |            | Outbound Handler M-1 |    ||    +----------+----------+            +-----------+----------+    ||              /|\                                  |               ||               |                                  \|/              ||    +----------+----------+            +-----------+----------+    ||    | Inbound Handler  1  |            | Outbound Handler  M  |    ||    +----------+----------+            +-----------+----------+    ||              /|\                                  |               |+---------------+-----------------------------------+---------------+|                                  \|/+---------------+-----------------------------------+---------------+|               |                                   |               ||       [ Socket.read() ]                    [ Socket.write() ]     ||                                                                   ||  Netty Internal I/O Threads (Transport Implementation)            |+-------------------------------------------------------------------+

入站事件由自下而上方向的入站处理程序处理,如图左侧所示。 入站Handler处理程序通常处理由图底部的I / O线程生成的入站数据。 通常通过实际输入操作(例如SocketChannel.read(ByteBuffer))从远程读取入站数据。

出站事件由上下方向处理,如图右侧所示。 出站Handler处理程序通常会生成或转换出站传输,例如write请求。 I/O线程通常执行实际的输出操作,例如SocketChannel.write(ByteBuffer)。

在 Netty 中每个 Channel 都有且仅有一个 ChannelPipeline 与之对应, 它们的组成关系如下:

一个 Channel 包含了一个 ChannelPipeline, 而 ChannelPipeline 中又维护了一个由 ChannelHandlerContext 组成的双向链表, 并且每个 ChannelHandlerContext 中又关联着一个 ChannelHandler。入站事件和出站事件在一个双向链表中,入站事件会从链表head往后传递到最后一个入站的handler,出站事件会从链表tail往前传递到最前一个出站的handler,两种类型的handler互不干扰。

工作原理架构

初始化并启动Netty服务端过程如下:

    public static void main(String[] args) {// 创建mainReactorNioEventLoopGroup boosGroup = new NioEventLoopGroup();// 创建工作线程组NioEventLoopGroup workerGroup = new NioEventLoopGroup();final ServerBootstrap serverBootstrap = new ServerBootstrap();serverBootstrap // 组装NioEventLoopGroup .group(boosGroup, workerGroup)// 设置channel类型为NIO类型.channel(NioServerSocketChannel.class)// 设置连接配置参数.option(ChannelOption.SO_BACKLOG, 1024).childOption(ChannelOption.SO_KEEPALIVE, true).childOption(ChannelOption.TCP_NODELAY, true)// 配置入站、出站事件handler.childHandler(new ChannelInitializer<NioSocketChannel>() {@Overrideprotected void initChannel(NioSocketChannel ch) {// 配置入站、出站事件channelch.pipeline().addLast(...);ch.pipeline().addLast(...);}});// 绑定端口int port = 8080;serverBootstrap.bind(port).addListener(future -> {if (future.isSuccess()) {System.out.println(new Date() + ": 端口[" + port + "]绑定成功!");} else {System.err.println("端口[" + port + "]绑定失败!");}});
}

基本过程如下:

  1. 初始化创建2个NioEventLoopGroup,其中boosGroup用于Accetpt连接建立事件并分发请求, workerGroup用于处理I/O读写事件和业务逻辑
  2. 基于ServerBootstrap(服务端启动引导类),配置EventLoopGroup、Channel类型,连接参数、配置入站、出站事件handler
  3. 绑定端口,开始工作

结合上面的介绍的Netty Reactor模型,介绍服务端Netty的工作架构图:

server端包含1个Boss NioEventLoopGroup和1个Worker NioEventLoopGroup,NioEventLoopGroup相当于1个事件循环组,这个组里包含多个事件循环NioEventLoop,每个NioEventLoop包含1个selector和1个事件循环线程。

每个Boss NioEventLoop循环执行的任务包含3步:

  1. 轮询accept事件
  2. 处理accept I/O事件,与Client建立连接,生成NioSocketChannel,并将NioSocketChannel注册到某个Worker NioEventLoop的Selector上
  3. 处理任务队列中的任务,runAllTasks。任务队列中的任务包括用户调用eventloop.execute或schedule执行的任务,或者其它线程提交到该eventloop的任务。

每个Worker NioEventLoop循环执行的任务包含3步:

  1. 轮询read、write事件;
  2. 处I/O事件,即read、write事件,在NioSocketChannel可读、可写事件发生时进行处理
  3. 处理任务队列中的任务,runAllTasks。

其中任务队列中的task有3种典型使用场景

  • 1 用户程序自定义的普通任务
ctx.channel().eventLoop().execute(new Runnable() {@Overridepublic void run() {//...}
});
  • 2 非当前reactor线程调用channel的各种方法 例如在推送系统的业务线程里面,根据用户的标识,找到对应的channel引用,然后调用write类方法向该用户推送消息,就会进入到这种场景。最终的write会提交到任务队列中后被异步消费。
  • 3 用户自定义定时任务
ctx.channel().eventLoop().schedule(new Runnable() {@Overridepublic void run() {}
}, 60, TimeUnit.SECONDS);

温馨提示:现在稳定推荐使用的主流版本还是Netty4,Netty5 中使用了 ForkJoinPool,增加了代码的复杂度,但是对性能的改善却不明显,所以这个版本不推荐使用,官网也没有提供下载链接。

Netty 核心知识点相关推荐

  1. 最全最新的的Java核心知识点整理!!! 【推荐】

    前言: 想要文档版的小伙伴们可以私信我领取哦,更加清晰 一目了然 ~ Java核心知识点! 博客整理出来的稍微有点乱~ 目录 目录 -1 JVM - 19 2.1. 线程 - 20 2.2. JVM ...

  2. Java面试核心知识点(283页)Java面试题合集最新版(485页)

    阿里.腾讯两大互联网企业传来裁员消息,很多人都陷入担心,不安情绪蔓延-- 其实大家应该更冷静和理性地看待大厂裁员.每年三四月都是大厂人员调整期,这个季节是各个公司战略调整.战略规划的一个关键期,肯定会 ...

  3. Java程序员必备核心知识点整理,建议收藏!

    说实话,作为一名 Java 程序员,不论你需不需要面试都应该好好看下这份资料.我大概撸了一遍,真的是堪称典范. 就目前国内的面试模式来讲,在面试前积极的准备面试,复习整个 Java 知识体系将变得非常 ...

  4. 七万字,151张图,通宵整理消息队列核心知识点总结!这次彻底掌握MQ!

    前言 本文主要涵盖了关于消息队列的大部分核心知识点,涉及的消息队列有 RocketMQ.Kafka. 本文很长,所有内容都为博主原创,纯手打,如果觉得不错的话,来个点赞评论收藏三连呀! 之后还会有迭代 ...

  5. 06-JAVA面试核心知识点整理(时间较多的同学全面复习)

    JVM (1) 基本概念: JVM是可运行Java代码的假想计算机 ,包括一套字节码指令集.一组寄存器.一个栈.一个垃圾回收,堆 和 一个存储方法域.JVM 是运行在操作系统之上的,它与硬件没有直接的 ...

  6. 面试大厂不看这两份Java面试核心知识点原理篇+框架篇,有个屁用?食屎啦泥?

    前言 面试在即,Java知识点很凌乱? 别急,有本套书在呢! 除了原理,还有框架! ★ 精细讲解JVM原理.Java基础.并发编程.数据结构和算法.网络与负载均衡 ★ 深入挖掘数据库与分布式事务.分布 ...

  7. 牛逼了!8000页Java 核心知识点+面试题整理,超全!

    今年金九银十要来了,很多小伙伴都在准备跳槽.小编为大家汇总了份Java核心知识点面试题和答案,基本上涵盖了所有后端技术栈,相信可以帮助大家拿到自己心仪的offer. 截了几张图,大家可以仔细查看左边的 ...

  8. pmp知识点详解-项目大牛整理_PMP核心知识点—第五章:项目范围管理(1)

    一.规划范围管理 Inputs 1.项目管理计划: 质量管理计划 项目生命周期描述 开发方法 2.项目章程: 项目章程记录项目目的.项目概述.假设条件.制约因素以及项目意图实现的高层级需求. 3.事业 ...

  9. Java核心知识点 --- 线程中如何创建锁和使用锁 Lock , 设计一个缓存系统

    理论知识很枯燥,但这些都是基本功,学完可能会忘,但等用的时候,会发觉之前的学习是非常有意义的,学习线程就是这样子的. 1.如何创建锁? Lock lock = new ReentrantLock(); ...

最新文章

  1. java初始化一个链表_Java 链表(LinkNode)的简单操作:初始化,遍历,插入,删除等...
  2. 如何用python画数据图-用Python如何画出数据可视化图呢?本文详解
  3. Ubuntu使用——23(dock的美化)
  4. 计算机排线知识,一种计算机排线梳理装置制造方法及图纸
  5. Mr.J -- yield关键字生成器产生值
  6. java一行交换,在C / C ++,Python,PHP和Java中一行交换两个变量
  7. 痞子衡嵌入式:ARM Cortex-M文件那些事(1)- 源文件(.c/.h/.s)
  8. 开源服务器 Jenkins 曝漏洞,可用于发动 DDoS 攻击
  9. C#foreach循环的优点
  10. c++构造函数、析构函数为什么不能取地址
  11. 个人微信api接口调用,拉取微信朋友圈、发朋友圈
  12. shineblink MPU6050六轴传感器测量物体姿态角
  13. es mapping 设置
  14. Ansys 2022 安装教程(附赠免费的安装包)
  15. android 标准时间格式,android开发中关于含有中文字段的格林尼治标准时间的时间格式转换...
  16. 编译原理 自下而上分析题型
  17. Linux磁盘相关-分区与修复
  18. VUE实现前台图片 标注(添加矩形框)、放大、缩小、拖拽
  19. oracle 登录失败次数,Oracle用户连续登录失败次数限制如何取消
  20. 总纲:无规律数字游戏的规律

热门文章

  1. 技术群里装偶遇撒狗粮?手起刀落人抬走!
  2. 优化ss服务器,使用kcptun对ss服务器进行优化加速
  3. 使得c++弹窗无法关闭
  4. 离开互联网上岸1年后,后悔了!重回大厂内卷
  5. Baklib知识分享|文档管理促进企业成长进步
  6. 现在是选择iPhone 12 还是等待 iPhone 13
  7. RStudio:R语言编辑器
  8. python+百度ai平台实现人脸识别
  9. 潮平两岸阔,风正一帆悬[转]
  10. 关于数据库集群的详细理解