本文实例讲述了Python利用神经网络解决非线性回归问题。分享给大家供大家参考,具体如下:

问题描述

现在我们通常使用神经网络进行分类,但是有时我们也会进行回归分析。

如本文的问题:

我们知道一个生物体内的原始有毒物质的量,然后对这个生物体进行治疗,向其体内注射一个物质,过一段时间后重新测量这个生物体内有毒物质量的多少。

因此,问题中有两个输入,都是标量数据,分别为有毒物质的量和注射物质的量,一个输出,也就是注射治疗物质后一段时间生物体的有毒物质的量。

数据如下图:

其中Dose of Mycotoxins 就是有毒物质,Dose of QCT就是治疗的药物。

其中蓝色底纹的数字就是输出结果。

一些说明

由于本文是进行回归分析,所以最后一层不进行激活,而直接输出。

本文程序使用sigmoid函数进行激活。

本文程序要求程序有一定的可重复性,隐含层可以指定。

另外,注意到

本文将使用数据预处理,也就是将数据减去均值再除以方差,否则使用sigmoid将会导致梯度消失。

因为数据比较大,比如200,这时输入200,当sigmoid函数的梯度就是接近于0了。

与此同时,我们在每一次激活前都进行BN处理,也就是batch normalize,中文可以翻译成规范化。

否则也会导致梯度消失的问题。与预处理情况相同。

程序

程序包括两部分,一部分是模型框架,一个是训练模型

第一部分:

# coding=utf-8

import numpy as np

def basic_forard(x, w, b):

x = x.reshape(x.shape[0], -1)

out = np.dot(x, w) + b

cache = (x, w, b)

return out, cache

def basic_backward(dout, cache):

x, w, b = cache

dout = np.array(dout)

dx = np.dot(dout, w.T)

# dx = np.reshape(dx, x.shape)

# x = x.reshape(x.shape[0], -1)

dw = np.dot(x.T, dout)

db = np.reshape(np.sum(dout, axis=0), b.shape)

return dx, dw, db

def batchnorm_forward(x, gamma, beta, bn_param):

mode = bn_param['mode']

eps = bn_param.get('eps', 1e-5)

momentum = bn_param.get('momentum', 0.9)

N, D = x.shape

running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))

running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))

out, cache = None, None

if mode == 'train':

sample_mean = np.mean(x, axis=0)

sample_var = np.var(x, axis=0)

x_hat = (x - sample_mean) / (np.sqrt(sample_var + eps))

out = gamma * x_hat + beta

cache = (gamma, x, sample_mean, sample_var, eps, x_hat)

running_mean = momentum * running_mean + (1 - momentum) * sample_mean

running_var = momentum * running_var + (1 - momentum) * sample_var

elif mode == 'test':

scale = gamma / (np.sqrt(running_var + eps))

out = x * scale + (beta - running_mean * scale)

else:

raise ValueError('Invalid forward batchnorm mode "%s"' % mode)

bn_param['running_mean'] = running_mean

bn_param['running_var'] = running_var

return out, cache

def batchnorm_backward(dout, cache):

gamma, x, u_b, sigma_squared_b, eps, x_hat = cache

N = x.shape[0]

dx_1 = gamma * dout

dx_2_b = np.sum((x - u_b) * dx_1, axis=0)

dx_2_a = ((sigma_squared_b + eps) ** -0.5) * dx_1

dx_3_b = (-0.5) * ((sigma_squared_b + eps) ** -1.5) * dx_2_b

dx_4_b = dx_3_b * 1

dx_5_b = np.ones_like(x) / N * dx_4_b

dx_6_b = 2 * (x - u_b) * dx_5_b

dx_7_a = dx_6_b * 1 + dx_2_a * 1

dx_7_b = dx_6_b * 1 + dx_2_a * 1

dx_8_b = -1 * np.sum(dx_7_b, axis=0)

dx_9_b = np.ones_like(x) / N * dx_8_b

dx_10 = dx_9_b + dx_7_a

dgamma = np.sum(x_hat * dout, axis=0)

dbeta = np.sum(dout, axis=0)

dx = dx_10

return dx, dgamma, dbeta

# def relu_forward(x):

# out = None

# out = np.maximum(0,x)

# cache = x

# return out, cache

#

#

# def relu_backward(dout, cache):

# dx, x = None, cache

# dx = (x >= 0) * dout

# return dx

def sigmoid_forward(x):

x = x.reshape(x.shape[0], -1)

out = 1 / (1 + np.exp(-1 * x))

cache = out

return out, cache

def sigmoid_backward(dout, cache):

out = cache

dx = out * (1 - out)

dx *= dout

return dx

def basic_sigmoid_forward(x, w, b):

basic_out, basic_cache = basic_forard(x, w, b)

sigmoid_out, sigmoid_cache = sigmoid_forward(basic_out)

cache = (basic_cache, sigmoid_cache)

return sigmoid_out, cache

# def basic_relu_forward(x, w, b):

# basic_out, basic_cache = basic_forard(x, w, b)

# relu_out, relu_cache = relu_forward(basic_out)

# cache = (basic_cache, relu_cache)

#

# return relu_out, cache

def basic_sigmoid_backward(dout, cache):

basic_cache, sigmoid_cache = cache

dx_sigmoid = sigmoid_backward(dout, sigmoid_cache)

dx, dw, db = basic_backward(dx_sigmoid, basic_cache)

return dx, dw, db

# def basic_relu_backward(dout, cache):

# basic_cache, relu_cache = cache

# dx_relu = relu_backward(dout, relu_cache)

# dx, dw, db = basic_backward(dx_relu, basic_cache)

#

# return dx, dw, db

def mean_square_error(x, y):

x = np.ravel(x)

loss = 0.5 * np.sum(np.square(y - x)) / x.shape[0]

dx = (x - y).reshape(-1, 1)

return loss, dx

class muliti_layer_net(object):

def __init__(self, hidden_dim, input_dim=2, num_classes=2, weight_scale=0.01, dtype=np.float32, seed=None, reg=0.0, use_batchnorm=True):

self.num_layers = 1 + len(hidden_dim)

self.dtype = dtype

self.reg = reg

self.params = {}

self.weight_scale = weight_scale

self.use_batchnorm = use_batchnorm

# init all parameters

layers_dims = [input_dim] + hidden_dim + [num_classes]

for i in range(self.num_layers):

self.params['W' + str(i + 1)] = np.random.randn(layers_dims[i], layers_dims[i + 1]) * self.weight_scale

self.params['b' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))

if self.use_batchnorm and i < (self.num_layers - 1):

self.params['gamma' + str(i + 1)] = np.ones((1, layers_dims[i + 1]))

self.params['beta' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))

self.bn_params = [] # list

if self.use_batchnorm:

self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)]

def loss(self, X, y=None):

X = X.astype(self.dtype)

mode = 'test' if y is None else 'train'

# compute the forward data and cache

basic_sigmoid_cache = {}

layer_out = {}

layer_out[0] = X

out_basic_forward, cache_basic_forward = {}, {}

out_bn, cache_bn = {}, {}

out_sigmoid_forward, cache_sigmoid_forward = {}, {}

for lay in range(self.num_layers - 1):

# print('lay: %f' % lay)

W = self.params['W' + str(lay + 1)]

b = self.params['b' + str(lay + 1)]

if self.use_batchnorm:

gamma, beta = self.params['gamma' + str(lay + 1)], self.params['beta' + str(lay + 1)]

out_basic_forward[lay], cache_basic_forward[lay] = basic_forard(np.array(layer_out[lay]), W, b)

out_bn[lay], cache_bn[lay] = batchnorm_forward(np.array(out_basic_forward[lay]), gamma, beta, self.bn_params[lay])

layer_out[lay + 1], cache_sigmoid_forward[lay] = sigmoid_forward(np.array(out_bn[lay]))

# = out_sigmoid_forward[lay]

else:

layer_out[lay+1], basic_sigmoid_cache[lay] = basic_sigmoid_forward(layer_out[lay], W, b)

score, basic_cache = basic_forard(layer_out[self.num_layers-1], self.params['W' + str(self.num_layers)], self.params['b' + str(self.num_layers)])

# print('Congratulations: Loss is computed successfully!')

if mode == 'test':

return score

# compute the gradient

grads = {}

loss, dscore = mean_square_error(score, y)

dx, dw, db = basic_backward(dscore, basic_cache)

grads['W' + str(self.num_layers)] = dw + self.reg * self.params['W' + str(self.num_layers)]

grads['b' + str(self.num_layers)] = db

loss += 0.5 * self.reg * np.sum(self.params['W' + str(self.num_layers)] * self.params['b' + str(self.num_layers)])

dbn, dsigmoid = {}, {}

for index in range(self.num_layers - 1):

lay = self.num_layers - 1 - index - 1

loss += 0.5 * self.reg * np.sum(self.params['W' + str(lay + 1)] * self.params['b' + str(lay + 1)])

if self.use_batchnorm:

dsigmoid[lay] = sigmoid_backward(dx, cache_sigmoid_forward[lay])

dbn[lay], grads['gamma' + str(lay + 1)], grads['beta' + str(lay + 1)] = batchnorm_backward(dsigmoid[lay], cache_bn[lay])

dx, grads['W' + str(lay + 1)], grads['b' + str(lay + 1)] = basic_backward(dbn[lay], cache_basic_forward[lay])

else:

dx, dw, db = basic_sigmoid_backward(dx, basic_sigmoid_cache[lay])

for lay in range(self.num_layers):

grads['W' + str(lay + 1)] += self.reg * self.params['W' + str(lay + 1)]

return loss, grads

def sgd_momentum(w, dw, config=None):

if config is None: config = {}

config.setdefault('learning_rate', 1e-2)

config.setdefault('momentum', 0.9)

v = config.get('velocity', np.zeros_like(w))

v = config['momentum'] * v - config['learning_rate'] * dw

next_w = w + v

config['velocity'] = v

return next_w, config

class Solver(object):

def __init__(self, model, data, **kwargs):

self.model = model

self.X_train = data['X_train']

self.y_train = data['y_train']

self.X_val = data['X_val']

self.y_val = data['y_val']

self.update_rule = kwargs.pop('update_rule', 'sgd_momentum')

self.optim_config = kwargs.pop('optim_config', {})

self.lr_decay = kwargs.pop('lr_decay', 1.0)

self.batch_size = kwargs.pop('batch_size', 100)

self.num_epochs = kwargs.pop('num_epochs', 10)

self.weight_scale = kwargs.pop('weight_scale', 0.01)

self.print_every = kwargs.pop('print_every', 10)

self.verbose = kwargs.pop('verbose', True)

if len(kwargs) > 0:

extra = ', '.join('"%s"' % k for k in kwargs.keys())

raise ValueError('Unrecognized argements %s' % extra)

self._reset()

def _reset(self):

self.epoch = 100

self.best_val_acc = 0

self.best_params = {}

self.loss_history = []

self.train_acc_history = []

self.val_acc_history = []

self.optim_configs = {}

for p in self.model.params:

d = {k: v for k, v in self.optim_config.items()}

self.optim_configs[p] = d

def _step(self):

loss, grads = self.model.loss(self.X_train, self.y_train)

self.loss_history.append(loss)

for p, w in self.model.params.items():

dw = grads[p]

config = self.optim_configs[p]

next_w, next_config = sgd_momentum(w, dw, config)

self.model.params[p] = next_w

self.optim_configs[p] = next_config

return loss

def train(self):

min_loss = 100000000

num_train = self.X_train.shape[0]

iterations_per_epoch = max(num_train / self.batch_size, 1)

num_iterations = self.num_epochs * iterations_per_epoch

for t in range(int(num_iterations)):

loss = self._step()

if self.verbose:

# print(self.loss_history[-1])

pass

if loss < min_loss:

min_loss = loss

for k, v in self.model.params.items():

self.best_params[k] = v.copy()

self.model.params = self.best_params

第二部分

import numpy as np

# import data

dose_QCT = np.array([0, 5, 10, 20])

mean_QCT, std_QCT = np.mean(dose_QCT), np.std(dose_QCT)

dose_QCT = (dose_QCT - mean_QCT ) / std_QCT

dose_toxins = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200])

mean_toxins, std_toxins = np.mean(dose_toxins), np.std(dose_toxins)

dose_toxins = (dose_toxins - mean_toxins ) / std_toxins

result = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878],

[0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426],

[0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865],

[0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]])

mean_result, std_result = np.mean(result), np.std(result)

result = (result - mean_result ) / std_result

# create the train data

train_x, train_y = [], []

for i,qct in enumerate(dose_QCT):

for j,toxin in enumerate(dose_toxins):

x = [qct, toxin]

y = result[i, j]

train_x.append(x)

train_y.append(y)

train_x = np.array(train_x)

train_y = np.array(train_y)

print(train_x.shape)

print(train_y.shape)

import layers_regression

small_data = {'X_train': train_x,

'y_train': train_y,

'X_val': train_x,

'y_val': train_y,}

batch_size = train_x.shape[0]

learning_rate = 0.002

reg = 0

model = layers_regression.muliti_layer_net(hidden_dim=[5,5], input_dim=2, num_classes=1, reg=reg, dtype=np.float64)

solver = layers_regression.Solver(model, small_data, print_every=0, num_epochs=50000, batch_size=batch_size, weight_scale=1,

update_rule='sgd_momentum', optim_config={'learning_rate': learning_rate})

print('Please wait several minutes!')

solver.train()

# print(model.params)

best_model = model

print('Train process is finised')

import matplotlib.pyplot as plt

# %matplotlib inline

plt.plot(solver.loss_history, '.')

plt.title('Training loss history')

plt.xlabel('Iteration')

plt.ylabel('Training loss')

plt.show()

# predict the training_data

predict = best_model.loss(train_x)

predict = np.round(predict * std_result + mean_result, 1)

print('Predict is ')

print('{}'.format(predict.reshape(4, 10)))

# print('{}'.format(predict))

# observe the error between the predict after training with ground truth

result = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878],

[0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426],

[0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865],

[0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]])

result = result.reshape(4, 10)

predict = predict.reshape(4, 10)

error = np.round(result - predict, 2)

print('error between predict and real data')

print(error)

print('The absulate error in all data is %f' % np.sum(np.abs(error)))

print('The mean error in all data is %f' % np.mean(np.abs(error)))

# figure the predict map in 3D

x_1 = (np.arange(0, 20, 0.1) - mean_QCT) / std_QCT

x_2 = (np.arange(0, 200, 1) - mean_toxins) / std_toxins

x_test = np.zeros((len(x_1)*len(x_2), 2))

index = 0

for i in range(len(x_1)):

for j in range(len(x_2)):

x_test[int(index), 0] = x_1[int(i)]

x_test[int(index), 1] = x_2[int(j)]

index += 1

test_pred = best_model.loss(x_test)

predict = np.round(test_pred * std_result + mean_result, 3)

from mpl_toolkits.mplot3d import Axes3D

x_1, x_2 = np.meshgrid(x_1 * std_QCT + mean_QCT, x_2 * std_toxins + mean_toxins)

figure = plt.figure()

ax = Axes3D(figure)

predict = predict.reshape(len(x_1), len(x_2))

ax.plot_surface(x_1, x_2, predict, rstride=1, cstride=1, cmap='rainbow')

plt.show()

# 最后本文将进行一些预测,但预测效果不是很好

# question 2: predict with given

dose_QCT_predict = np.ravel(np.array([7.5, 15]))

dose_QCT_predict_ = (dose_QCT_predict - mean_QCT)/ std_QCT

dose_toxins_predict = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200])

dose_toxins_predict_ = (dose_toxins_predict - mean_toxins) / std_toxins

test = []

for i,qct in enumerate(dose_QCT_predict):

for j,toxin in enumerate(dose_toxins_predict):

x = [qct, toxin]

test.append(x)

test = np.array(test)

print('Please look at the test data:')

print(test)

test = []

for i,qct in enumerate(dose_QCT_predict_):

for j,toxin in enumerate(dose_toxins_predict_):

x = [qct, toxin]

test.append(x)

test = np.array(test)

test_pred = best_model.loss(test)

predict = np.round(test_pred * std_result + mean_result, 1)

print(predict.reshape(2, 10))

希望本文所述对大家Python程序设计有所帮助。

python多元非线性回归_Python利用神经网络解决非线性回归问题实例详解相关推荐

  1. python教程三角函数_Python入门之三角函数tan()函数实例详解

    描述 tan() 返回x弧度的正弦值. 语法 以下是 tan() 方法的语法: import math math.tan(x) 注意:tan()是不能直接访问的,需要导入 math 模块,然后通过 m ...

  2. python des解密_python实现DES加密解密方法实例详解

    本文实例讲述了python实现DES加密解密方法.分享给大家供大家参考.具体分析如下: 实现功能:加密中文等字符串 密钥与明文可以不等长 这里只贴代码,加密过程可以自己百度,此处python代码没有优 ...

  3. python2.7除法_对python中的float除法和整除法的实例详解

    从python2.2开始,便有两种除法运算符:"/"."//".两者最大区别在: python2.2前的版本和python2.2以后3.0以前的版本的默认情况下 ...

  4. python脚本语言采用声音作为手段_python 利用pyttsx3文字转语音过程详解

    这篇文章主要介绍了python 利用pyttsx3文字转语音过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下# -*- coding: utf ...

  5. python生成二维码_python生成二维码的实例详解

    python生成二维码的实例详解 版本相关 操作系统:Mac OS X EI Caption Python版本:2.7 IDE:Sublime Text 3 依赖库 Python生成二维码需要的依赖库 ...

  6. python类是实例的工厂_Python设计模式之工厂方法模式实例详解

    本文实例讲述了Python设计模式之工厂方法模式.分享给大家供大家参考,具体如下: 工厂方法模式(Factory Method Pattern):定义一个用于创建对象的接口,让子类决定实例化哪一个类, ...

  7. python控制nao机器人_python控制nao机器人身体动作实例详解

    本文实例为大家分享了python控制nao机器人身体动作的具体代码,供大家参考,具体内容如下 今天读的代码,顺便写了出来,与文档的对比,差不多. import sys import motion im ...

  8. python format函数实例_python中强大的format函数实例详解

    python中format函数用于字符串的格式化 自python2.6开始,新增了一种格式化字符串的函数str.format(),此函数可以快速处理各种字符串. 语法 它通过{}和:来代替%. 请看下 ...

  9. python代码覆盖率测试_unittest+coverage单元测试代码覆盖操作实例详解_python

    这篇文章主要为大家详细介绍了unittest+coverage单元测试代码覆盖操作的实例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 基于上一篇文章,这篇文章是关于使用coverage来实现代码 ...

最新文章

  1. 揭开J2EE集群的神秘面纱(一):什么是J2EE集群
  2. C++常见面试题之数据结构和算法
  3. crashpad 应用程序异常解决方案
  4. 37个我爱Ruby的理由
  5. C语言 使用递归函数计算1到n之和
  6. tomcat的端口修改
  7. Daily Scrum02 12.04
  8. 万字长文:近年来学界、业界视角下的“事理图谱”发展总结与思考
  9. mac os 相关命令
  10. text-transform 文本大小写转换、input checkbok 大小设置、letter-spacing 设置字符间距
  11. CrossApp 0.3.8 发布,跨平台移动App开发引擎
  12. SQLiteHelper帮助类
  13. vue3.x自定义换肤
  14. 『UVA 437』巴比伦塔
  15. 19年全国电赛 H题电磁炮硬件电路+可控硅
  16. word没有显示endnote_word没有endnote加载项 endnote word加载项
  17. cglib BeanCopier 使用
  18. VM虚拟机局域网搭建
  19. Softing smartLink网关——推进过程工业数字化转型
  20. 【Eclipse AST】AST与ASTView简介

热门文章

  1. 20 React项目生成及部署
  2. python中for循环的代码_Python中的九九乘法表(for循环)
  3. Linux文件写入读取与关闭(二)
  4. iphone与android共享位置,iPhone 隐藏功能:与家人共享所在位置
  5. 6月17日吃鸡服务器维护,英雄联盟6月17日更新了什么
  6. Java中资源文件获取源码浅析
  7. (1)JfreeChart之柱状图
  8. 星星之火-52:6G十大领域关键技术
  9. android电子书App、自定义图表、仿腾讯漫画App、仿淘宝优惠券、3D选择容器等源码...
  10. 【UEFI基础】UEFI网络框架之概述