[论文阅读笔记]2018_AAAI_Social Recommendation with an Essential Preference Space—(AAAI, 2018)-- Chun-Yi Liu, Chuan Zhou, Jia Wu, Yue Hu, Li Guo

论文下载地址:https://www.researchgate.net/publication/327164113_Social_Recommendation_with_an_Essential_Preference_Space
发表期刊:AAAI
Publish time: 2018
作者单位:Chinese Academy of Sciences
University of Chinese Academy of Sciences
Macquarie University
数据集:Film Trust, Flixster, Epinions, Ciao
代码

本文的创新点(个人理解)

1 提出了“基本偏好空间”的概念
2 和SoRec的思路不同的是,user latent vector在两个域中是不一样的。
因为:
(i) user对item rating时,考虑的比如是item的价格、实用性、品牌xxxxx等一些其实我们也不知道的描述item的具体的因素
(ii) 而user在social network中考虑该trust谁,或者做出的rating(或者购买抉择)时,考虑是 和这个人熟不熟、这个人的爱好,这个人可不可信xxxx等一些我们也不知道的描述people的具体因素,但肯定不是item的属性。
(iii) 所以在面对item和people时,user考虑的因素必然是不同的,对应到Recommendation System中,user-item-interaction中的user latent vector与social-network中的user latent vector 应该属于不同的essential preference space
3 作者assume that the user preferences in different scenarios are results of different linear combinations from a more underlying user preference space(假设不同场景中的用户偏好是来自更底层的用户偏好空间的不同线性组合的结果)
4
(i) 用MF技术,对Rating Matrix进行分解,对Rating Space进行建模,
(ii) 用LINE(Large-scale Information Network Embedding大规模信息网络嵌入技术),得到社交网络空间的用户向量
(iii) 对Raing信息、购买信息、社交网络的信息进行建模后,进行联合(一堆公式推导)建模,学习得到Essential Preference Space中的user latent vector,将其投影到Rating Space中,就得到了Rating Space中的user latent vector,从而就得到了 预测评分。

Abstract(本文的创新,做的工作)

(1) we assume that the user preferences in different scenarios are results of different linear combinations from a more underlying user preference space(我们假设不同场景中的用户偏好是来自更底层的用户偏好空间的不同线性组合的结果)
(2) we propose a novel social recommendation framework, called social recommendation with an essential pref-erences space (SREPS)(提出新的框架,Model)
   simultaneously models the structural information in the social network, the rating and the consumption information in the recommender system under the capture of essential preference space.

1 Introduction

In summary, the user latent vectors in recommender system and social network should belong to different latent spaces rather than two different vectors in the same latent space(本文最大的创新,与SoRec的思路典型的不同)

Figure 1: An explanatory example. The purple box is the scenarios that the user rates items. The user mainly considers quality, price and brand to make decisions. The green box is the scenarios in social networks, and the user regards appearance, personality traits and social position to decide whether to trust other people. Clearly, the user considers different latent factors in these two scenarios.

1.1 essential preference space

(1) describe the user multiple preferences differences in different scenarios like recommender system and social network.
(2) a network embedding model called large scale information network embedding (LINE)
(3) A social recommendation framework SREPS is proposed to jointly model the rating, consumption and social relation information based on the essential preference space(本文提出的新Model,创新点)
(4) An effective stochastic gradient descent algorithm is designed for the model learning

2 Preliminaries and Problem Definitions

Definition

(1) a user set PPP with mmm users and an item set QQQ with nnn items. Let R=[rui]m×nR=[r_{ui}]_{m\times n}R=[rui]m×n denote the user-item rating matrix,
(2) a social network is represented by a graph GS=(VPS,ES)\mathcal{G}^{\mathcal{S}}=(\mathcal{V}^{\mathcal{S}}_{\mathcal{P}}, \mathcal{E}^S)GS=(VPS,ES), where VPS\mathcal{V}^{\mathcal{S}}_{\mathcal{P}}VPS is the set of vertexes that represent users, and ES\mathcal{E}^{\mathcal{S}}ES is the set of edges,
(3) A recommendation network is a bipartite graph GR=(VPR,VQR,ER)\mathcal{G}^{\mathcal{R}}=(\mathcal{V}^{\mathcal{R}}_{\mathcal{P}}, \mathcal{V}^{\mathcal{R}}_{\mathcal{Q}}, \mathcal{E}^{\mathcal{R}})GR=(VPR,VQR,ER), where VPR\mathcal{V}^{\mathcal{R}}_{\mathcal{P}}VPR is a set of vertexes to represent users, VQR\mathcal{V}^{\mathcal{R}}_{\mathcal{Q}}VQR is another set of vertexes to represent items, and ER\mathcal{E}^{\mathcal{R}}ER is the set of directed unweighted edges from users to items.
(4) we explore the structure information of the recommendation network to learn the user implicit preferences with the help of property- reserved network embedding method.

Matrix Factorization(用到的方法)

The unknown entities then be predicted by calculating the inner products of these latent vectors, i.e., rui=UuTVir_{ui}=U^{T}_{u}V_irui=UuTVi, where UuTU^T_uUuT is the transpose of latent vector UuU_uUu. Formally, the loss function for matrix factorization is as follows,

where the second term controlled by λ\lambdaλ is to avoid overfitting

Large-scale Information Network Embedding(用到的方法LINE)

(1) LINE captures both the local structures and similarity of neighborhood network structures between two vertexes.
(2) In LINE, each vertex can be treated as a context for the other vertexes, and vertexes with similar distributions over a context are assumed to be similar.
(3) the probability of context ttt generated from vertex sss is defined as

(4) The empirical probability is that p^(t∣s)=wstdsout\hat{p}(t|s)=\frac{w_{st}}{d^{out}_{s}}p^(ts)=dsoutwst, where dsoutd^{out}_{s}dsout is the out_degree of vertex s, i.e., dsout=∑v∈Vωsvd^{out}_{s}=\sum_{v\in\mathcal{V}}^{}\omega_{sv}dsout=vVωsv
(5) The objective function of LINE is defined as

where KL(p,q)KL(p, q)KL(p,q) is the KL-divergence of the probability distributions ppp and qqq, p^(⋅∣s)\hat{p}(\cdot|s)p^(s) and p(⋅∣s)p(\cdot|s)p(s) are the empirical and defined distributions of contexts generated from vertex sss, respectively.
(6) Omitting the constants, which does not affect the optimization of the objective function, the final loss function can be put as

3 Social Recommendation with an Essential Preference Space (SREPS)(创新Model)


Figure 2: The overview of our SREPS model. Each user has a latent vector in the essential preference space, and his semantic
latent vectors are projections from the essential preference space by multiplying space projection matrices (i.e. MEM_EME, MCM_CMC, MRM_RMR
and MIM_IMI). We model the historical rating information with matrix factorization, while the social and recommendation networks
are modeled by network embedding. By jointly modeling these elements, we can learn the user latent vectors in the essential
preference space and the space projection matrices. Finally, we can use user latent vectors in essential preference space, the
rating space projection matrix MRM_RMR, and the item latent vectors in the rating space to predict the final rating.

Essential Preference Space

Definition 1 Semantic Latent Space(自己定义一个语义隐空间)

(1) For a particular scenario like item rating and friend trusting, the corresponding semantic latent space is inferred from the user feedback and can be used to explain the user preferences by characterizing users in terms of latent factors.
(2) F or example, the user latent vectors learned from Eq. (1) belong to a rating semantic latent space, and the embedding learned representation vectors from Eq. (3) belong to a social semantic latent space.(user latent vector从不同的式子分解得到的,或者说是从不同的语义隐空间分解得到的,就应是不同的。主要对标SoRec)

Definition 2 Essential Preference Space(自己定义的一个基本偏好空间)

(1) The essential preference space is used to describe the fundamental factors that influence user preferences
(2) The factor in each semantic latent space is a linear combination of factors in the essential preference space.(解释自己的理论)
(3) Let U^u∈Rl\hat{U}_u\in R^lU^uRl be the latent vector in essential preference space for user uuu. Let Uu∈Rd0U_u\in R^{d_0}UuRd0 be the latent vector in rating semantic latent space for user uuu in Eq. (1), which can be obtained from following transition

where MR∈Rd0×lM_R\in R^{d_0\times l}MRRd0×l is the space projection matrix that maps the essential preference space into the rating semantic latent space.
(4) Similarly, the embedding vector EuE_uEu and context vector CuC_uCu in Eq. (3) can be mapped from U^u\hat{U}_uU^u by space projection matrices ME∈Rd1×lM_E\in R^{d_1\times l}MERd1×l and MC∈Rd1×lM_C\in R^{d_1\times l}MCRd1×l as follow:

The SREPS Model

(1) By incorporating Eq. (4) and Eq. (5), the rating loss function in Eq. (1) without regularizations can be represented as

(2) The loss function O2O_2O2 for the social network representation is as follows

where ωst\omega_{st}ωst is the weight in edge (s,t)(s, t)(s,t).
(3) Similarly, the loss function O3O_3O3 for the recommendation network representation is expressed as

where MI∈Rd2×lM_I\in R^{d_2\times l}MIRd2×l is the space projection matrix corresponding to recommendation network and Bi∈Rd2B_i\in R^{d_2}BiRd2 is the context vector of item iii.
(4) Note that the recommendation network is a bipartite graph.
   Hence, different from the social network, the user vertexes have only the embedding vectors, while the item vertexes have only context vectors.(user顶点只有embedding向量,item顶点只有context向量)
   In sum, the loss function of the SREPS model is

whereα α≥0\alpha\geq0α0 and β≥0\beta\geq0β0 are parameters that control the balance of loss function meeting α+β≤1\alpha+\beta\leq1α+β1, and Reg is the regularization term:

where λ\lambdaλ is the regularization parameter.

Prediction

Optimization Approach

we simultaneously learn the parameters by sampling examples from different parts of the SREPS loss function

Rating Loss

(1) We randomly sample a pair (u,i)(u, i)(u,i) from the observed entity set Ω\OmegaΩ
(2) the gradients of the
rating loss function L1:=O1+Reg1L_1:=O_1+Reg_1L1:=O1+Reg1 for the sampled pair u,iu, iu,i are as follow,

where IlI_lIl is an l×ll\times ll×l identity matrix and δuiR=U^uTMRTVi−rui\delta^{R}_{ui}=\hat{U}^{T}_{u}M^{T}_{R}V_i-r_{ui}δuiR=U^uTMRTVirui.

Social Network Embedding

(1) Now we optimize the loss function L2:=O2+Reg2L_2:=O_2+Reg_2L2:=O2+Reg2 in the social network embedding, where Reg2Reg_2Reg2 is the regularization corresponding to ∥MEU^u∥2\parallel M_E \hat{U}_u\parallel^ 2MEU^u2, ∥MCU^u∥2\parallel M_C\hat{U}_u\parallel^2MCU^u2 and ∥U^u∥2\parallel \hat{U}_u\parallel^2U^u2
(2)we can change p(t∣s)p(t|s)p(ts) into the following form

where σ(⋅)\sigma(\cdot)σ() is the sigmoid function, KKK is the number of negative samples, and the negative vertexes vniv_{n_i}vni are drawn from the distribution Pn(v)P_n(v)Pn(v)
(3) Here we set Pn(v)∝dv3/4P_n(v) \propto d^{3/4}_{v}Pn(v)dv3/4 , where dvd_vdv is the out-degree of vertex vvv. Empirically, we set KKK = 5. Thus, for the randomly sampled edge (t,s)(t, s)(t,s), we can obtain the gradients as follow,

Recommendation Network Embedding

(1) the recommendation network embedding objective L3:=O3+Reg3L_3:=O_3+Reg_3L3:=O3+Reg3, where Reg3Reg_3Reg3 contains ∥Bi∥2\parallel B_i\parallel^2Bi2, ∥MIU^u∥2\parallel M_I \hat{U}_u \parallel^2MIU^u2 and ∥U^u∥2\parallel \hat{U}_u \parallel ^2U^u2
(2) Since the recommendation network is a bipartite network, and we simply sample the negative item vertexes according to a uniform distribution.
(3) Similarly, we can obtain the gradients for each edge (u,i)∈ER(u, i)\in\mathcal{E^{\mathcal{R}}}(u,i)ER as follow

4 Experiments

Experimental Settings

Evaluation Metrics

mean absolute error (MAE)
root mean square error (RMSE)

Comparison Methods

PMF
SoRec
STE
SocialMF
SoReg
TrustMF
SoDimRec

Results and Analysis

Parameter Sensitivity

Hyper Parametersα α\alphaα and β\betaβ

Dimensions l, d0, d1 and d2

Related Work

SoRec

shared common user latent vectors factorized by ratings and by trust.(感觉这是本文最大的靶子)

Conclusion

Acknowledgement

References

2018_AAAI_Social Recommendation with an Essential Preference Space—(AAAI, 2018)相关推荐

  1. 5 篇 AAAI 2018 论文看「应答生成」

    作者丨李军毅 学校 | 中国人民大学本科生 研究方向丨机器学习.自然语言处理 前言 本文将介绍 AAAI 2018 中的五篇关于应答生成方面的论文,希望对大家有所启发. 写作动机 作者认为,虽然之前的 ...

  2. AAAI 2018论文解读 | 基于置信度的知识图谱表示学习框架

    作者丨谢若冰 单位丨腾讯微信搜索应用部 研究方向丨知识表示学习 知识图谱被广泛地用来描述世界上的实体和实体之间的关系,一般使用三元组(h,r,t)(head entity, relation, tra ...

  3. 【AAAI 2018】腾讯 AI Lab 11篇论文精选:图像描述、NMT 模型、图卷积神经网络、DNN优化等

    背景:AAAI 2018 将于2月2日至 7日在美国新奥尔良举行,在本届大会上,腾讯 AI Lab 有 11 篇论文被录用,涉及图像描述.更低计算成本的预测表现.NMT 模型中的特定翻译问题.自适应图 ...

  4. AAAI 2018经典论文获奖者演讲:本体论的昨天和今天

    本文转自公众号:AI科技评论. AI 科技评论按:正在美国新奥尔良召开的 AAAI 2018 的经典论文奖颁给了<Algorithm and Tool for Automated Ontolog ...

  5. AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法

    导读:词向量算法是自然语言处理领域的基础算法,在序列标注.问答系统和机器翻译等诸多任务中都发挥了重要作用.词向量算法最早由谷歌在2013年提出的word2vec,在接下来的几年里,该算法也经历不断的改 ...

  6. SortPool (DGCNN) - An End-to-End Deep Learning Architecture for Graph Classification AAAI 2018

    文章目录 1 背景介绍 图核方法 DGCNN和WL和PK的关系 2 Deep Graph Convolutional Neural Network (DGCNN) 深度图卷积神经网络 图卷积层 与We ...

  7. AAAI 2018 杰出论文出炉,两位中国留学生共同获奖

    编辑 | 周翔 作为人工智能的顶级会议,AAAI 2018 将于 2.2~2.7 在美国路易斯安那州的新奥尔良举行.然而,大会还没开始,获奖信息就已经在网上传播开来. 获得"杰出论文奖&qu ...

  8. AAAI 2018文章 Representation Learning for Scale-free Networks 翻译

    大三上课翻译的一篇paper,之前一直放在草稿箱,发出来供大家参考一下,没有再做修改,哪里翻译有问题或理解不对欢迎指出. 无标度网络表示学习 冯瑞,杨洋,胡文杰,吴飞,庄悦婷 中国浙江大学计算机科学与 ...

  9. 今晚直播 | AAAI 2018论文解读:零资源机器翻译的最新进展

    「PhD Talk」是 PaperWeekly 的学术直播间,旨在帮助更多的青年学者宣传其最新科研成果.我们一直认为,单向地输出知识并不是一个最好的方式,而有效地反馈和交流可能会让知识的传播更加有意义 ...

最新文章

  1. 曝光!十万开发者喜爱的顶级当红讲师
  2. php设计模式简单代码,PHP设计模式(1)工厂模式
  3. Python 字符串换行的几种方式
  4. Java黑皮书课后题第3章:3.26(使用操作符 ||和^)编写一个程序,提示用户输入一个整数值,然后判断它能否被5和6整除、能否被5或6整除、以及能否被5或6整除但不能被同时整除
  5. java mp4 视频时间戳_MP4文件中音视频时间戳的计算
  6. C语言中字符串的处理方式
  7. 分享6个国内优秀Java后台管理框架的开源项目,建议收藏!
  8. 3.Prometheus 监控技术与实践 --- Exporter
  9. Flex 学习随笔 --- 找学习资料+安装环境+工具
  10. springboot整合PageHelper实现分页效果
  11. python密码字典生成库_python生成密码字典的方法
  12. coreldraw铺花纹_Coreldraw绘图实例教程,教你cdr环形花边绘制方法
  13. 1553B为什么要加耦合器?
  14. C措辞教程第一章: C措辞概论 (5)
  15. 最近工作中遇到的某些技术问题
  16. php cmyk图片,php – 使用Imagick将图像从RGB转换为CMYK
  17. 搭建一个属于自己的博客平台
  18. 第九天 (集合 ArrayList)
  19. JAVA高级-常用类和常用方法
  20. 卡尔曼滤波 | Matlab实现非线性卡尔曼滤波(Nonlinear KF)

热门文章

  1. 【python】 爬取网易云音乐 专辑图片+歌词
  2. 科技大学计算机基础试卷答案,大学计算机基础期末考试试卷(带答案)
  3. 电子邮件地址允许使用哪些字符?
  4. oracle asm无法关闭,ASM无法关闭 - Oracle专题深入讨论 - ITPUB论坛-中国专业的IT技术社区...
  5. Linux中如何检测IP地址冲突问题
  6. linux 安装软件 垃圾,Ubuntu 18.04 安装垃圾清理工具 BleachBit 2.2
  7. 商家入驻平台系统方案介绍
  8. Go简明语法汇总--入门
  9. C#栈(后进先出)队列实现与解析
  10. php删除二维数组元素_php怎样删除二维数组中的元素