原文链接:http://tecdat.cn/?p=26184

原文出处:拓端数据部落公众号

在此数据集中,我们必须预测信贷的违约支付,并找出哪些变量是违约支付的最强预测因子?以及不同人口统计学变量的类别,拖欠还款的概率如何变化?

有25个变量:

1. ID: 每个客户的ID
2. LIMIT_BAL: 金额
3. SEX: 性别(1 =男,2 =女)
4.教育程度:(1 =研究生,2 =本科,3 =高中,4 =其他,5 =未知)
5.婚姻: 婚姻状况(1 =已婚,2 =单身,3 =其他)
6.年龄:
7.  PAY_0:  2005年9月的还款状态(-1 =正常付款,1 =延迟一个月的付款,2 =延迟两个月的付款,8 =延迟八个月的付款,9 =延迟9个月以上的付款)
8. PAY_2:  2005年8月的还款状态(与上述相同)
9. PAY_3: 2005年7月的还款状态(与上述相同)
10. PAY_4:  2005年6月的还款状态(与上述相同)
11. PAY_5:  2005年5月的还款状态(与上述相同)
12. PAY_6: 还款状态2005年4月 的账单(与上述相同)
13. BILL_AMT1: 2005年9月的账单金额
14. BILL_AMT2:  2005年8月的账单金额
15. BILL_AMT3: 账单金额2005年7月 的账单金额
16. BILL_AMT4: 2005年6月的账单金额
17. BILL_AMT5:  2005年5月的账单金额
18. BILL_AMT6: 2005年4月
19. PAY_AMT1  2005年9月,先前支付金额
20. PAY_AMT2  2005年8月,以前支付的金额
21. PAY_AMT3: 2005年7月的先前付款
22. PAY_AMT4:  2005年6月的先前付款
23. PAY_AMT5:  2005年5月的先前付款
24. PAY_AMT6: 先前的付款额在2005年4月
25. default.payment.next.month: 默认付款(1 =是,0 =否)

现在,我们知道了数据集的整体结构。因此,让我们应用在应用机器学习模型时通常应该执行的一些步骤。

相关视频:Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例

Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例

,时长10:25

第1步:导入

import numpy as np
import matplotlib.pyplot as plt

所有写入当前目录的结果都保存为输出。

dataset = pd.read_csv('Card.csv')

现在让我们看看数据是什么样的

第2步:数据预处理和清理

dataset.shape
(30000, 25)

意味着有30,000条目包含25列

从上面的输出中可以明显看出,任何列中都没有对象类型不匹配。

#检查数据中Null项的数量,按列计算。
dataset.isnull().sum()

步骤3.数据可视化和探索性数据分析

# 按性别检查违约者和非违约者的计数数量
sns.countplot

从上面的输出中可以明显看出,与男性相比,女性的整体拖欠付款更少

可以明显看出,那些拥有婚姻状况的人的已婚状态人的默认拖欠付款较少。

sns.pairplot

sns.jointplot

男女按年龄分布

g.map(plt.hist,'AGE')

dataset['LIMIT_BAL'].plot.density

步骤4.找到相关性

X.corrwith

从上图可以看出,最负相关的特征是LIMIT_BAL,但我们不能盲目地删除此特征,因为根据我的看法,这对预测非常重要。ID无关紧要,并且在预测中没有任何作用,因此我们稍后将其删除。


# 绘制热图
sns.heatmap(corr)

步骤5:将数据分割为训练和测试集

训练数据集和测试数据集必须相似,通常具有相同的预测变量或变量。它们在变量的观察值和特定值上有所不同。如果将模型拟合到训练数据集上,则将隐式地最小化误差。拟合模型为训练数据集提供了良好的预测。然后,您可以在测试数据集上测试模型。如果模型在测试数据集上也预测良好,则您将更有信心。因为测试数据集与训练数据集相似,但模型既不相同也不相同。这意味着该模型在真实意义上转移了预测或学习。

因此,通过将数据集划分为训练和测试子集,我们可以有效地测量训练后的模型,因为它以前从未看到过测试数据,因此可以防止过度拟合。

我只是将数据集拆分为20%的测试数据,其余80%将用于训练模型。

 train_test_split(X, y, test_size = 0.2, random_state = 0)

步骤6:规范化数据:特征标准化

对于许多机器学习算法而言,通过标准化(或Z分数标准化)进行特征标准化可能是重要的预处理步骤。

许多算法(例如SVM,K近邻算法和逻辑回归)都需要对特征进行规范化,

min_test = X_test.min()
range_test = (X_test - min_test).max()
X_test_scaled = (X_test - min_test)/range_test

步骤7:应用机器学习模型

from sklearn.ensemble  import AdaBoostClassifier
adaboost =AdaBoostClassifier()

xgb_classifier.fit(X_train_scaled, y_train,verbose=True)
end=time()
train_time_xgb=end-start

应用具有100棵树和标准熵的随机森林

classifier = RandomForestClassifier(random_state = 47, criterion = 'entropy',n_estimators=100)


svc_model = SVC(kernel='rbf', gamma=0.1,C=100)

knn = KNeighborsClassifier(n_neighbors = 7)

步骤8:分析和比较机器学习模型的训练时间


Train_Time = [train_time_ada,train_time_xgb,train_time_sgd,train_time_svc,train_time_g,train_time_r100,train_time_knn
]

从上图可以明显看出,与其他模型相比,Adaboost和XGboost花费的时间少得多,而其他模型由于SVC花费了最多的时间,原因可能是我们已经将一些关键参数传递给了SVC。

步骤9.模型优化

在每个迭代次数上,随机搜索的性能均优于网格搜索。同样,随机搜索似乎比网格搜索更快地收敛到最佳状态,这意味着迭代次数更少的随机搜索与迭代次数更多的网格搜索相当。

在高维参数空间中,由于点变得更稀疏,因此在相同的迭代中,网格搜索的性能会下降。同样常见的是,超参数之一对于找到最佳超参数并不重要,在这种情况下,网格搜索浪费了很多迭代,而随机搜索却没有浪费任何迭代。

现在,我们将使用Randomsearch cv优化模型准确性。如上表所示,Adaboost在该数据集中表现最佳。因此,我们将尝试通过微调adaboost和SVC的超参数来进一步优化它们。

参数调整

现在,让我们看看adaboost的最佳参数是什么

random_search.best_params_
{'random_state': 47, 'n_estimators': 50, 'learning_rate': 0.01}

random_search.best_params_
{'n_estimators': 50, 'min_child_weight': 4, 'max_depth': 3}

random_search.best_params_
{'penalty': 'l2', 'n_jobs': -1, 'n_iter': 1000, 'loss': 'log', 'alpha': 0.0001}

出色的所有指标参数准确性,F1分数精度,ROC,三个模型adaboost,XGBoost和SGD的召回率现已优化。此外,我们还可以尝试使用其他参数组合来查看是否会有进一步的改进。

ROC曲线图

auc = metrics.roc_auc_score(y_test,model.predict(X_test_scaled))plt.plot([0, 1], [0, 1],'r--')


# 计算测试集分数的平均值和标准差
test_mean = np.mean# 绘制训练集和测试集的平均准确度得分
plt.plot
# 绘制训练集和测试集的准确度。
plt.fill_between

验证曲线的解释

如果树的数量在10左右,则该模型存在高偏差。两个分数非常接近,但是两个分数都离可接受的水平太远,因此我认为这是一个高度偏见的问题。换句话说,该模型不适合。

在最大树数为250的情况下,由于训练得分为0.82但验证得分约为0.81,因此模型存在高方差。换句话说,模型过度拟合。同样,数据点显示出一种优美的曲线。但是,我们的模型使用非常复杂的曲线来尽可能接近每个数据点。因此,具有高方差的模型具有非常低的偏差,因为它几乎没有假设数据。实际上,它对数据的适应性太大。

从曲线中可以看出,大约30到40的最大树可以最好地概括看不见的数据。随着最大树的增加,偏差变小,方差变大。我们应该保持两者之间的平衡。在30到40棵树的数量之后,训练得分就开始上升,而验证得分开始下降,因此我开始遭受过度拟合的困扰。因此,这是为什么30至40之间的任何数量的树都是一个不错的选择的原因。

结论

因此,我们已经看到,调整后的Adaboost的准确性约为82.95%,并且在所有其他性能指标(例如F1分数,Precision,ROC和Recall)中也取得了不错的成绩。

此外,我们还可以通过使用Randomsearch或Gridsearch进行模型优化,以找到合适的参数以提高模型的准确性。

我认为,如果对这三个模型进行了适当的调整,它们的性能都会更好。


最受欢迎的见解

1.从决策树模型看员工为什么离职

2.R语言基于树的方法:决策树,随机森林

3.python中使用scikit-learn和pandas决策树

4.机器学习:在SAS中运行随机森林数据分析报告

5.R语言用随机森林和文本挖掘提高航空公司客户满意度

6.机器学习助推快时尚精准销售时间序列

7.用机器学习识别不断变化的股市状况——隐马尔可夫模型的应用

8.python机器学习:推荐系统实现(以矩阵分解来协同过滤)

9.python中用pytorch机器学习分类预测银行客户流失

拓端tecdat|Python信贷风控模型:梯度提升Adaboost,XGBoost,SGD, GBOOST, SVC,随机森林, KNN预测金融信贷违约支付和模型优化相关推荐

  1. Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付

    全文链接:http://tecdat.cn/?p=26184 在此数据集中,我们必须预测信贷的违约支付,并找出哪些变量是违约支付的最强预测因子?以及不同人口统计学变量的类别,拖欠还款的概率如何变化?( ...

  2. 拓端tecdat荣获掘金社区入驻新人奖

    2021年7月,由掘金发起了"入驻成长礼"颁奖活动.本次活动邀请到知名开发者.服务机构代表等业界人士. 据了解,掘金社区"新入驻创作者礼"主要对已经积累了一定历 ...

  3. 拓端tecdat荣获2022年度51CTO博主之星

    相信技术,传递价值,这是51CTO每一个技术创作者的动力与信念,2022 年度,拓端tecdat 作为新锐的数据分析咨询公司,在51CTO平台上,不断的输出优质的技术文章,分享前沿创新技术,输出最佳生 ...

  4. PYTHON链家租房数据分析:岭回归、LASSO、随机森林、XGBOOST、KERAS神经网络、KMEANS聚类、地理可视化...

    全文下载链接:http://tecdat.cn/?p=29480 作者:Xingsheng Yang 1 利用 python 爬取链家网公开的租房数据: 2 对租房信息进行分析,主要对房租相关特征进行 ...

  5. 机器学习项目实战:基于随机森林进行心脏病分类(含多种模型解释方法)

      本项目是Kaggle上面的一个经典竞赛题,心脏病分类问题,题目链接在这里. 主要基于随机森林的bagging集成学习框架,通过13个生理特征数据,实现对心脏病分类的预测.   由于自己想要在这个项 ...

  6. Python 利用SVM,KNN,随机森林进行预测

    Python 利用SVM,KNN,随机森林进行预测 工具:Pycharm,Win10,Python3.6.4 上图是我们的数据文件,最后一列是附近有无超市的标签,1代表有,-1代表没有.可以发现数据维 ...

  7. 拓端tecdat|R语言向量误差修正模型 (VECMs)分析长期利率和通胀率影响关系

    最近我们被客户要求撰写关于向量误差修正模型的研究报告,包括一些图形和统计输出. 向量自回归模型估计的先决条件之一是被分析的时间序列是平稳的.但是,经济理论认为,经济变量之间在水平上存在着均衡关系,可以 ...

  8. 拓端tecdat|bilibili视频流量数据潜望镜

    最近我们被客户要求撰写关于bilibili视频流量的研究报告,包括一些图形和统计输出. 最新研究表明,中国有超过7亿人在观看在线视频内容.Bilibili,被称为哔哩哔哩或简称为B站,是中国大陆第二个 ...

  9. 拓端tecdat|R语言线性回归和时间序列分析北京房价影响因素可视化案例

    最近我们被客户要求撰写关于北京房价影响因素的研究报告,包括一些图形和统计输出. 目的 房价有关的数据可能反映了中国近年来的变化: 人们得到更多的资源(薪水),期望有更好的房子 人口众多 独生子女政策: ...

  10. 基于Python的随机森林(RF)回归与多种模型超参数自动优化方法

      本文详细介绍基于Python的随机森林(Random Forest)回归算法代码与模型超参数(包括决策树个数与最大深度.最小分离样本数.最小叶子节点样本数.最大分离特征数等等)自动优化代码.    ...

最新文章

  1. Rethinking场景分析中的空间池化 | Strip Pooling(CVPR2020,何凯明)
  2. 面试技巧——保持一颗乐观的心态
  3. fckeditor编辑器上传文件出现invalid Request问题解决
  4. 泊位调度问题 matlab,流水线车间调度问题matlab源程序.doc
  5. Xilinx视频加速技术专场
  6. oracle驱动权限如何修改,详解如何实现Oracle修改用户权限和角色
  7. 一条SQL引发的“血案”:与SQL优化相关的4个案例
  8. 7.1 pdo 宝塔面板php_大商创X2.0宝塔环境保姆式完整安装教程
  9. python调用bat_python windows 远程执行bat
  10. 开源项目面试重要吗_开源是最重要项目的骨干
  11. 《天天数学》连载46:二月十五日
  12. 【Elasticsearch】消除 Elasticsearch 中的重复文档
  13. Javascript变量的使用第三课
  14. crontab的使用记录
  15. 062 函数进阶小结
  16. 一听不是双休,连面试都免了
  17. Emmet的高级功能与使用技巧
  18. Linux基础入门(详细版)
  19. 诛仙3饮马江南服务器信息,12月29日全服停机更新维护公告
  20. Fujitsu Diagnostic(硬盘坏道检测工具)v6.8绿色版

热门文章

  1. 【Python】改变对象的字符串显示
  2. 为何大富连续三天彻夜未眠!
  3. java word文档 转 html文件
  4. linkedlist 最难题 Insert into a Cyclic Sorted List
  5. 域猫(域名分享平台)
  6. cassini服务器源代码
  7. 【转载】程序员面对下列技术问题,如何做决策
  8. 圣诞收到最搞笑的短信两则
  9. 学习Linux让我进入了知名企业 原
  10. 数据--第32课 -二叉树的定义