一,残差网络实现手写数字识别

数据集地址:https://download.csdn.net/download/fanzonghao/10551018

首先来resnets_utils.py,里面有手势数字的数据集载入函数和随机产生mini-batch的函数,代码如下:

import os
import numpy as np
import tensorflow as tf
import h5py
import mathdef load_dataset():train_dataset = h5py.File('datasets/train_signs.h5', "r")train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set featurestrain_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels# print(train_set_x_orig.shape)# print(train_set_y_orig.shape)test_dataset = h5py.File('datasets/test_signs.h5', "r")test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set featurestest_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels# print(test_set_x_orig.shape)# print(test_set_y_orig.shape)classes = np.array(test_dataset["list_classes"][:]) # the list of classestrain_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes#load_dataset()
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):"""Creates a list of random minibatches from (X, Y)Arguments:X -- input data, of shape (input size, number of examples) (m, Hi, Wi, Ci)Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) (m, n_y)mini_batch_size - size of the mini-batches, integerseed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.Returns:mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)"""m = X.shape[0]                  # number of training examplesmini_batches = []np.random.seed(seed)# Step 1: Shuffle (X, Y)permutation = list(np.random.permutation(m))shuffled_X = X[permutation,:,:,:]shuffled_Y = Y[permutation,:]# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionningfor k in range(0, num_complete_minibatches):mini_batch_X = shuffled_X[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:,:,:]mini_batch_Y = shuffled_Y[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:]mini_batch = (mini_batch_X, mini_batch_Y)mini_batches.append(mini_batch)# Handling the end case (last mini-batch < mini_batch_size)if m % mini_batch_size != 0:mini_batch_X = shuffled_X[num_complete_minibatches * mini_batch_size : m,:,:,:]mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size : m,:]mini_batch = (mini_batch_X, mini_batch_Y)mini_batches.append(mini_batch)return mini_batchesdef convert_to_one_hot(Y, C):Y = np.eye(C)[Y.reshape(-1)].Treturn Ydef forward_propagation_for_predict(X, parameters):"""Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAXArguments:X -- input dataset placeholder, of shape (input size, number of examples)parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"the shapes are given in initialize_parametersReturns:Z3 -- the output of the last LINEAR unit"""# Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1']b1 = parameters['b1']W2 = parameters['W2']b2 = parameters['b2']W3 = parameters['W3']b3 = parameters['b3'] # Numpy Equivalents:Z1 = tf.add(tf.matmul(W1, X), b1)                      # Z1 = np.dot(W1, X) + b1A1 = tf.nn.relu(Z1)                                    # A1 = relu(Z1)Z2 = tf.add(tf.matmul(W2, A1), b2)                     # Z2 = np.dot(W2, a1) + b2A2 = tf.nn.relu(Z2)                                    # A2 = relu(Z2)Z3 = tf.add(tf.matmul(W3, A2), b3)                     # Z3 = np.dot(W3,Z2) + b3return Z3def predict(X, parameters):W1 = tf.convert_to_tensor(parameters["W1"])b1 = tf.convert_to_tensor(parameters["b1"])W2 = tf.convert_to_tensor(parameters["W2"])b2 = tf.convert_to_tensor(parameters["b2"])W3 = tf.convert_to_tensor(parameters["W3"])b3 = tf.convert_to_tensor(parameters["b3"])params = {"W1": W1,"b1": b1,"W2": W2,"b2": b2,"W3": W3,"b3": b3}x = tf.placeholder("float", [12288, 1])z3 = forward_propagation_for_predict(x, params)p = tf.argmax(z3)sess = tf.Session()prediction = sess.run(p, feed_dict = {x: X})return prediction

测试数据集,代码如下:

import resnets_utils
import cv2
train_x, train_y, test_x, test_y, classes=resnets_utils.load_dataset()
print('训练样本={}'.format(train_x.shape))
print('训练样本标签={}'.format(train_y.shape))
print('测试样本={}'.format(test_x.shape))
print('测试样本标签={}'.format(test_y.shape))
print('第五个样本={}'.format(train_y[0,5]))
cv2.imshow('1.jpg',train_x[5,:,:,:]/255)
cv2.waitKey()

打印结果:可看出训练样本有1080个,size为(64,64,3),测试样本有120个,手势四是用4代替。

先测试第一个残差学习单元,模型如下:

代码如下:

from keras.layers import Dense,Flatten,Input,Activation,ZeroPadding2D,AveragePooling2D,BatchNormalization,Conv2D,Add,MaxPooling2D
from keras.models import Model
import matplotlib.pyplot as  plt
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
import resnets_utils
import keras.backend as K
import numpy as np
from keras.initializers import glorot_uniform
import tensorflow as tf
def identity_block(X,f,filters,stage,block):conv_name_base='res'+str(stage)+block+'_branch'bn_name_base='bn'+str(stage)+block+'_branch'F1,F2,F3=filtersX_shortcut=Xprint('输入尺寸={}'.format(X.shape))#first convX=Conv2D(filters=F1,kernel_size=(1,1),strides=(1,1),padding='valid',name=conv_name_base+'2a',kernel_initializer=glorot_uniform(seed=0))(X)print('输出尺寸={}'.format(X.shape))X=BatchNormalization(axis=3,name=bn_name_base+'2a')(X)X=Activation('relu')(X)#second convX = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',kernel_initializer=glorot_uniform(seed=0))(X)print('输出尺寸={}'.format(X.shape))X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)X = Activation('relu')(X)#third convX = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)print('输出尺寸={}'.format(X.shape))#ResNetX=Add()([X,X_shortcut])X = Activation('relu')(X)print('最终输出尺寸={}'.format(X.shape))return X
def test_identity_block():with tf.Session() as sess:np.random.seed(1)A_prev=tf.placeholder('float',[3,4,4,6])X=np.random.randn(3,4,4,6)A=identity_block(A_prev,f=2,filters=[2,4,6],stage=1,block='a')init=tf.global_variables_initializer()sess.run(init)out=sess.run([A],feed_dict={A_prev:X,K.learning_phase():0})
if __name__=='__main__':test_identity_block()

打印结果:由此可见经过三层卷积,该残差单元的输出size和维度不变,因为原始输入未进行卷积,故只能这样才能进行特征融合。

下面是输出维度会发生变化的,对原始输入X做了卷积变换再融合输出得到最终的输出,模型如下

代码如下:

from keras.layers import Dense,Flatten,Input,Activation,ZeroPadding2D,AveragePooling2D,BatchNormalization,Conv2D,Add,MaxPooling2D
from keras.models import Model
import matplotlib.pyplot as  plt
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
import resnets_utils
import keras.backend as K
import numpy as np
from keras.initializers import glorot_uniform
import tensorflow as tf
def convolutional_block(X,f,filters,stage,block,s=2):conv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'F1, F2, F3 = filtersX_shortcut = Xprint('输入尺寸={}'.format(X.shape))# first convX = Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '2a',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X)X = Activation('relu')(X)print('输出尺寸={}'.format(X.shape))# second convX = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)X = Activation('relu')(X)print('输出尺寸={}'.format(X.shape))#third convX = Conv2D(filters=8, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)X = Activation('relu')(X)print('输出尺寸={}'.format(X.shape))#ResNetX_shortcut=Conv2D(filters=8, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '1',kernel_initializer=glorot_uniform(seed=0))(X_shortcut)X_shortcut = BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)print('原始输入X经过变化的输出尺寸={}'.format(X.shape))X = Add()([X, X_shortcut])X = Activation('relu')(X)print('最终输出尺寸={}'.format(X.shape))return X
def test_convolutional_block():#tf.reset_default_graph()with tf.Session() as sess:np.random.seed(1)A_prev=tf.placeholder('float',[3,4,4,6])X=np.random.randn(3,4,4,6)A=convolutional_block(A_prev,f=2,filters=[2,4,6],stage=1,block='a',s=2)init = tf.global_variables_initializer()sess.run(init)out=sess.run(A,feed_dict={A_prev:X})
if __name__=='__main__':#test_identity_block()test_convolutional_block()

打印结果:可看出原始输入改变size为(3,2,2,8)最终融合的输出也是(3,2,2,8),故此种残差单元能够解决输出尺寸和维度的问题。

总体模型:其中BLOCK2值得是输出尺度和维度会变化的,BLOCK1指的是不会变化的。

下面用开始调用数据集:其中convolutional_block表示输出尺寸和维度会变化,identity_block表示输出与输入一样,模型如下,

代码如下:

from keras.layers import Dense,Flatten,Input,Activation,ZeroPadding2D,AveragePooling2D,BatchNormalization,Conv2D,Add,MaxPooling2D
from keras.models import Model
import matplotlib.pyplot as  plt
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
import resnets_utils
import keras.backend as K
import numpy as np
from keras.initializers import glorot_uniform
import tensorflow as tf
import time
"""
获取数据  并将标签转换成one-hot
"""
def convert_data():train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes=resnets_utils.load_dataset()train_x=train_set_x_orig/255test_x = test_set_x_orig / 255train_y=resnets_utils.convert_to_one_hot(train_set_y_orig,6).Ttest_y = resnets_utils.convert_to_one_hot(test_set_y_orig, 6).T#print(train_y.shape)return train_x,train_y,test_x,test_y
"""
三层卷积的 残差单元 输出尺寸和维度不会变化
"""
def identity_block(X,f,filters,stage,block):conv_name_base='res'+str(stage)+block+'_branch'bn_name_base='bn'+str(stage)+block+'_branch'F1,F2,F3=filtersX_shortcut=X# print('输入尺寸={}'.format(X.shape))#first convX=Conv2D(filters=F1,kernel_size=(1,1),strides=(1,1),padding='valid',name=conv_name_base+'2a',kernel_initializer=glorot_uniform(seed=0))(X)# print('输出尺寸={}'.format(X.shape))X=BatchNormalization(axis=3,name=bn_name_base+'2a')(X)X=Activation('relu')(X)#second convX = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',kernel_initializer=glorot_uniform(seed=0))(X)# print('输出尺寸={}'.format(X.shape))X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)X = Activation('relu')(X)#third convX = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)# print('输出尺寸={}'.format(X.shape))#ResNetX=Add()([X,X_shortcut])X = Activation('relu')(X)# print('最终输出尺寸={}'.format(X.shape))return X"""
三层卷积的 残差单元 输出尺寸和维度会变化
"""
def convolutional_block(X,f,filters,stage,block,s=2):conv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'F1, F2, F3 = filtersX_shortcut = X# print('输入尺寸={}'.format(X.shape))# first convX = Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '2a',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X)X = Activation('relu')(X)# print('输出尺寸={}'.format(X.shape))# second convX = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)X = Activation('relu')(X)# print('输出尺寸={}'.format(X.shape))#third convX = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)X = Activation('relu')(X)# print('输出尺寸={}'.format(X.shape))#ResNetX_shortcut=Conv2D(filters=F3, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '1',kernel_initializer=glorot_uniform(seed=0))(X_shortcut)X_shortcut = BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)# print('原始输入X经过变化的输出尺寸={}'.format(X.shape))X = Add()([X, X_shortcut])X = Activation('relu')(X)# print('最终输出尺寸={}'.format(X.shape))return X"""
50层残差网络
"""
def ResNet50(input_shape=(64,64,3),classes=6):X_input=Input(input_shape)print('输入尺寸={}'.format(X_input.shape))X=ZeroPadding2D((3,3))(X_input)print('补完零尺寸={}'.format(X.shape))#Stage 1X=Conv2D(filters=64,kernel_size=(7,7),strides=(2,2),name='conv1',kernel_initializer=glorot_uniform(seed=0))(X)print('第一次卷积尺寸={}'.format(X.shape))X=BatchNormalization(axis=3,name='bn_conv1')(X)X=Activation('relu')(X)X=MaxPooling2D(pool_size=(3,3),strides=(2,2))(X)print('第一次池化尺寸={}'.format(X.shape))#Stage 2X=convolutional_block(X,f=3,filters=[64,64,256],stage=2,block='a',s=1)print('第一次convolutional_block尺寸={}'.format(X.shape))X = identity_block(X, f=3, filters=[64, 64, 256], stage=2, block='b')X = identity_block(X, f=3, filters=[64, 64, 256], stage=2, block='c')print('两次identity_block尺寸={}'.format(X.shape))#Stage 3X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block='a', s=2)print('第二次convolutional_block尺寸={}'.format(X.shape))X = identity_block(X, f=3, filters=[128, 128, 512], stage=3, block='b')X = identity_block(X, f=3, filters=[128, 128, 512], stage=3, block='c')X = identity_block(X, f=3, filters=[128, 128, 512], stage=3, block='d')print('三次identity_block尺寸={}'.format(X.shape))#Stage 4X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=4, block='a', s=2)print('第三次convolutional_block尺寸={}'.format(X.shape))X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='b')X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='c')X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='d')X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='e')X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='f')print('五次identity_block尺寸={}'.format(X.shape))#Stage 5X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=5, block='a', s=2)print('第四次convolutional_block尺寸={}'.format(X.shape))X = identity_block(X, f=3, filters=[512, 512, 2048], stage=5, block='b')X = identity_block(X, f=3, filters=[512, 512, 2048], stage=5, block='c')print('两次identity_block尺寸={}'.format(X.shape))#PoolX=AveragePooling2D(pool_size=(2,2))(X)print('最后一次平均池化尺寸={}'.format(X.shape))#OutPut Flatten+FULLYCONNECTEDX=Flatten()(X)X=Dense(units=classes,activation='softmax',name='fc'+str(classes),kernel_initializer=glorot_uniform(seed=0))(X)#create modelmodel=Model(inputs=X_input,outputs=X,name='ResNet50')return model
def test_identity_block():with tf.Session() as sess:np.random.seed(1)A_prev=tf.placeholder('float',[3,4,4,6])X=np.random.randn(3,4,4,6)A=identity_block(A_prev,f=2,filters=[2,4,6],stage=1,block='a')init=tf.global_variables_initializer()sess.run(init)out=sess.run([A],feed_dict={A_prev:X,K.learning_phase():0})# print('out=',out[0][1][1][0])
def test_convolutional_block():#tf.reset_default_graph()with tf.Session() as sess:np.random.seed(1)A_prev=tf.placeholder('float',[3,4,4,6])X=np.random.randn(3,4,4,6)A=convolutional_block(A_prev,f=2,filters=[2,4,6],stage=1,block='a',s=2)init = tf.global_variables_initializer()sess.run(init)out=sess.run(A,feed_dict={A_prev:X})print('out=',out[0][0][0])
def test_ResNet50():#定义好模型结构Resnet50_model=ResNet50(input_shape=(64,64,3),classes=6)#选定训练参数Resnet50_model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])#获取训练集和测试集train_x, train_y, test_x, test_y=convert_data()#训练集上训练start_time=time.time()print('============开始训练===============')Resnet50_model.fit(x=train_x,y=train_y,batch_size=32,epochs=2)end_time=time.time()print('train_time={}'.format(end_time-start_time))#测试集上测试preds=Resnet50_model.evaluate(x=test_x,y=test_y,batch_size=32,)print('loss={}'.format(preds[0]))print('Test Accuracy={}'.format(preds[1]))if __name__=='__main__':#test_identity_block()#test_convolutional_block()#convert_data()test_ResNet50()

打印结果:

其中问号代表的是样本数,可看出最终卷积输出是1×1×2048

训练样本为1080个,第一个Epoch每个样本时间为175ms,所以共189s.第一次epoch训练精度为0.27。

第二个Epoch每个样本时间为165ms,所以共178s.训练两次epoch时间为376S,不等于两次epoch时间之和,应该是有别的开支。第二次epoch训练精度为0.40提高了。

经过两次epoch的模型来测试120个样本,测试精度为0.19,恩很低,所以还要多训练嘛。

二,tensorboard显示

首先安装graphviz用于可视化网络

apt-get install graphviz

pip install graphviz

pip install pydot

可视化网络如下:

调节学习率的clr_callback.py文件:

from keras.callbacks import *class CyclicLR(Callback):"""This callback implements a cyclical learning rate policy (CLR).The method cycles the learning rate between two boundaries withsome constant frequency, as detailed in this paper (https://arxiv.org/abs/1506.01186).The amplitude of the cycle can be scaled on a per-iteration orper-cycle basis.This class has three built-in policies, as put forth in the paper."triangular":A basic triangular cycle w/ no amplitude scaling."triangular2":A basic triangular cycle that scales initial amplitude by half each cycle."exp_range":A cycle that scales initial amplitude by gamma**(cycle iterations) at eachcycle iteration.For more detail, please see paper.# Example```pythonclr = CyclicLR(base_lr=0.001, max_lr=0.006,step_size=2000., mode='triangular')model.fit(X_train, Y_train, callbacks=[clr])```Class also supports custom scaling functions:```pythonclr_fn = lambda x: 0.5*(1+np.sin(x*np.pi/2.))clr = CyclicLR(base_lr=0.001, max_lr=0.006,step_size=2000., scale_fn=clr_fn,scale_mode='cycle')model.fit(X_train, Y_train, callbacks=[clr])```# Argumentsbase_lr: initial learning rate which is thelower boundary in the cycle.max_lr: upper boundary in the cycle. Functionally,it defines the cycle amplitude (max_lr - base_lr).The lr at any cycle is the sum of base_lrand some scaling of the amplitude; thereforemax_lr may not actually be reached depending onscaling function.step_size: number of training iterations perhalf cycle. Authors suggest setting step_size2-8 x training iterations in epoch.mode: one of {triangular, triangular2, exp_range}.Default 'triangular'.Values correspond to policies detailed above.If scale_fn is not None, this argument is ignored.gamma: constant in 'exp_range' scaling function:gamma**(cycle iterations)scale_fn: Custom scaling policy defined by a singleargument lambda function, where0 <= scale_fn(x) <= 1 for all x >= 0.mode paramater is ignoredscale_mode: {'cycle', 'iterations'}.Defines whether scale_fn is evaluated oncycle number or cycle iterations (trainingiterations since start of cycle). Default is 'cycle'."""def __init__(self, base_lr=0.001, max_lr=0.006, step_size=2000., mode='triangular',gamma=1., scale_fn=None, scale_mode='cycle'):super(CyclicLR, self).__init__()self.base_lr = base_lrself.max_lr = max_lrself.step_size = step_sizeself.mode = modeself.gamma = gammaif scale_fn == None:if self.mode == 'triangular':self.scale_fn = lambda x: 1.self.scale_mode = 'cycle'elif self.mode == 'triangular2':self.scale_fn = lambda x: 1 / (2. ** (x - 1))self.scale_mode = 'cycle'elif self.mode == 'exp_range':self.scale_fn = lambda x: gamma ** (x)self.scale_mode = 'iterations'else:self.scale_fn = scale_fnself.scale_mode = scale_modeself.clr_iterations = 0.self.trn_iterations = 0.self.history = {}self._reset()def _reset(self, new_base_lr=None, new_max_lr=None,new_step_size=None):"""Resets cycle iterations.Optional boundary/step size adjustment."""if new_base_lr != None:self.base_lr = new_base_lrif new_max_lr != None:self.max_lr = new_max_lrif new_step_size != None:self.step_size = new_step_sizeself.clr_iterations = 0.def clr(self):cycle = np.floor(1 + self.clr_iterations / (2 * self.step_size))x = np.abs(self.clr_iterations / self.step_size - 2 * cycle + 1)if self.scale_mode == 'cycle':return self.base_lr + (self.max_lr - self.base_lr) * np.maximum(0, (1 - x)) * self.scale_fn(cycle)else:return self.base_lr + (self.max_lr - self.base_lr) * np.maximum(0, (1 - x)) * self.scale_fn(self.clr_iterations)def on_train_begin(self, logs={}):logs = logs or {}if self.clr_iterations == 0:K.set_value(self.model.optimizer.lr, self.base_lr)else:K.set_value(self.model.optimizer.lr, self.clr())def on_batch_end(self, epoch, logs=None):logs = logs or {}self.trn_iterations += 1self.clr_iterations += 1self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr))self.history.setdefault('iterations', []).append(self.trn_iterations)for k, v in logs.items():self.history.setdefault(k, []).append(v)K.set_value(self.model.optimizer.lr, self.clr())

main.py文件

import keras
from keras.models import Model
import matplotlib.pyplot as  plt
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
import resnets_utils
import keras.backend as K
import numpy as np
from keras.optimizers import Adam
from keras.initializers import glorot_uniform
from clr_callback import CyclicLR"""
获取数据  并将标签转换成one-hot
"""
def convert_data():train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes=resnets_utils.load_dataset()train_x=train_set_x_orig/255test_x = test_set_x_orig / 255train_y=resnets_utils.convert_to_one_hot(train_set_y_orig,6).Ttest_y = resnets_utils.convert_to_one_hot(test_set_y_orig, 6).T#print(train_y.shape)return train_x[:320,...],train_y[:320,...],test_x,test_y
if __name__=='__main__':train_x, train_y, test_x, test_y=convert_data()print(train_x.shape)print(train_y.shape)print(test_x.shape)print(test_y.shape)best_score=0classes=6Epcoh=50Batch=32input_shape=(64,64,3)X_input = keras.layers.Input(input_shape)X = keras.layers.Conv2D(filters=6, kernel_size=(3, 3), strides=(2, 2), name='conv1',kernel_initializer=glorot_uniform(seed=0))(X_input)print('第一次卷积尺寸={}'.format(X.shape))X=keras.layers.GlobalAveragePooling2D()(X)print(X.shape)Y=keras.layers.Dense(classes, activation='softmax', name='fc_class')(X)model = Model(inputs=X_input, outputs=Y)model.summary()keras.utils.plot_model(model,to_file='./model.jpg')lr = 1e-2clr = CyclicLR(base_lr=1e-5, max_lr=lr, step_size= Epcoh/ Batch * 2, mode='triangular2')adam = Adam(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08, amsgrad=True, )model.compile(optimizer=adam, loss='categorical_crossentropy',metrics=['acc']) #metrics=['mae', 'acc'])tb_callback=keras.callbacks.TensorBoard(log_dir='./logs/keras',histogram_freq=1,write_graph=True,write_images=1,write_grads=True)history = model.fit(x=train_x, y=train_y,batch_size=Batch,validation_data=(test_x, test_y),epochs=Epcoh,callbacks=[tb_callback,clr])acc=history.history['acc']loss = history.history['loss']val_acc = history.history['val_acc']val_loss = history.history['val_loss']print('acc=', acc)print('loss=', loss)print('val_acc=',val_acc)print('val_loss=',val_loss)score = model.evaluate(x=test_x, y=test_y,batch_size=Batch)print('loss=',score[0])print('test_acc',score[1])if score[1] > best_score:best_score = score[1]model.save('./model.h5', overwrite=True)

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值相关推荐

  1. 机器学习-吴恩达-笔记-5-神经网络学习

    目录 代价函数 反向传播算法 反向传播算法的直观理解 梯度检验 随机初始化 综合起来 [此为本人学习吴恩达的机器学习课程的笔记记录,有错误请指出!] 代价函数 首先引入一些便于稍后讨论的新标记方法:

  2. 机器学习-吴恩达-笔记-4-神经网络描述

    目录 非线性假设 神经元和大脑 模型表示-1 模型表示-2 特征和直观理解-1 特征和直观理解-2 多类分类 [此为本人学习吴恩达的机器学习课程的笔记记录,有错误请指出!] 非线性假设 我们之前学的, ...

  3. 深度学习-吴恩达-笔记-2-神经网络的编程基础

    目录 二分类 逻辑回归 逻辑回归的代价函数 梯度下降法 导数 计算图 使用计算图求导 逻辑回归中的梯度下降 m个样本的梯度下降 向量化 向量化的更多例子 向量化逻辑回归 向量化逻辑回归的梯度输出 Py ...

  4. 吴恩达团队新研究:用X光片识别14种疾病,AI准确度部分超越人类

    栗子射线 发自 凹非寺  量子位 报道 | 公众号 QbitAI 最近,吴恩达的斯坦福团队发布了一个X光诊断算法,基于深度神经网络. 与曾经的肺炎检测专门算法不同,这次的CheXNeXt模型,可以诊断 ...

  5. 学习—吴恩达《机器学习》—手敲代码_准备工作之基于Ubuntu系统的 Anaconda(python环境)搭建

    题记--初听不识曲中意,再听已是曲中人. 序曲 一直以来想找个机会与时间去了解一下机器学习.与此同时,吴恩达博士的名字一直在耳边回响,却不知为何如此响彻.后来,在couresa上看到了吴恩达博士的&l ...

  6. 吴恩达深度学习第二周+二分类应用+猫图片识别

    由于最近在看吴恩达老师深度学习的课程,在第二周有一个关于猫图片识别的习题,下面将自己的一些体会和代码分享. 有关数据集的下载可以自行百度. 下载好数据集之后会发现是一个.h5的文件.所以我们首先导入 ...

  7. 吴恩达Coursera深度学习课程 deeplearning.ai (4-4) 人脸识别和神经风格转换--编程作业

    Part 1:Happy House 的人脸识别 本周的第一个作业我们将完成一个人脸识别系统. 人脸识别问题可以分为两类: 人脸验证: 输入图片,验证是不是A 1:1 识别 举例:人脸解锁手机,人脸刷 ...

  8. 吴恩达作业1:逻辑回归实现猫的分类

    思路:输入样本X与随机初始权重W相乘,利用sigmoid激活函数输出值,对于二分类问题,用交叉熵损失函数来计算损失值,通过交叉熵损失函数利用链式法则求出W和b的偏导,梯度下降更新W和b即可,(梯度下降 ...

  9. 吴恩达作业10:用卷积神经网络识别人脸happy(基于Keras)

    数据集提供的代码放在kt_utils.py: import keras.backend as K import math import numpy as np import h5py import m ...

最新文章

  1. JNI调用c++函数,该函数的参数是结构体(——对象的传递)
  2. js 获取时间对象代码
  3. 每一个项目都可以有一个项目blog page
  4. ThreadLocal原理及用法详解
  5. angularjs1访问子组件_Vue学习笔记之组件的应用
  6. P3156 【深基15.例1】询问学号(20分)--python3实现
  7. .net 4 环境调用 .net 2 编译的DLL
  8. hibernate执行sql语句 查询 删除
  9. BIO、NIO、AIO,还傻傻分不清?
  10. JSP项目《教师年终个人成果统计系统的设计与应用》实战(一)——密码加密算法...
  11. java 下载excel到本地_java已知下载链接将Excel文件利用httpclient下载到本地
  12. 为Linux发行版安装simsun.ttf
  13. 化繁为简|华天软件参数化,将轴承设计变为数与数的组合
  14. 蔡勒公式整理——给日期计算星期几
  15. RFC1738——Uniform Resource Locators统一资源定位器 (URL)
  16. 把握本质规律——《数学之美》作者吴军接受《程序员》采访
  17. C# .Net 小程序消息推送配置+详细代码
  18. for循环,for...in循环,forEach循环的区别
  19. 深入浅出正则表达式(一)(zzl)
  20. 汽车网络安全风口渐起,诚迈科技与Trustonic牵手“发力”

热门文章

  1. 预训练卷不动,可以卷输入预处理啊!
  2. 分布式块存储系统Ursa的设计与实现
  3. Hadoop YARN:调度性能优化实践
  4. 论文浅尝 | How to Keep a Knowledge Base Synchronized
  5. 论文笔记(Attentive Recurrent Social Recommendation)
  6. 基于深度学习的磁环表面缺陷检测算法
  7. codevs 1283 等差子序列
  8. Linux下使用iotop检测磁盘io使用情况
  9. Linux 应用程序 网络通讯函数记录
  10. UVALive 6885 Flowery Trails 最短路枚举