Flash Memory又叫做闪存,是一种非易失性存储器。非易失性是指断电之后数据不会丢失,这里就涉及到断电保护(后面详细讲解)。

总体思路

1.NAND Flash的用途。

2.NAND Flash规则介绍。

3.SSD固件(Firmware,FW)包括:映射表(Mapping Table)、垃圾回收(Garbage Collection)、磨损平衡(Wear Leveling,WL)等。

4.补充概念:写入放大(Write Application)、预留空间(Over Provisioning)、Flash寿命(Program/Erase Count,P/E)等。

5.断电保护机制。

6.对SSD的评价标准:稳定性、性能、寿命。

1、NAND Flash的用途

HDD是指机械硬盘,是传统普通的硬盘,包括:盘片、磁头、磁盘旋转轴及控制电机、磁头控制器、数据转接器、接口、缓存。

SDD(Solid State Drives)是固态硬盘,包括:控制单元、存储单元(DRAM芯片/FLASH芯片)。

区别:HDD是机械式寻找数据,所以防震远低于SSD,数据寻找时间也远低于SSD。SSD(左图)和HDD(右图)的模样区别如下:

(图片来自百度)

Flash又分NAND Flash和NOR Flash:NOR型存储内容以编码为主,其功能多与运算相关;NAND型主要功能是存储资料,如数码相机中所用的记忆卡。

现在大部分的SSD都是用来存储不易丢失的资料,所以SSD存储单元会选择NAND Flash芯片。这里我们讲的就是SSD中的NAND Flash芯片。

2、NAND Flash的规则

(1)Flash都不支持覆盖,即写入操作只能在空或已擦除的单元内进行。

更改数据时,将整页拷贝到缓存(Cache)中修改对应页,再把更改后的数据挪到新的页中保存,将原来位置的页标记为无效页;

指定在已有无效数据的位置写入时,需要先擦除无效页才能在该位置写入新数据。

(2)以page为单位写入,以Block为单位擦除;擦除Block前需要先对里面的有效页进行搬迁。

(3)每个Block都有擦除次数限制(有寿命),擦除次数过多会成为坏块(bad block)。

3、SSD固件内容

(1)映射表 Mapping Table

逻辑地址:用户程序中使用的相对地址;

物理地址:实际存储单元的绝对地址;

所以,映射表里面存储的内容是逻辑地址到物理地址的映射信息,利用逻辑地址查询映射表,找到对应的物理地址,再对实际存储单元做读写访问。

SSD内部就维护了一张映射表;一般SSD内部会板载DRAM,用于存储程序运行的临时数据,断电会丢失;映射表存放在SDRAM中(方便快速访问),同时NAND Flash中会存储几份映射表(防止断电后映射关系丢失),而且会定期对NAND Flash中的映射便进行更新。

(2)垃圾回收 Garbage Collection

垃圾回收就是把几个Block中的有效数据集中搬移到新的Block上去, 然后再把这几个Block擦除掉。

垃圾回收机制有很多,都是根据不同的侧重点提出的,所以没有最优的算法,就像伴侣一样只有适不适合之说。如:Greedy算法,每次选择包含最少有效页的Block来回收,也就是对垃圾的贪心,每次尽可能回收最多的垃圾。还有Cost-Benefit算法(考虑Block的擦除次数)、Cat回收算法、CICL算法等。

另外有两种回收策略:

被动回收策略:当有写入请求的时候,首先判断当前可用空间大小与临界值大小的比较;如果空间足够,直接写入空闲空间;如果空间不够了,首先启用垃圾回收,再往空闲区域完成写入请求。

不足之处:当空间不够的时候写请求会被延迟。

主动回收策略:通过固件设定周期性任务,定时检查可用空间大小,如果需要就执行垃圾回收。

巧妙之处:利用空闲时间提前进行垃圾回收,避免对请求造成不必要的延时。

不足之处:倘若系统一直没有空闲时间,垃圾回收依旧无法有效执行。

(3)磨损平衡 Wear Leveling

每个Block都是有寿命(Program/Erase Count,P/E值)的,他们的擦除次数是有限的。NAND Flash的寿命类似“木桶原理”,取决于所有Block中的最小寿命。如果拼命对某一块进行擦除,NAND Flash的寿命将会被缩减到最小。所以引入了磨损平衡,平衡所有Block的擦除次数。

有很多不同的磨损平衡机制,大体可以分为两大类:动态WL、静态WL。

动态WL:使用Block进行擦写时,优先挑选P/E值低的Block。

动态WL:把P/E值低的Block中的数据挪到P/E值高的Block中存放。

4、补充概念

(1)写入放大 Write Application

写入放大倍数 = 闪存写入数据量 / 主控写入数据量 = 实际写入数据量 / 要求写入数据量

例如,现在有一个写入一页的请求;即主控写入数据量为1;

然而这个一页请求触发了垃圾回收,当前的写请求会被延迟,直到垃圾回收完毕后再执行写入操作;

如果垃圾回收只挪了5页有效数据,那么实际的写入量应该为6页(1页写请求,5页挪动);即闪存写入数据量为5;

所以写放大为5/1 = 5。

理想的写放大为1,但是Sandforce的数据写入时会进行压缩写入,最优情况下,写放大可以为0.5,打破了Intel的“写放大不可能小于1”之说。

(2)预留空间 Over Provisioning

通过垃圾回收的过程,不难知道,垃圾回收的前提是要提供空闲区域来拷贝,如果连空闲区域都没有,垃圾回收将无法执行,这时将不再支持任何数据的写入。为了避免这种情况的发生,提出了预留空间。

预留空间不仅仅只是用来保证垃圾回收的正常完成,还存储着SSD内部的系统数据(包括:出厂坏块信息、SSD固件、Mapping Table等)。

所以如果说明存储大小为256GB,实际上的存储空间可能只有238GB(一般预留空间为7%)。

另外,OP越大,垃圾回收就会越快,相应写放大会变小,所以读写性能就会越好;但用户能使用的空间会被缩小。

(3)Flash寿命 Program/Erase Count

前面也已经提及到了,每个Block都是有擦除次数限制的,所以引入了寿命这个说法。

5、断电保护机制

中控里板载的SDRAM是非易失性存储器,断电之后数据会丢失,这个时候SDRAM中的数据主要包括:用户数据、映射表;

如果没有断电保护机制,再次上电时,先去NAND Flash中找上次更新时的映射表,这时拿到的信息并不是最新的,是上次更新NAND Flash中映射表时的数据信息,所以发生了大部分数据丢失。

因此SSD板上会加上钽电容或者超级电容,当检测到非法断电时,首先停止数据操作,钽电容或超级电容开始放电,以保证SDRAM中的数据能够写入到NAND Flash中。

至于是用钽电容还是超级电容,得看具体要保护的数据量;不是电容的容量越大越好,因为只要电容开始放电,就要等待它的电放完之后才可以进行其他操作。假如电容容量过大,用户只是点了个电脑重启,这时候SSD的电容会开始放电,放电还没完成的时候,电脑已经重新上电,这时无法认盘。所以电容电量应该选最时候的。

基于SDRAM中的内容,断电保护机制主要分为3种:

(1)保存SDRAM中所有数据

再次上电后,相当于断电前的操作被中断,重新上电后就可立马进入待命状态。

(2)只保存SDRAM中的用户数据

再次上电后,需要先把上次NAND Flash中保存的映射表提取到SDRAM中,再将保存的用户数据提取出来,两者结合更新映射信息,更新完之后才进入待命状态。

(3)只保存SDRAM中的映射表

再次上电后,需要先把上次NAND Flash中保存的映射表提取到SDRAM中,只是丢掉了用户断电前正在操作的数据,无法更新。

6、SSD的评价标准

(1)稳定性:SSD是否稳定,最大的影响因素是垃圾回收机制的选择,恰当的垃圾回收可以提供稳定的读写速率;例如主动垃圾回收机制,在空闲的时候做垃圾回收,读写速度不会因为延时而波动不定。

(2)性能:预留空间的大小主要决定了SSD的性能,OP大,垃圾回收快,相应写放大小,读写性能就越好。

(3)寿命:所有Block的P/E值越趋近于均衡,SSD的寿命就越趋近于最佳。

作者:佚名
来源:51CTO

全面理解SSD和NAND Flash相关推荐

  1. 从SSD角度学习NAND Flash(一)

    开始了解之前先整明白一些概念: SSD 分为前端,中端,后端.这个跟互联网那个叫法没关系,但其实都是抽象出来的概念,如下图所示: 因为是学习NAND flash的知识,所以前端后中端我们暂时不管.先聊 ...

  2. 6.nand flash

    K9F1G08R0A举例说明:1056Mbits,128M×8bits 通过命令来控制8个I/O来进行地址和数据的传送,X,Y列的读取 关于一个基础:http://baike.baidu.com/vi ...

  3. NAND flash 相关知识

    目前绝大多数SSD都是以NAND FLASH为存储介质的.SSD工作原理很多都是基于NAND FLASH特性的.比如,NAND FLASH在写之前必须先擦除,而不能覆盖写,于是SSD 才需要垃圾回收( ...

  4. 对RAM,ROM,NOR/NAND FLASH等常见内存设备类型的理解

    对RAM,ROM,NOR/NAND FLASH等常见内存设备类型的理解 RAM DRAM SDRAM DDR SDRAM SRAM ROM EEPROM FLASH NOR FLASH NAND FL ...

  5. 关于NAND flash的MTD分区与uboot中分区的理解 .

    今天做内核移植,准备添加NAND flash的驱动,做到MTD分区时,想起在一本书上看到的一句话,说的是分区时每个区之间没有间隙,前一个区的结束地址是后一个区的起始地址.可是当我看我的开发板的教程时, ...

  6. 理解Nand Flash原理图

    # HW 学习例子 S3C2440 Chip -> Nand flash控制器 K9F2G08U0A Nand Flash芯片 # K9F2G08U0A - Nand Flash 原理图理解 上 ...

  7. NAND Flash SSD 是如何生产出来的?

    NAND Flash是一种非易失性随机访问存储介质,基于浮栅(Floating Gate)晶体管设计,通过浮栅来锁存电荷,电荷被储存在浮栅中,它们在无电源供应的情况下仍然可以保持.关于NAND Fla ...

  8. EEPROM,NOR Flash,NAND Flash,eMMC,UFS,SSD分别和主要参数及特性

    EEPROM.NOR Flash.NAND Flash.eMMC.UFS.SSD都是非易失性存储器,但它们在架构.存储容量.读写速度.功耗.价格等方面存在不同,具体如下: EEPROM:EEPROM( ...

  9. flash 和 eeprom 区别和关系、nor flash和nand flash区别

    1.FLASH存储器和EEPROM存储器的区别 2.EEPROM介绍及与Flash区别_VirtuousLiu的博客-CSDN博客_eeprom 3.基础--ROM, RAM, FLASH, SSD, ...

最新文章

  1. 网站信息统计的简单实现过程
  2. Linux 进程等待队列
  3. PHP的数组结构是用哈希表实现的
  4. 利用oracle快照dblink解决数据库表同步问题
  5. Linux 命令之 whoami -- 打印当前有效的用户名称
  6. 前端学习(3229):React中的事件处理
  7. 史上最全ClassLoader总结
  8. 特殊用途的IP地址介绍
  9. Qt Q_ENUM使用 枚举字符串互转
  10. 关于嵌入式Linux做底层还是应用,要掌握什么技能
  11. C# WinForm ListView控件用法详解
  12. 使用py2app打包项目 通用与各个平台
  13. python3 matplotlib多个子图分别对应不同colorbar
  14. 福利:推荐一个免费的抠图网站
  15. 最小二乘法的几何意义
  16. 【数学建模】数学建模(一)——数学模型概述
  17. 视野 | OpenSearch,云厂商的新选择?
  18. gulp自动化环境搭建,自动化解决方案
  19. 学习Linux的博客和资源网站
  20. ios本地文件读取方法详解

热门文章

  1. 最邻近方法nn_【庖丁解牛】从零实现RetinaNet(七):使用分布式方法训练RetinaNet...
  2. 【Linux】安装CUDA和cudnn
  3. 深度学习:人脸识别学习笔记
  4. 从零开始使用Realsense D435i运行VINS-Mono
  5. 【视频课】图像分割重磅上新-人像抠图(Matting)实战
  6. 【视频课】业界最强数据增强库使用与人脸图像超分辨实践!
  7. 泛亚凭借一粒薏米-农业大健康·田亚:对话农民丰收节交易会
  8. 关于面对对象和正则表达式的处理
  9. 安装Uikit时ERROR in Entry module not found: Error: Can't resolve './src' in 'xxx'的解决思路
  10. Difference Between InnoDb and MyISAM(个人觉着是好文章,简单易懂,推荐看)