迁移学习 (Transfer Learning) 是属于深度学习的一个子研究领域,该研究领域的目标在于利用数据、任务、或模型之间的相似性,将在旧领域学习过的知识,迁移应用于新领域中。迁移学习吸引了很多研究者投身其中,因为它能够很好的解决深度学习中的以下几个问题:

  • 一些研究领域只有少量标注数据,且数据标注成本较高,不足以训练一个足够鲁棒的神经网络
  • 大规模神经网络的训练依赖于大量的计算资源,这对于一般用户而言难以实现
  • 应对于普适化需求的模型,在特定应用上表现不尽如人意

为了让开发者更便捷地应用迁移学习,百度 PaddlePaddle 开源了预训练模型管理工具 PaddleHub。开发者用使用仅仅十余行的代码,就能完成迁移学习。本文将为读者全面介绍 PaddleHub 并其应用方法。

项目地址:https://github.com/PaddlePaddle/PaddleHub

PaddleHub 介绍

PaddleHub 是基于 PaddlePaddle 开发的预训练模型管理工具,可以借助预训练模型更便捷地开展迁移学习工作,旨在让 PaddlePaddle 生态下的开发者更便捷体验到大规模预训练模型的价值。

PaddleHub 目前的预训练模型覆盖了图像分类、目标检测、词法分析、Transformer、情感分析五大类别。未来会持续开放更多类型的深度学习模型,如语言模型、视频分类、图像生成等预训练模型。PaddleHub 的功能全景如图 1 所示。

PaddleHub 主要包括两个功能:命令行工具和 Fine-tune API。

命令行工具

PaddleHub 借鉴了 Anaconda 和 PIP 等软件包管理的理念,开发了命令行工具,可以方便快捷的完成模型的搜索、下载、安装、预测等功能,对应的关键的命令分别是 search,download,install,run 等。我们以 run 命令为例,介绍如何通过命令行工具进行预测。

Run 命令用于执行 Module 的预测,这里分别举一个 NLP 和 CV 的例子。

对于 NLP 任务:输入数据通过--input_text 指定。以百度 LAC 模型(中文词法分析)为例,可以通过以下命令实现单行文本分析。

# 单文本预测
$ hub run lac --input_text "今天是个好日子"

对于 CV 任务:输入数据通过--input_path 指定。以 SSD 模型(单阶段目标检测)为例子,可以通过以下命令实现单张图片的预测

# 使用SSD检测模型对图片进行目标检测,第一条命令是下载图片,第二条命令是执行预测,用户也可以自
# 己准备图片
$ wget --no-check-certificate https://paddlehub.bj.bcebos.com/resources/test_img_bird.jpg
$ hub run ssd_mobilenet_v1_pascal --input_path test_img_bird.jpg

更多的命令用法,请读者参考文首的 Github 项目链接。

Fine-tune API

PaddleHub 提供了基于 PaddlePaddle 实现的 Fine-tune API, 重点针对大规模预训练模型的 Fine-tune 任务做了高阶的抽象,让预训练模型能更好服务于用户特定场景的应用。通过大规模预训练模型结合 Fine-tune,可以在更短的时间完成模型的收敛,同时具备更好的泛化能力。PaddleHub API 的全景如图 2 所示。

  • Fine-tune :对一个 Task 进行 Fine-tune,并且定期进行验证集评估。在 Fine-tune 的过程中,接口会定期的保存 checkpoint(模型和运行数据),当运行被中断时,通过 RunConfig 指定上一次运行的 checkpoint 目录,可以直接从上一次运行的最后一次评估中恢复状态继续运行。
  • 迁移任务 Task:在 PaddleHub 中,Task 代表了一个 Fine-tune 的任务。任务中包含了执行该任务相关的 program 以及和任务相关的一些度量指标(如分类准确率 accuracy、precision、 recall、 F1-score 等)、模型损失等。
  • 运行配置 RunConfig:在 PaddleHub 中,RunConfig 代表了在对 Task 进行 Fine-tune 时的运行配置。包括运行的 epoch 次数、batch 的大小、是否使用 GPU 训练等。
  • 优化策略 Strategy:在 PaddleHub 中,Strategy 类封装了一系列适用于迁移学习的 Fine-tune 策略。Strategy 包含了对预训练参数使用什么学习率变化策略,使用哪种类型的优化器,使用什么类型的正则化等。
  • 预训练模型 Module :Module 代表了一个可执行的模型。这里的可执行指的是,Module 可以直接通过命令行 hub run ${MODULE_NAME} 执行预测,或者通过 context 接口获取上下文后进行 Fine-tune。在生成一个 Module 时,支持通过名称、url 或者路径创建 Module。
  • 数据预处理 Reader :PaddleHub 的数据预处理模块 Reader 对常见的 NLP 和 CV 任务进行了抽象。
  • 数据集 Dataset:PaddleHub 提供多种 NLP 任务和 CV 任务的数据集,可供用户载,用户也可以在自定义数据集上完成 Fine-tune。

基于以上介绍的 PaddleHub 两大功能,用户可以实现:

  • 无需编写代码,一键使用预训练模型进行预测;
  • 通过 hub download 命令,快速地获取 PaddlePaddle 生态下的所有预训练模型;
  • 借助 PaddleHub Fine-tune API,使用少量代码完成迁移学习。

以下将从实战角度,教你如何使用 PaddleHub 进行图像分类迁移。

PaddleHub 实战

1. 安装

PaddleHub 是基于 PaddlePaddle 的预训练模型管理框架,使用 PaddleHub 前需要先安装 PaddlePaddle,如果你本地已经安装了 CPU 或者 GPU 版本的 PaddlePaddle,那么可以跳过以下安装步骤。

$ pip install paddlepaddle #CPU 安装命令
或者
$ pip install paddlepaddle-gpu # GPU 安装

推荐使用大于 1.4.0 版本的 PaddlePaddle。

通过以下命令来安装 PaddleHub

$ pip install paddlehub

2. 选择合适的模型

首先导入必要的 python 包

# -*- coding: utf8 -*-
import paddlehub as hub
import paddle.fluid as fluid

接下来我们要在 PaddleHub 中选择合适的预训练模型来 Fine-tune,由于猫狗分类是一个图像分类任务,因此我们使用经典的 ResNet-50 作为预训练模型。PaddleHub 提供了丰富的图像分类预训练模型,包括了最新的神经网络架构搜索类的 PNASNet,我们推荐你尝试不同的预训练模型来获得更好的性能。

module_map = {"resnet50": "resnet_v2_50_imagenet","resnet101": "resnet_v2_101_imagenet","resnet152": "resnet_v2_152_imagenet","mobilenet": "mobilenet_v2_imagenet","nasnet": "nasnet_imagenet","pnasnet": "pnasnet_imagenet"
}module_name = module_map["resnet50"]
module = hub.Module(name = module_name)

3. 数据准备

接着需要加载图片数据集。为了快速体验,我们直接加载 PaddleHub 提供的猫狗分类数据集,如果想要使用自定义的数据进行体验,请查看自定义数据。

# 直接用PaddleHub提供的数据集
dataset = hub.dataset.DogCat()

4. 自定义数据

本节说明如何组装自定义的数据,如果想使用猫狗数据集进行体验,可以直接跳过本节。

使用自定义数据时,我们需要自己切分数据集,将数据集且分为训练集、验证集和测试集。

同时使用三个文本文件来记录对应的图片路径和标签,此外还需要一个标签文件用于记录标签的名称。

├─data: 数据目录├─train_list.txt:训练集数据列表├─test_list.txt:测试集数据列表├─validate_list.txt:验证集数据列表├─label_list.txt:标签列表└─……

训练/验证/测试集的数据列表文件的格式如下

图片 1 路径 图片 1 标签
图片 2 路径 图片 2 标签
...

标签列表文件的格式如下

分类 1 名称
分类 2 名称
...

使用如下的方式进行加载数据,生成数据集对象

注意事项:

  1. num_labels 要填写实际的分类数量,如猫狗分类该字段值为 2,food101 该字段值为 101,下文以 2 为例子
  2. base_path 为数据集实际路径,需要填写全路径,下文以/test/data 为例子
  3. 训练/验证/测试集的数据列表文件中的图片路径需要相对于 base_path 的相对路径,例如图片的实际位置为/test/data/dog/dog1.jpg,base_path 为/test/data,则文件中填写的路径应该为 dog/dog1.jpg
# 使用本地数据集
class MyDataSet(hub.dataset.base_cv_dataset.ImageClassificationDataset):def __init__(self):self.base_path = "/test/data"self.train_list_file = "train_list.txt"self.test_list_file = "test_list.txt"self.validate_list_file = "validate_list.txt"self.label_list_file = "label_list.txt"self.label_list = Noneself.num_labels = 2

5. 生成 Reader

接着生成一个图像分类的 reader,reader 负责将 dataset 的数据进行预处理,接着以特定格式组织并输入给模型进行训练。

当我们生成一个图像分类的 reader 时,需要指定输入图片的大小

data_reader = hub.reader.ImageClassificationReader(image_width=module.get_expected_image_width(),image_height=module.get_expected_image_height(),images_mean=module.get_pretrained_images_mean(),images_std=module.get_pretrained_images_std(),dataset=dataset)

6. 组建 Fine-tune Task

有了合适的预训练模型和准备要迁移的数据集后,我们开始组建一个 Task。

由于猫狗分类是一个二分类的任务,而我们下载的 cv_classifer_module 是在 ImageNet 数据集上训练的千分类模型,所以我们需要对模型进行简单的微调,把模型改造为一个二分类模型:

  1. 获取 cv_classifer_module 的上下文环境,包括输入和输出的变量,以及 Paddle Program;
  2. 从输出变量中找到特征图提取层 feature_map;
  3. 在 feature_map 后面接入一个全连接层,生成 Task;
input_dict, output_dict, program = module.context(trainable=True)img = input_dict["image"]
feature_map = output_dict["feature_map"]task = hub.create_img_cls_task(feature=feature_map, num_classes=dataset.num_labels)feed_list = [img.name, task.variable("label").name]

7. 选择运行时配置

在进行 Fine-tune 前,我们可以设置一些运行时的配置,例如如下代码中的配置,表示:

  • use_cuda:设置为 False 表示使用 CPU 进行训练。如果本机支持 GPU,且安装的是 GPU 版本的 PaddlePaddle,我们建议你将这个选项设置为 True;
  • epoch:要求 Fine-tune 的任务只遍历 1 次训练集;
  • batch_size:每次训练的时候,给模型输入的每批数据大小为 32,模型训练时能够并行处理批数据,因此 batch_size 越大,训练的效率越高,但是同时带来了内存的负荷,过大的 batch_size 可能导致内存不足而无法训练,因此选择一个合适的 batch_size 是很重要的一步;
  • log_interval:每隔 10 step 打印一次训练日志;
  • eval_interval:每隔 50 step 在验证集上进行一次性能评估;
  • checkpoint_dir:将训练的参数和数据保存到 cv_Fine-tune_turtorial_demo 目录中;
  • strategy:使用 DefaultFine-tuneStrategy 策略进行 Fine-tune;

更多运行配置,请查看文首的 Github 项目链接。

config = hub.RunConfig(use_cuda=False,num_epoch=1,checkpoint_dir="cv_finetune_turtorial_demo",batch_size=32,log_interval=10,eval_interval=50,strategy=hub.finetune.strategy.DefaultFinetuneStrategy())

8. 开始 Fine-tune

我们选择 Fine-tune_and_eval 接口来进行模型训练,这个接口在 Fine-tune 的过程中,会周期性的进行模型效果的评估,以便我们了解整个训练过程的性能变化。

hub.finetune_and_eval(task, feed_list=feed_list, data_reader=data_reader, config=config)

9. 查看训练过程的效果

训练过程中的性能数据会被记录到本地,我们可以通过 visualdl 来可视化这些数据。

我们在 shell 中输入以下命令来启动 visualdl,其中${HOST_IP} 为本机 IP,需要用户自行指定

$ visualdl --logdir ./ cv_finetune_turtorial_demo/vdllog --host ${HOST_IP} --port 8989

启动服务后,我们使用浏览器访问${HOST_IP}:8989,可以看到训练以及预测的 loss 曲线和 accuracy 曲线,如下图所示。

10. 使用模型进行预测

当 Fine-tune 完成后,我们使用模型来进行预测,整个预测流程大致可以分为以下几步:

  1. 构建网络
  2. 生成预测数据的 Reader
  3. 切换到预测的 Program
  4. 加载预训练好的参数
  5. 运行 Program 进行预测

通过以下命令来获取测试的图片(适用于猫狗分类的数据集)

$ wget --no-check-certificate https://PaddleHub.bj.bcebos.com/resources/test_img_cat.jpg
$ wget --no-check-certificate https://PaddleHub.bj.bcebos.com/resources/test_img_dog.jpg

注意:其他数据集所用的测试图片请自行准备。

完整预测代码如下:

import os
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub# Step 1: build Program
module_map = {"resnet50": "resnet_v2_50_imagenet","resnet101": "resnet_v2_101_imagenet","resnet152": "resnet_v2_152_imagenet","mobilenet": "mobilenet_v2_imagenet","nasnet": "nasnet_imagenet","pnasnet": "pnasnet_imagenet"
}module_name = module_map["resnet50"]
module = hub.Module(name = module_name)
input_dict, output_dict, program = module.context(trainable=False)
img = input_dict["image"]
feature_map = output_dict["feature_map"]dataset = hub.dataset.DogCat()
task = hub.create_img_cls_task(feature=feature_map, num_classes=dataset.num_labels)
feed_list = [img.name]# Step 2: create data reader
data = ["test_img_dog.jpg","test_img_cat.jpg"
]data_reader = hub.reader.ImageClassificationReader(image_width=module.get_expected_image_width(),image_height=module.get_expected_image_height(),images_mean=module.get_pretrained_images_mean(),images_std=module.get_pretrained_images_std(),dataset=None)predict_reader = data_reader.data_generator(phase="predict", batch_size=1, data=data)label_dict = dataset.label_dict()# Step 3: switch to inference program
with fluid.program_guard(task.inference_program()):# Step 4: load pretrained parametersplace = fluid.CPUPlace()exe = fluid.Executor(place)pretrained_model_dir = os.path.join("cv_finetune_turtorial_demo", "best_model")fluid.io.load_persistables(exe, pretrained_model_dir)feeder = fluid.DataFeeder(feed_list=feed_list, place=place)# Step 5: predictfor index, batch in enumerate(predict_reader()):result, = exe.run(feed=feeder.feed(batch), fetch_list=[task.variable('probs')])predict_result = np.argsort(result[0])[::-1][0]print("input %i is %s, and the predict result is %s" %(index+1, data[index], label_dict[predict_result]))

paddlepaddle测试安装_PaddlePaddle升级解读 | 十余行代码完成迁移学习,PaddleHub实战篇...相关推荐

  1. resnet50代码_十余行代码完成迁移学习,百度PaddleHub实战解读

    机器之心专栏 来源:百度 PaddlePaddle 迁移学习 (Transfer Learning) 是属于深度学习的一个子研究领域,该研究领域的目标在于利用数据.任务.或模型之间的相似性,将在旧领域 ...

  2. PaddlePaddle:在 Serverless 架构上十几行代码实现 OCR 能力

    简介:飞桨深度学习框架采用基于编程逻辑的组网范式,对于普通开发者而言更容易上手,同时支持声明式和命令式编程,兼具开发的灵活性和高性能. 飞桨 (PaddlePaddle) 以百度多年的深度学习技术研究 ...

  3. 200余行代码,让你实时从视频中隐身

    点击上方蓝色"程序猿DD",选择"设为星标" 回复"资源"获取独家整理的学习资料! 来源 | 机器之心 只需网页端,秒速消失不留痕. Jas ...

  4. python控制视频播放器的大小与位置_python_十几行代码实现简单播放器

    python20行代码实现简单播放器 播放器简介 播放器大家都并不陌生,我们听音乐,我们看视频都会用到.那么播放器实现的功能到底有哪些呢?一个播放器一般来讲都完成了如下步骤: 读取文件(包括音频文件和 ...

  5. python开发视频播放器_python_十几行代码实现简单播放器

    python20行代码实现简单播放器 播放器简介 播放器大家都并不陌生,我们听音乐,我们看视频都会用到.那么播放器实现的功能到底有哪些呢?一个播放器一般来讲都完成了如下步骤: 读取文件(包括音频文件和 ...

  6. python语言写视频播放器-python_十几行代码实现简单播放器

    python20行代码实现简单播放器 播放器简介 播放器大家都并不陌生,我们听音乐,我们看视频都会用到.那么播放器实现的功能到底有哪些呢?一个播放器一般来讲都完成了如下步骤: 读取文件(包括音频文件和 ...

  7. Github 3.4k星,200余行代码,让你实时从视频中隐身

    项目作者 | Jason Mayes 转自 | 机器之心    参与 | Oblivion Max.思 只需网页端,秒速消失不留痕. Jason Mayes 是一名在谷歌工作的资深网页工程师,他长期致 ...

  8. 谷歌为什么把几十亿行代码放在一个库?

    <ACM通信>有一篇论文<为什么 Google 要把几十亿行代码放在一个库?>,作者是谷歌基础设施小组的工程师.作者详细讲述了Google的代码为什么全部放在一个库里面. 一. ...

  9. postman怎么传session_十几行代码实现分布式 Session

    前言 最近喊同事吃饭的时候他在测接口,于是我就在他后面等了一会.他测的是一个需要登录的接口,步骤如下 1.先登录系统从接口的request head中拿到cookie的值 2.把这个cookie的值粘 ...

最新文章

  1. 服务器部署基础知识_我在生产部署期间学到的知识
  2. tableau可视化数据分析60讲(二)-tableau入门篇之各模块功能介绍
  3. gitl更新最近代码_常见的蓝屏代码以及解决方法
  4. html中ng-src,angularjs – 在ng-src中使用{{}}绑定,但不会加载ng-src
  5. (转)asp.net2.0 上传大容量文件第三方控件radupload
  6. Ubuntu18.04 安装Nvidia驱动
  7. python mssql bulk_SqlBulkCopy:批量插入SqlServer的利器
  8. oracle数据库中sql%notfound的用法
  9. java环境变量大小写_java环境变量配置
  10. 学计算机的博士男朋友,有个计算机博士男朋友的日常?
  11. 用python实现简单的好友管理系统
  12. 斐波那契数列(java)
  13. GD32上SFUD万能Flash驱动移植
  14. rust修改礼包时间_Rust Async: futures-timer源码解析
  15. 绿联 蓝牙适配器 linux,绿联USB
  16. Sparten6/Kintex-7 DDR3 IP仿真实例
  17. 温湿度传感器—HDC1080
  18. 笔记本合上盖子不休眠
  19. Beta发布——美工+文案
  20. C语言的scanf函数在visualstudio中的错误

热门文章

  1. 算力限制场景下的目标检测实战浅谈
  2. 推荐系统炼丹笔记:聊一聊特征交叉新方式CAN
  3. 无参考评估在云信的视频测试实践
  4. 【POI】对于POI无法处理超大xls等文件,官方解决方法【已解决】【多线程提升速率待定】...
  5. 解决ftp上传connection reset错误
  6. php 源码解析--count
  7. Android——SQLite实现面向对象CRUD
  8. 收集Cocos2d提供的字体
  9. pomelo 分布式聊天入门客户端demo(c#)
  10. 结束SQL阻塞的进程