并发框架分类

1. Executor相关类

Interfaces. Executor is a simple standardized interface for defining custom thread-like subsystems, including thread pools, asynchronous I/O, and lightweight task frameworks. Depending on which concrete Executor class is being used, tasks may execute in a newly created thread, an existing task-execution thread, or the thread calling execute, and may execute sequentially or concurrently. ExecutorService provides a more complete asynchronous task execution framework. An ExecutorService manages queuing and scheduling of tasks, and allows controlled shutdown. The ScheduledExecutorService subinterface and associated interfaces add support for delayed and periodic task execution. ExecutorServices provide methods arranging asynchronous execution of any function expressed as Callable, the result-bearing analog of Runnable. A Future returns the results of a function, allows determination of whether execution has completed, and provides a means to cancel execution. A RunnableFuture is aFuture that possesses a run method that upon execution, sets its results.

Implementations. Classes ThreadPoolExecutor and ScheduledThreadPoolExecutor provide tunable, flexible thread pools. The Executors class provides factory methods for the most common kinds and configurations of Executors, as well as a few utility methods for using them. Other utilities based on Executors include the concrete class FutureTask providing a common extensible implementation of Futures, and ExecutorCompletionService, that assists in coordinating the processing of groups of asynchronous tasks.

Class ForkJoinPool provides an Executor primarily designed for processing instances of ForkJoinTask and its subclasses. These classes employ a work-stealing scheduler that attains high throughput for tasks conforming to restrictions that often hold in computation-intensive parallel processing.

2.future相关类

3.Queue相关类

The ConcurrentLinkedQueue class supplies an efficient scalable thread-safe non-blocking FIFO queue. The ConcurrentLinkedDeque class is similar, but additionally supports the Deque interface.

Five implementations in java.util.concurrent support the extended BlockingQueue interface, that defines blocking versions of put and take: LinkedBlockingQueueArrayBlockingQueueSynchronousQueuePriorityBlockingQueue, and DelayQueue. The different classes cover the most common usage contexts for producer-consumer, messaging, parallel tasking, and related concurrent designs.

Extended interface TransferQueue, and implementation LinkedTransferQueue introduce a synchronous transfer method (along with related features) in which a producer may optionally block awaiting its consumer.

The BlockingDeque interface extends BlockingQueue to support both FIFO and LIFO (stack-based) operations. Class LinkedBlockingDeque provides an implementation.

4. atomic相关类

 class Node {private volatile Node left, right;private static final AtomicReferenceFieldUpdater<Node, Node> leftUpdater =AtomicReferenceFieldUpdater.newUpdater(Node.class, Node.class, "left");private static AtomicReferenceFieldUpdater<Node, Node> rightUpdater =AtomicReferenceFieldUpdater.newUpdater(Node.class, Node.class, "right");Node getLeft() { return left;  }boolean compareAndSetLeft(Node expect, Node update) {return leftUpdater.compareAndSet(this, expect, update);}// ... and so on}

5. lock相关类

5.1 lock

Interfaces and classes providing a framework for locking and waiting for conditions that is distinct from built-in synchronization and monitors.

Condition:Condition factors out the Object monitor methods (waitnotify and notifyAll) into distinct objects to give the effect of having multiple wait-sets per object, by combining them with the use of arbitrary Lock implementations.

As an example, suppose we have a bounded buffer which supports put and take methods. If a take is attempted on an empty buffer, then the thread will block until an item becomes available; if a put is attempted on a full buffer, then the thread will block until a space becomes available. We would like to keep waiting put threads and takethreads in separate wait-sets so that we can use the optimization of only notifying a single thread at a time when items or spaces become available in the buffer. This can be achieved using two Condition instances.

 class BoundedBuffer {final Lock lock = new ReentrantLock();final Condition notFull  = lock.newCondition(); final Condition notEmpty = lock.newCondition(); final Object[] items = new Object[100];int putptr, takeptr, count;public void put(Object x) throws InterruptedException {lock.lock();try {while (count == items.length)notFull.await();items[putptr] = x;if (++putptr == items.length) putptr = 0;++count;notEmpty.signal();} finally {lock.unlock();}}public Object take() throws InterruptedException {lock.lock();try {while (count == 0)notEmpty.await();Object x = items[takeptr];if (++takeptr == items.length) takeptr = 0;--count;notFull.signal();return x;} finally {lock.unlock();}}}

(The ArrayBlockingQueue class provides this functionality, so there is no reason to implement this sample usage class.)

Lock:Lock implementations provide more extensive locking operations than can be obtained using synchronized methods and statements.

     Lock l = ...;l.lock();try {// access the resource protected by this lock} finally {l.unlock();}

ReadWriteLock:A ReadWriteLock maintains a pair of associated locks, one for read-only operations and one for writing.

6.Timing

The TimeUnit class provides multiple granularities (including nanoseconds) for specifying and controlling time-out based operations. Most classes in the package contain operations based on time-outs in addition to indefinite waits. In all cases that time-outs are used, the time-out specifies the minimum time that the method should wait before indicating that it timed-out. Implementations make a "best effort" to detect time-outs as soon as possible after they occur. However, an indefinite amount of time may elapse between a time-out being detected and a thread actually executing again after that time-out. All methods that accept timeout parameters treat values less than or equal to zero to mean not to wait at all. To wait "forever", you can use a value ofLong.MAX_VALUE.

7.Synchronizers

Five classes aid common special-purpose synchronization idioms.

  • Semaphore is a classic concurrency tool.
  • CountDownLatch is a very simple yet very common utility for blocking until a given number of signals, events, or conditions hold.
  • CyclicBarrier is a resettable multiway synchronization point useful in some styles of parallel programming.
  • Phaser provides a more flexible form of barrier that may be used to control phased computation among multiple threads.
  • An Exchanger allows two threads to exchange objects at a rendezvous point, and is useful in several pipeline designs.

8.Concurrent Collections

Besides Queues, this package supplies Collection implementations designed for use in multithreaded contexts: ConcurrentHashMapConcurrentSkipListMapConcurrentSkipListSetCopyOnWriteArrayList, and CopyOnWriteArraySet. When many threads are expected to access a given collection, a ConcurrentHashMap is normally preferable to a synchronized HashMap, and a ConcurrentSkipListMap is normally preferable to a synchronized TreeMap. A CopyOnWriteArrayList is preferable to a synchronizedArrayList when the expected number of reads and traversals greatly outnumber the number of updates to a list.

The "Concurrent" prefix used with some classes in this package is a shorthand indicating several differences from similar "synchronized" classes. For example java.util.Hashtable and Collections.synchronizedMap(new HashMap()) are synchronized. ButConcurrentHashMap is "concurrent". A concurrent collection is thread-safe, but not governed by a single exclusion lock. In the particular case of ConcurrentHashMap, it safely permits any number of concurrent reads as well as a tunable number of concurrent writes. "Synchronized" classes can be useful when you need to prevent all access to a collection via a single lock, at the expense of poorer scalability. In other cases in which multiple threads are expected to access a common collection, "concurrent" versions are normally preferable. And unsynchronized collections are preferable when either collections are unshared, or are accessible only when holding other locks.

Most concurrent Collection implementations (including most Queues) also differ from the usual java.util conventions in that their Iterators and Spliterators provide weakly consistent rather than fast-fail traversal:

  • they may proceed concurrently with other operations
  • they will never throw ConcurrentModificationException
  • they are guaranteed to traverse elements as they existed upon construction exactly once, and may (but are not guaranteed to) reflect any modifications subsequent to construction.

9.Memory Consistency Properties

Chapter 17 of the Java Language Specification defines the happens-before relation on memory operations such as reads and writes of shared variables. The results of a write by one thread are guaranteed to be visible to a read by another thread only if the write operation happens-before the read operation. The synchronized and volatile constructs, as well as the Thread.start() and Thread.join() methods, can form happens-before relationships. In particular:

  • Each action in a thread happens-before every action in that thread that comes later in the program's order.
  • An unlock (synchronized block or method exit) of a monitor happens-before every subsequent lock (synchronized block or method entry) of that same monitor. And because the happens-before relation is transitive, all actions of a thread prior to unlocking happen-before all actions subsequent to any thread locking that monitor.
  • A write to a volatile field happens-before every subsequent read of that same field. Writes and reads of volatile fields have similar memory consistency effects as entering and exiting monitors, but do not entail mutual exclusion locking.
  • A call to start on a thread happens-before any action in the started thread.
  • All actions in a thread happen-before any other thread successfully returns from a join on that thread.

The methods of all classes in java.util.concurrent and its subpackages extend these guarantees to higher-level synchronization. In particular:

  • Actions in a thread prior to placing an object into any concurrent collection happen-before actions subsequent to the access or removal of that element from the collection in another thread.
  • Actions in a thread prior to the submission of a Runnable to an Executor happen-before its execution begins. Similarly for Callables submitted to an ExecutorService.
  • Actions taken by the asynchronous computation represented by a Future happen-before actions subsequent to the retrieval of the result via Future.get() in another thread.
  • Actions prior to "releasing" synchronizer methods such as Lock.unlockSemaphore.release, and CountDownLatch.countDown happen-before actions subsequent to a successful "acquiring" method such as Lock.lockSemaphore.acquire,Condition.await, and CountDownLatch.await on the same synchronizer object in another thread.
  • For each pair of threads that successfully exchange objects via an Exchanger, actions prior to the exchange() in each thread happen-before those subsequent to the corresponding exchange() in another thread.
  • Actions prior to calling CyclicBarrier.await and Phaser.awaitAdvance (as well as its variants) happen-before actions performed by the barrier action, and actions performed by the barrier action happen-before actions subsequent to a successful return from the corresponding await in other threads.

参考文献:

【1】 https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

转载于:https://www.cnblogs.com/davidwang456/p/6117734.html

jdk8中java.util.concurrent包分析相关推荐

  1. java.util.concurrent包API学习笔记

    newFixedThreadPool 创建一个固定大小的线程池. shutdown():用于关闭启动线程,如果不调用该语句,jvm不会关闭. awaitTermination():用于等待子线程结束, ...

  2. 【ArrayList】为什么java.util.concurrent 包里没有并发的ArrayList实现?

    2019独角兽企业重金招聘Python工程师标准>>> 为什么java.util.concurrent 包里没有并发的ArrayList实现? 问:JDK 5在java.util.c ...

  3. 高并发编程基础(java.util.concurrent包常见类基础)

    JDK5中添加了新的java.util.concurrent包,相对同步容器而言,并发容器通过一些机制改进了并发性能.因为同步容器将所有对容器状态的访问都串行化了,这样保证了线程的安全性,所以这种方法 ...

  4. java.util.concurrent包

    本文是我们学院课程中名为Java Concurrency Essentials的一部分 . 在本课程中,您将深入探讨并发的魔力. 将向您介绍并发和并发代码的基础知识,并学习诸如原子性,同步和线程安全之 ...

  5. Java高并发编程学习(三)java.util.concurrent包

    简介 我们已经学习了形成Java并发程序设计基础的底层构建块,但对于实际编程来说,应该尽可能远离底层结构.使用由并发处理的专业人士实现的较高层次的结构要方便得多.要安全得多.例如,对于许多线程问题,可 ...

  6. java.util.concurrent 包下面的所有类

    java.util.concurrent 包下面的所有类 原子操作数类: java.util.concurrent.atomic.AtomicBoolean.class java.util.concu ...

  7. java.util接口_Java 8中java.util.function包中的谓词和使用者接口

    java.util接口 在上一篇文章中,我写了关于Function接口的内容 ,它是java.util.package的一部分. 我还提到了Predicate接口,它是同一包的一部分,在这篇文章中,我 ...

  8. java.util接口_函数接口– Java 8中java.util.function包中的函数接口

    java.util接口 我以前写过有关功能接口及其用法的文章. 如果您正在探索要成为Java 8一部分的API,尤其是那些支持lambda表达式的API,您会发现很少的接口,例如Function,Su ...

  9. Java 8中java.util.function包中的谓词和使用者接口

    在我以前的文章中,我写了关于Function接口的内容 ,它是java.util.package的一部分. 我还提到了Predicate接口,它是同一包的一部分,在这篇文章中,我将向您展示如何使用Pr ...

最新文章

  1. CTFshow php特性 web134
  2. 字符串扩展_JAVA
  3. 嵌入式c语言检测键盘,【精华整理】C语言嵌入式系统编程修炼--键盘操作篇
  4. 欧姆龙plc解密实例_西门子、施耐德、欧姆龙等13大PLC品牌8000个实例程序资料包...
  5. flink和kafka区别_Apache Flink和Kafka入门
  6. 我是如何一步一步成为高级前端开发工程师的
  7. 流程 - 发布【敏捷方法之Scrum v0.2.pdf】
  8. hdu2066一个人的旅行(disjkstra)
  9. HttpClient 设置不当引发的一次雪崩
  10. 基于python的漏洞扫描器_基于Python的Web漏洞扫描器
  11. 华为HG8120C光猫获取超级管理员密码(2021-12-12亲测)
  12. 苹果手机屏幕尺寸_Apple 苹果 iPhone SE2智能手机屏幕测评报告 「Soomal」
  13. Google Drive 转存别人分享的文件到自己的网盘
  14. 《学Unity的猫》——第十九集:皮皮猫上班第一天,认识游戏开发公司各个部门
  15. 使用pip来对相应的版本进行降低的过程的
  16. 软考下午常见问题——个人笔记
  17. java学业有成_祝贺学业有成励志的话
  18. 数据库课程设计--淘宝购物订单系统
  19. mul matlab,[转载]Matlab boxplot for Mul
  20. Vcc、Vee、Vdd、Vss傻傻分不清楚?

热门文章

  1. 如何使html中的din居中,HTML+CSS--position大法好
  2. npoi 设置单元格不能修改_真巧妙!没密码也能解锁 Excel 单元格保护
  3. java的输出的例子_Java例子:万年历的输出
  4. 用RAM存储器构造能够依次读取各存储单元内容的电路
  5. 用java和汇编开发一个Hello World系统内核
  6. java 之在校期间最后一次实训记录
  7. php-fmp开机启动,php-fpm设置成服务并开机自动启动
  8. java lambda collect_45分钟学会Java8 - Lambda和Stream
  9. hbase把表删除后又新建该表提示表已存在,解决方案
  10. C 语言 malloc用法实验