文章目录

  • 1、GC需要完成的3件事情是什么?
  • 2、 那为什么我们还要去了解GC和内存分配呢?
  • 3、什么是内存溢出?什么是内存泄露?
  • 4、程序计数器,虚拟机栈,本地方法栈为什么不需要考虑垃圾回收?
  • 5、垃圾回收所关注的内存区域是什么?
  • 6、如何判断对象已死?
  • 7、 如何配置jvm参数查看 gc 日志?
  • 8、引用分为几种类型?
  • 9、 如何理解分代收集理论?
  • 10、如何理解跨代引用问题?
  • 11、 部分收集(Partial GC)指目标不是完整收集整个Java堆的垃圾收集,其中又分为几种?
  • 12、常见的垃圾收集算法以及优缺点?
  • 13、 如何理解 Appel式回收 对标记-复制算法的优化?
  • 14、根节点枚举
  • 15、介绍下三色标记?
  • 16、漏标,误标问题如何解决的?说说STAB 算法 ?
  • 17、七种作用于不同分代的经典垃圾收集器?
  • 18、Serial垃圾收集器
  • 19、ParNew收集器
  • 20、什么是并发?什么是并行?http://t.csdn.cn/EW4kq
  • 21、Parallel Scavenge收集器
  • 22、什么是吞吐量?
  • 23、Parallel Scavenge如何控制吞吐量大小?
  • 24、Parallel Scavenge的自适应调节策略
  • 25、Serial Old收集器
  • 26、Parallel Old收集器
  • 27、为什么出现Parallel Old收集器?
  • 28、Parallel Scavenge+Parallel Old收集器
  • 29、CMS收集器的工作过程
  • 30、CMS垃圾收集器的优点和缺点
  • 31、什么是浮动垃圾?
  • 32、CMS垃圾收集器的预备方案是什么?
  • 33、Garbage First收集器
  • 34、如何理解“停顿时间模型”?
  • 35、G1是基于Region的堆内存布局
  • 36、G1如何实现“停顿时间模型”的收集器目标?
  • 37、如何理解专门用来存储大对象的Humongous区域?
  • 38、G1收集器的运作过程?
  • 39、G1收集器如何指定用户线程的停顿时间?
  • 40、G1收集器和CMS收集器的对比?

面试:https://m.nowcoder.com/discuss/697691?
题目:你们垃圾回收器用的什么? G1有哪些特点?G1如何实现可预测的停顿时间?漏标问题如何解决的?介绍下三色标记?说说STAB 算法 ?

参考:《深入理解Java虚拟机》

1、GC需要完成的3件事情是什么?

哪些内存需要回收?
什么时候回收?
如何回收?

2、 那为什么我们还要去了解GC和内存分配呢?

答案很简单:当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就需要对这些“自动化”的技术实施必要的监控和调节。

3、什么是内存溢出?什么是内存泄露?

内存溢出 out of memory,是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;比如申请了一个integer,但给它存了long才能存下的数,那就是内存溢出。
内存泄露 memory leak,是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。
memory leak会最终会导致out of memory!
https://blog.csdn.net/Searchin_R/article/details/84728243?utm_source=app&app_version=5.5.0

4、程序计数器,虚拟机栈,本地方法栈为什么不需要考虑垃圾回收?

程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭;栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的,因此这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑回收的问题,因为方法结束或者线程结束时,内存自然就跟随着回收了。

5、垃圾回收所关注的内存区域是什么?

Java堆和方法区这两个区域则有着很显著的不确定性:一个接口的多个实现类需要的内存可能会不一样,一个方法所执行的不同条件分支所需要的内存也可能不一样,只有处于运行期间,我们才能知道程序究竟会创建哪些对象,创建多少个对象,这部分内存的分配和回收是动态的。垃圾收集器所关注的正是这部分内存该如何管理。

6、如何判断对象已死?

在堆里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”(“死去”即不可能再被任何途径使用的对象)了。
1、引用计数法:
在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。
但是,在Java领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存,主要原因是,这个看似简单
的算法有很多例外情况要考虑,必须要配合大量额外处理才能保证正确地工作,譬如单纯的引用计数就很难解决对象之间相互循环引用的问题。
配置jvm参数:-XX:+PrintGCDetils

/*** 方法执行后,objA和objB会不会被GC呢?*/
public class ReferenceCountingGC {public Object instance = null;private static final int _1MB = 1024 * 1024;/*** 这个成员属性的唯一意义就是占点内存,以便能在GC日志中看清楚是否有回收过*/private byte[] bigSize = new byte[2 * _1MB];public static void main(String[] args) {ReferenceCountingGC objA = new ReferenceCountingGC();ReferenceCountingGC objB = new ReferenceCountingGC();objA.instance = objB;objB.instance = objA;objA = null;objB = null;// 假设在这行发生GC,objA和objB是否能被回收?System.gc();}
}

执行结果中的GC日志:

[GC (System.gc()) [PSYoungGen: 8103K->840K(38400K)] 8103K->848K(125952K), 0.0019838 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
[Full GC (System.gc()) [PSYoungGen: 840K->0K(38400K)] [ParOldGen: 8K->749K(87552K)] 848K->749K(125952K), [Metaspace: 3176K->3176K(1056768K)], 0.0063210 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]
HeapPSYoungGen      total 38400K, used 887K [0x00000000d5580000, 0x00000000d8000000, 0x0000000100000000)eden space 33280K, 2% used [0x00000000d5580000,0x00000000d565dfc0,0x00000000d7600000)from space 5120K, 0% used [0x00000000d7600000,0x00000000d7600000,0x00000000d7b00000)to   space 5120K, 0% used [0x00000000d7b00000,0x00000000d7b00000,0x00000000d8000000)ParOldGen       total 87552K, used 749K [0x0000000080000000, 0x0000000085580000, 0x00000000d5580000)object space 87552K, 0% used [0x0000000080000000,0x00000000800bb7f8,0x0000000085580000)Metaspace       used 3194K, capacity 4496K, committed 4864K, reserved 1056768Kclass space    used 346K, capacity 388K, committed 512K, reserved 1048576K

从GC日志可以看出:8103K->840K,意味着虚拟机并没有因为这两个对象互相引用就放弃回收它们,这也从侧面说明了Java虚拟机并不是通过引用计数算法来判断对象是否存活的。
->前的是GC前堆内存使用量,->后面是GC后堆内存使用量,括号内是堆内存总量。
PSYoungGen:年轻代,ParOldGen:老年代
2、可达性分析算法
当前主流的商用程序语言(Java、C#)的内存管理子系统,都是通过可达性分析算法来判定对象是否存活的。
这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”,如果某个对象到GC Roots间没有任何引用链相连,或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。

7、 如何配置jvm参数查看 gc 日志?

-XX:InitialHeapSize : 初始堆大小
-XX:MaxHeapSize : 最大堆大小
-XX:NewSize : 初始新生代大小
-XX:MaxNewSize : 最大新生代大小
-XX:PretenureSizeThreshold=10485760 : 指定了大对象阈值是10MB。
-XX:+PrintGCDetails:打印详细的gc日志
-XX:+PrintGCTimeStamps:这个参数可以打印出来每次GC发生的时间
-Xloggc:gc.log:这个参数可以设置将gc日志写入一个磁盘文件

8、引用分为几种类型?

无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象是否引用链可达,判定对象是否存活都和“引用”离不开关系。
在JDK 1.2之后,Java对引用的概念进行了扩充,将引用分为强引用、软引用)、弱引用、虚引用4种,这4种引用强度依次逐渐减弱。
强引用就是指在程序代码之中普遍存在的,类似“Object obj = new Object()”这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。
软引用是用来描述一些还有用但并非必需的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中进行第二次回收。如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2之后,提供了SoftReference类来实现软引用。
弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2之后,提供了WeakReference类来实现弱引用。
虚引用也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2之后,提供了PhantomReference类来实现虚引用。

9、 如何理解分代收集理论?

当前商业虚拟机的垃圾收集器,大多数都遵循了“分代收集”的理论进行设计,分代收集名为理论,实质是一套符合大多数程序运行实际情况的经验法则,它建立在两个分代假说之上:
1)弱分代假说:绝大多数对象都是朝生夕灭的。
2)强分代假说:熬过越多次垃圾收集过程的对象就越难以消亡。
收集器应该将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。
显而易见,如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;如果剩下的都是难以消亡的对象,那把它们集中放在一块,虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。
在Java堆划分出不同的区域之后,垃圾收集器才可以每次只回收其中某一个或者某些部分的区域——因而才有了“Minor GC”“Major GC”“Full GC”这样的回收类型的划分;也才能够针对不同的区域安排与里面存储对象存亡特征相匹配的垃圾收集算法——因而发展出了“标记-复制算法”“标记-清除算法”“标记-整理算法”等针对性的垃圾收集算法。
把分代收集理论具体放到现在的商用Java虚拟机里,设计者一般至少会把Java堆划分为新生代(Young Generation)和老年代(Old Generation)两个区域。顾名思义,在新生代中,每次垃圾收集时都发现有大批对象死去,而每次回收后存活的少量对象,将会逐步晋升到老年代中存放。

10、如何理解跨代引用问题?

分代收集并非只是简单划分一下内存区域那么容易,它至少存在一个明显的困难:对象不是孤立的,对象之间会存在跨代引用。
假如要现在进行一次只局限于新生代区域内的收集(Minor GC),但新生代中的对象是完全有可能被老年代所引用的,为了找出该区域中的存活对象,不得不在固定的GC Roots之外,再额外遍历整个老年代中所有对象来确保可达性分析结果的正确性。遍历整个老年代所有对象的方案虽然理论上可行,但无疑会为内存回收带来很大的性能负担。为了解决这个问题,就需要对分代收集理论添加第三条经验法则:
3)跨代引用假说:跨代引用相对于同代引用来说仅占极少数。
这其实是可根据前两条假说逻辑推理得出的隐含推论:存在互相引用关系的两个对象,是应该倾向于同时生存或者同时消亡的。举个例子,如果某个新生代对象存在跨代引用,由于老年代对象难以消亡,该引用会使得新生代对象在收集时同样得以存活,进而在年龄增长之后晋升到老年代中,这时跨代引用也随即被消除了。
依据这条假说,我们就不应再为了少量的跨代引用去扫描整个老年代,也不必浪费空间专门记录每一个对象是否存在及存在哪些跨代引用,只需在新生代上建立一个全局的数据结构(该结构被称为“记忆集”,Remembered Set),这个结构把老年代划分成若干小块,标识出老年代的哪一块内存会存在跨代引用。此后当发生M inor GC时,只有包含了跨代引用的小块内存里的对象才会被加入到GCRoots进行扫描。

11、 部分收集(Partial GC)指目标不是完整收集整个Java堆的垃圾收集,其中又分为几种?

新生代收集(Minor GC/Young GC):指目标只是新生代的垃圾收集。
老年代收集(Major GC/Old GC):指目标只是老年代的垃圾收集。目前只有CM S收集器会有单独收集老年代的行为。
混合收集(Mixed GC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有G1收集器会有这种行为。
整堆收集(Full GC):收集整个Java堆和方法区的垃圾收集。

12、常见的垃圾收集算法以及优缺点?

1、标记-清除算法
算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。

它的主要缺点有两个:
第一个是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;
第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。GC次数越多,碎片越严重。

2、标记-复制算法
标记-复制算法常被简称为复制算法。为了解决标记-清除算法面对大量可回收对象时执行效率低的问题。
它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
注:与标记-清除算法的关注点不同,前者关注的是要回收的死亡对象,后者关注的是存活的对象。

优点:对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。这样实现简单,运行高效。
它的主要缺点有两个:
第一个是如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销。
第二个是这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一点。

3、标记-整理算法
标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

针对老年代对象的存亡特征,1974年Edward Lueders提出了另外一种有针对性的“标记-整理”算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。
注:标记-清除算法关注回收的对象,标记-复制算法关注存活的对象,标记-整理算法关注存活对象。

标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。移动对象就是标价-整理算法,不移动对象就是标记清除算法,是否移动回收后的存活对象是一项优缺点并存的风险决策:

如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行,这就更加让使用者不得不小心翼翼地权衡其弊端了,像这样的停顿被最初的虚拟机设计者形象地描述为 Stop The World。
但如果跟标记-清除算法那样完全不考虑移动和整理存活对象的话,弥散于堆中的存活对象导致的空间碎片化问题就只能依赖更为复杂的内存分配器和内存访问器来解决。
基于以上两点,是否移动对象都存在弊端,移动则内存回收时会更复杂,不移动则内存分配时会更复杂。从垃圾收集的停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。即使不移动对象会使得收集器的效率提升一些,但因内存分配和访问相比垃圾收集频率要高得多,这部分的耗时增加,总吞吐量仍然是下降的。
HotSpot虚拟机里面关注吞吐量的Parallel Scavenge收集器是基于标记-整理算法的,而关注延迟的CM S收集器则是基于标记-清除算法的,这也从侧面印证这点。
另外,还有一种“和稀泥式”解决方案可以不在内存分配和访问上增加太大额外负担,做法是让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。前面提到的基于标记-清除算法的CM S收集器面临空间碎片过多时采用的就是这种处理办法。

13、 如何理解 Appel式回收 对标记-复制算法的优化?

现在的商用Java虚拟机大多都优先采用了这种收集算法去回收新生代,IBM公司曾有一项专门研究对新生代“朝生夕灭”的特点做了更量化的诠释——新生代中的对象有98%熬不过第一轮收集。因此并不需要按照1∶1的比例来划分新生代的内存空间。
在1989年,Andrew Appel针对具备“朝生夕灭”特点的对象,提出了一种更优化的半区复制分代策略,现在称为“Appel式回收”。HotSpot虚拟机的Serial、ParNew等新生代收集器均采用了这种策略来设计新生代的内存布局。
Appel式回收的具体做法是:
把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。
HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也即每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%加上一个Survivor的10%),只有一个Survivor空间,即10%的新生代是会被“浪费”的。
当然,98%的对象可被回收仅仅是“普通场景”下测得的数据,任何人都没有办法百分百保证每次回收都只有不多于10%的对象存活,因此Appel式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保。
内存的分配担保是指,如果另外一块Survivor空间没有足够空间存放上一次新生代收集下来的存活对象,这些对象便将通过分配担保机制直接进入老年代,这对虚拟机来说就是安全的(大对象直接进入老年代)。

14、根节点枚举

迄今为止,所有收集器在根节点枚举这一步骤时都是必须暂停用户线程的,因此毫无疑问根节点枚举与之前提及的整理内存碎片一样会面临相似的“Stop The World”的困扰。现在可达性分析算法耗时最长的查找引用链的过程已经可以做到与用户线程一起并发,但根节点枚举始终还是必须在一个能保障一致性的快照中才得以进行——这里“一致性”的意思是整个枚举期间执行子系统看起来就像被冻结在某个时间点上,不会出现分析过程中,根节点集合的对象引用关系还在不断变化的情况,若这点不能满足的话,分析结果准确性也就无法保证。这是导致垃圾收集过程必须停顿所有用户线程的其中一个重要原因,即使是号称停顿时间可控,或者(几乎)不会发生停顿的CM S、G1、ZGC等收集器,枚举根节点时也是必须要停顿的。

15、介绍下三色标记?

想解决或者降低用户线程的停顿,就要先搞清楚为什么必须在一个能保障一致性的快照上才能进行对象图的遍历?为了能解释清楚这个问题,我们引入三色标记(Tri-color Marking)作为工具来辅助推导,把遍历对象图过程中遇到的对象,按照“是否访问过”这个条件标记成以下三种颜色:
白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达。
黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象)指向某个白色对象。
灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过。

16、漏标,误标问题如何解决的?说说STAB 算法 ?

关于可达性分析的扫描过程,如果用户线程此时是冻结的,只有收集器线程在工作,那不会有任何问题。但如果用户线程与收集器是并发工作呢?收集器在对象图上标记颜色,同时用户线程在修改引用关系——即修改对象图的结构,这样可能出现两种后果。一种是把原本消亡的对象错误标记为存活,这不是好事,但其实是可以容忍的,只不过产生了一点逃过本次收集的浮动垃圾而已,下次收集清理掉就好。另一种是把原本存活的对象错误标记为已消亡,这就是非常致命的后果了,程序肯定会因此发生错误。

当且仅当以下两个条件同时满足时,会产生“对象消失”的问题,即原本应该是黑色的对象被误标为白色:
赋值器插入了一条或多条从黑色对象到白色对象的新引用;
赋值器删除了全部从灰色对象到该白色对象的直接或间接引用;
因此,我们要解决并发扫描时的对象消失问题,只需破坏这两个条件的任意一个即可。由此分别产生了两种解决方案:增量更新(Incremental Update)和原始快照(Snapshot At The Beginning,SATB)。
1、增量更新要破坏的是第一个条件,当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。
2、原始快照要破坏的是第二个条件,当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。
以上无论是对引用关系记录的插入还是删除,虚拟机的记录操作都是通过写屏障实现的。在HotSpot虚拟机中,增量更新和原始快照这两种解决方案都有实际应用,譬如,CM S是基于增量更新来做并发标记的,G1、Shenandoah则是用原始快照来实现。

17、七种作用于不同分代的经典垃圾收集器?

重点关注收集器的目标、特性、原理和使用场景。

18、Serial垃圾收集器

作用于新生代的垃圾收集器,采用复制算法。
这个收集器是一个单线程工作的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束。
Stop The World”这个词语也许听起来很酷,但这项工作是由虚拟机在后台自动发起和自动完成的,在用户不可知、不可控的情况下把用户的正常工作的线程全部停掉,这对很多应用来说都是不能接受的。

从Serial收集器到Parallel收集器,再到Concurrent Mark Sweep(CMS)和Garbage First(G1)收集器,最终至现在垃圾收集器的最前沿成果Shenandoah和ZGC等,用户线程的停顿时间在持续缩短,但是仍然没有办法彻底消除。

19、ParNew收集器

ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为与Serial收集器完全一致。采用复制算法。

除了Serial收集器外,目前只有它能与CMS收集器配合工作。
CMS收集器是HotSpot虚拟机中首次实现了让垃圾收集线程与用户线程(基本上)同时工作。
遗憾的是,CMS作为老年代的收集器,却无法与新生代收集器Parallel Scavenge配合工作,所以在使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。

所以自JDK 9开始,ParNew加CMS收集器的组合就不再是官方推荐的服务端模式下的收集器解决方案。官方希望它能完全被G1所取代,甚至还取消了ParNew+Serial Old以及Serial+CMS这两组收集器组合的支持(其实原本也很少人这样使用),并直接取消了-XX:+UseParNewGC参数,这意味着ParNew和CMS从此只能互相搭配使用,再也没有其他收集器能够和它们配合了(其他收集器都不能与他们合作)。可以理解为从此以后,ParNew合并入CMS,成为它专门处理新生代的组成部分。ParNew可以说是HotSpot虚拟机中第一款退出历史舞台的垃圾收集器。

20、什么是并发?什么是并行?http://t.csdn.cn/EW4kq

并行:指多件事情在同一时刻发生;比如:A事情和B事情同时进行;
并行(Parallel):并行描述的是多条垃圾收集器线程之间的关系,说明同一时间有多条这样的线程在协同工作,通常默认此时用户线程是处于等待状态。
并发:指多件事情在同一时间间隔内发生;比如:操作系统将CPU的时间片分时让给A事情和B事情,仿佛是同时执行;
并发(Concurrent):并发描述的是垃圾收集器线程与用户线程之间的关系,说明同一时间垃圾收集器线程与用户线程都在运行。由于用户线程并未被冻结,所以程序仍然能响应服务请求,但由于垃圾收集器线程占用了一部分系统资源,此时应用程序的处理的吞吐量将受到一定影响。

21、Parallel Scavenge收集器

Parallel Scavenge收集器也是一款新生代收集器,它同样是基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器。
Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。

22、什么是吞吐量?

所谓吞吐量就是处理器用于运行用户代码的时间与处理器总消耗时间的比值,即:

如果虚拟机完成某个任务,用户代码加上垃圾收集总共耗费了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。停顿时间越短就越适合需要与用户交互或需要保证服务响应质量的程序,良好的响应速度能提升用户体验;而高吞吐量则可以最高效率地利用处理器资源,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的分析任务。

23、Parallel Scavenge如何控制吞吐量大小?

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。
-XX:MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽力保证内存回收花费的时间不超过用户设定值。不过大家不要异想天开地认为如果把这个参数的值设置得更小一点就能使得系统的垃圾收集速度变得更快,垃圾收集停顿时间缩短是以牺牲吞吐量和新生代空间为代价换取的:系统把新生代调得小一些,收集300MB新生代肯定比收集500MB快,但这也直接导致垃圾收集发生得更频繁,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

24、Parallel Scavenge的自适应调节策略

由于与吞吐量关系密切,Parallel Scavenge收集器也经常被称作“吞吐量优先收集器”。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得我们关注。这是一个开关参数,当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略(GC Ergonomics)。如果对于收集器运作不太了解,手工优化存在困难的话,使用Parallel Scavenge收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成也许是一个很不错的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用-XX:MaxGCPauseMillis参数(更关注最大停顿时间)或-XX:GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器区别于ParNew收集器的一个重要特性。

25、Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。
这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。如果在服务端模式下,它也可能有两种用途:一种是在JDK 5以及之前的版本中与Parallel Scavenge收集器搭配使用,另外一种就是作为CMS收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。

26、Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。

27、为什么出现Parallel Old收集器?

这个收集器是直到JDK 6时才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于相当尴尬的状态,原因是如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old收集器以外别无选择,其他表现良好的老年代收集器,如CMS无法与它配合工作。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用Parallel Scavenge收集器也未必能在整体上获得吞吐量最大化的效果。同样,由于单线程的老年代收集中无法充分利用服务器多处理器的并行处理能力,在老年代内存空间很大而且硬件规格比较高级的运行环境中,这种组合的总吞吐量甚至不一定比ParNew加CMS的组合来得优秀。所以出现了Parallel Old收集器。

28、Parallel Scavenge+Parallel Old收集器

直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合。
Parallel Old收集器的工作过程如图:

29、CMS收集器的工作过程

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。
CMS收集器是基于标记-清除算法实现的。
它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:
1)初始标记(CMS initial mark)
2)并发标记(CMS concurrent mark)
3)重新标记(CMS remark)
4)并发清除(CMS concurrent sweep)
其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。
初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;
并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;
重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录(增量更新),这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;
并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。
由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

30、CMS垃圾收集器的优点和缺点

CMS是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集、低停顿。
CMS收集器虽然实现了并发垃圾收集的目的,但是主要还是有3个缺点:
1)在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程而导致应用程序变慢,降低总吞吐量。
2)由于CMS收集器无法处理“浮动垃圾”,有可能出现“并发失败”(Con-current Mode Failure)进而导致另一次完全“Stop The World”的Full GC的产生。同样也是由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。
3)CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。

31、什么是浮动垃圾?

在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。

32、CMS垃圾收集器的预备方案是什么?

在JDK 5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果
在实际应用中老年代增长并不是太快,可以适当调高参数-XX:CMSInitiatingOccu-pancyFraction的值
来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。
到了JDK 6时,CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CM S运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent M ode Failure),这时候虚拟机将不得不启动后备预案:
冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集,但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction设置得太高将会很容易导致大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。

33、Garbage First收集器

Garbage First(简称G1)收集器开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。
G1是一款主要面向服务端应用的垃圾收集器。HotSpot开发团队期望它未来可以替换掉JDK 5中发布的CMS收集器。JDK 9发布之日,G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器。

34、如何理解“停顿时间模型”?

停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标。

35、G1是基于Region的堆内存布局

作为CMS收集器的替代者和继承人,设计者们希望做出一款能够建立起“停顿时间模型”的收集器,那具体要怎么做才能实现这个目标呢?
首先要有一个思想上的改变,在G1收集器出现之前的所有其他收集器,包括CM S在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1跳出了这个樊笼,它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。
G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间角色。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

36、G1如何实现“停顿时间模型”的收集器目标?

虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:M axGCPauseM illis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。

37、如何理解专门用来存储大对象的Humongous区域?

Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。
每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待。

38、G1收集器的运作过程?

如果我们不去计算用户线程运行过程中的动作(如使用写屏障维护记忆集的操作),G1收集器的运作过程大致可划分为以下四个步骤:
1)初始标记 :仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行M inor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
2)并发标记 :从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。
3)最终标记 :对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。
4)筛选回收 :负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。
从上述阶段的描述可以看出,G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望。

39、G1收集器如何指定用户线程的停顿时间?

用户通过-XX:M axGCPauseMillis参数指定的停顿时间
毫无疑问,可以由用户指定期望的停顿时间是G1收集器很强大的一个功能,设置不同的期望停顿时间,可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。不过,这里设置的“期望值”必须是符合实际的,不能异想天开,毕竟G1是要冻结用户线程来复制对象的,这个停顿时间再怎么低也得有个限度。它默认的停顿目标为两百毫秒,一般来说,回收阶段占到几十到一百甚至接近两百毫秒都很正常,但如果我们把停顿时间调得非常低,譬如设置为二十毫秒,很可能出现的结果就是由于停顿目标时间太短,导致每次选出来的回收集只占堆内存很小的一部分,收集器收集的速度逐渐跟不上分配器分配的速度,导致垃圾慢慢堆积。很可能一开始收集器还能从空闲的堆内存中获得一些喘息的时间,但应用运行时间一长就不行了,最终占满堆引发Full GC反而降低性能,所以通常把期望停顿时间设置为一两百毫秒或者两三百毫秒会是比较合理的。

40、G1收集器和CMS收集器的对比?

G1收集器常会被拿来与CMS收集器互相比较,毕竟它们都非常关注停顿时间的控制,相比CMS,G1的优点有很多,暂且不论可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集这些创新性设计带来的红利,单从最传统的算法理论上看,G1也更有发展潜力。
与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存
空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。
比起CM S,G1的弱项也可以列举出不少,如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用还是程序运行时的额外执行负载都要比CMS要高。
目前在小内存应用上CM S的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其优势。

JVM - 你们垃圾回收器用的什么? G1有哪些特点?G1如何实现可预测的停顿时间?漏标问题如何解决的?介绍下三色标记?说说STAB 算法 ?相关推荐

  1. JVM七大垃圾回收器上篇Serial、ParNeW、Parallel Scavenge、 Serial Old、 Parallel Old、 CMS、 G1

    GC逻辑分类 垃圾收集器没有在规范中进行过多的规定,可以由不同的厂商.不同版本的JVM来实现. 由于JDK的版本处于高速迭代过程中,因此Java发展至今已经衍生了众多的GC版本. 从不同角度分析垃圾收 ...

  2. jvm(17)垃圾回收器

    垃圾回收器 GC分类与性能指标 垃圾收集器没有在规范中进行过多的规定,可以由不同的厂商.不同版本的JVM来实现. 由于JDK的版本处于高速迭代过程中,因此Java发展至今已经衍生了众多的GC版本. 从 ...

  3. JVM笔记(JVM内存+垃圾回收器)详解

    一:java代码的执行流程(引出JVM) 首先由程序员编写成.java文件 然后由javac(java编辑器)将.java文件编译成.class文件 .class文件可以在不同平台/操作系统上的JVM ...

  4. 三分钟了解JVM的垃圾回收和三色标记

    今天,我争取用三分钟,说清楚JVM中的垃圾回收和三色标记,倒计时,开始. 什么是垃圾 垃圾的定义 垃圾,在我们日常生活中,就是使用过后不再需要的东西.并且随着时间的推移,你产生的垃圾会越来越多.怎么清 ...

  5. JVM学习笔记(二):垃圾回收、垃圾回收算法、垃圾回收器(Serial、Parallel、CMC、G1)、内存分配原则实战

    垃圾回收 一.判断对象是否可以被回收 1.引用计数计数法 内容:在对象中添加一个引用计数器,每当有一个地方引用它,计数器就加一:当引用失效时,计数器就减一:任何时刻计数器为零的对象都是不可能在被使用的 ...

  6. java虚拟机收集器_Java虚拟机(JVM)垃圾回收器G1收集器 - Break易站

    G1收集器 G1(Garbage-First)是JDK7-u4才推出商用的收集器: 1.特点 (A).并行与并发 能充分利用多CPU.多核环境下的硬件优势: 可以并行来缩短"Stop The ...

  7. 面试官:说一下JVM常用垃圾回收器的特点、优劣势、使用场景和参数设置

    今天去看牙医,他问我年级轻轻牙齿怎么磨损这么严重?我说,没有人点赞的这些年,我都是咬着牙过来的. Java中的垃圾回收器几乎是面试中的必考点,无论是面试初级,中级还是高级,总免不了要问一问垃圾回收器的 ...

  8. 【JVM】垃圾回收器

    1.概述 下图是10种垃圾回收器,左边的是分代垃圾回收,右边是 不分代的垃圾回收. JDK 1.8 建议直接用G1,前面的不考虑了 垃圾回收器的发展路线,是随着内存越来越大的过程而演进 从分代算法演化 ...

  9. JVM经典垃圾回收器的运行机制和原理

    1 JVM内存模型定义 1.1 五大内存区域 方法区 属于共享内存区域,存储已被虚拟机加载的类信息.常量.静态变量.即时编译器编译后的代码等数据. 运行时常量池,属于方法区的一部分,用于存放编译期生成 ...

最新文章

  1. MAMP mac下启动Mysql
  2. JavaMail 发送邮件
  3. 人工智能缺陷与误觉:让机器产生幻觉的「怪异事件」
  4. 智能合约WASM语言 (1)概述
  5. mysql的学习笔记
  6. 【性能优化】 之性能视图及性能参数
  7. SAP Spartacus 和Jerry Sandbox应用Store引用的source字段类型差异
  8. Android 数据库综述(二) 程序计算器与信号量来处理多线程并发问题
  9. C#托管代码调用C++非托管代码
  10. 快讯:Oracle自治事务处理数据库发布和19c路线图
  11. C++的多态原理和实现
  12. 何为仿射变换(Affine Transformation)
  13. w3school和w3cschool两个网站有什么关系和区别?(转)
  14. javascript爱心特效
  15. python俄罗斯方块小游戏实验报告_python实现俄罗斯方块游戏
  16. Typora基本技巧
  17. 单片机学习知识点全攻略
  18. 浅析汽车芯片信息安全之安全启动
  19. Scala Class、Case Class、Object、Case Object、Trait
  20. matplotlib学习—画等高线图

热门文章

  1. 不要被高科技的大型反托拉斯听证会分心
  2. Golang:简介、基本语法、函数、defer、Test功能
  3. 数据结构课本课后题算法
  4. 各种 CD 和 DVD 光盘之间有什么区别
  5. c语言 数组二合一,C语言合并两个数组并去重
  6. 【译】为GatsbyJS选择一个合适的后端
  7. 有什么计算机可以拆分数字,汇总:WPS表技能-在单元格中拆分文本和数字
  8. 解决IntelliJ IDEA控制台输出中文乱码 淇℃伅
  9. 雕虫小技--验证码控件
  10. 用 u盘装linux系统怎么安装,怎么用U盘安装Linux系统_用U盘安装Linux系统的另类技巧 - 软件教程 - 格子啦...