先进制程的性价比下降了吗?

从2020年下半年开始,各家手机芯片厂商就开始了激烈的5nm芯片角逐,苹果、华为、高通、三星相继推出旗舰级5nm移动处理器,并宣称无论是在性能上还是在功耗上都有着优秀的表现。

不过从这几款5nm芯片的实际表现来看,一些用户并不买账,认为5nm手机芯片表现并没有达到预期,5nm芯片似乎遭遇了一场集体“翻车”。

一、5nm芯片集体“翻车”,从7nm到5nm的尴尬

最早商用的5nm芯片是去年10月份iPhone12系列手机搭载的A14仿生芯片,这款芯片晶体管达到118亿个,比A13多出近40%,且6核CPU和4核GPU使其CPU性能提升40%,图形性能提升30%,功耗降低30%。

紧接着华为发布麒麟9000,集成153亿个晶体管,8核CPU、24核GPU和NPU AI处理器,官方称其CPU性能提升25% ,GPU提升50%。

到了十二月份,高通和三星又相继发布了由三星代工的骁龙888和Exynos 1080,同样声称性能有较大提升,功耗下降。

最先被爆出疑似“翻车”的是A14。

据外媒9to5Mac报道,部分iPhone 12用户在使用手机时遇到了高耗电问题,待机一夜电量下降20%至40%,无论是在白天还是晚上,无论有没有开启更多的后台程序,结果依旧如此。

最广为用户诟病的还属骁龙888。

在首批使用者的测试中,不少数码评测博主都指出首发骁龙888的小米11性能提升有限,功耗直接上升。有人将此归结于骁龙888的代工厂三星的5nm工艺制程的不成熟,由此以来三星自己的两款5nm芯片也面临“翻车”风险。

如果按照摩尔定律,芯片的晶体管数量每隔18个月翻一番,性能也将提升一倍,但晶体管的微缩越来越难,如今在从7nm到5nm的推进中,手机芯片的表现似乎并不尽人意,不仅在性能提升方面受限,功耗也“翻车”,面临先进制程性价比上的尴尬。

为何5nm芯片频频翻车?当芯片工艺制程越先进时,性能与功耗究竟如何变化?

二、设计时性能优先,制造时工艺不成熟

集成电路的功耗可以分为动态功耗和静态功耗。

动态功耗通俗易懂,指的是电路状态变化时产生的功耗,计算方法与普通电路类似,依据物理公式P=UI,动态功耗受到电压和电流的影响。

静态功耗即每个MOS管泄露电流产生的功耗,尽管每个MOS管产生的漏电流很小,但由于一颗芯片往往集成上亿甚至上百亿的晶体管,从而导致芯片整体的静态功耗较大。

在芯片工艺制程发展过程中,当工艺制程还不太先进时,动态功耗占比大,业界通过放弃最初的5V固定电压的设计模式,采用等比降压减慢功耗的增长速度。

不过,电压减小同样意味着晶体管的开关会变慢,部分更加注重性能的厂商,即便是采用更先进的工艺也依然保持5V供电电压,最终导致功耗增大。

随着工艺节点的进步,静态功耗的重要性逐渐显现。从英特尔和IBM的芯片工艺发展中可以看出,在工艺制程从180nm到45nm的演进过程中,晶体管集成度增速不同,动态功耗或增加或减少,但静态功耗一直呈上升趋势, 45nm时,静态功耗几乎与动态功耗持平。

尽管一些设计厂商宁愿在降低功耗上做出牺牲也要提升性能,但也不得不面对高功耗带来的负面影响。

对于用户而言,设备发热严重以及耗电严重是高功耗带来的直接影响,如果芯片散热不好,严重时会导致芯片异常甚至失效。

因此,行业内依然将低功耗设计视为芯片行业需要解决的问题之一,如何平衡先进节点下芯片的性能、功耗与面积(PPA),也是芯片设计与制造的挑战。

从理论上而言,芯片制程越先进,更低的供电电压产生更低的动态功耗,随着工艺尺寸进一步减小,已下降到0.13V的芯片电压难以进一步下降,以至于近几年工艺尺寸进一步减小时,动态功耗基本无法进一步下降。

在静态功耗方面,场效应管的沟道寄生电阻随节点进步而变小,在电流不变的情况下,单个场效应管的功率也变小。但另一方面,单位面积内晶体管数目倍速增长又提升静态功耗,因此最终单位面积内的静态功耗可能保持不变。

厂商为追求更低的成本,用更小面积的芯片承载更多的晶体管,看似是达成了制程越先进,芯片性能越好,功耗越低。但实际情况往往复杂得多,为提升芯片整体性能,有人增加核心,有人设计更复杂的电路,随之而来的是更多的路径刺激功耗增长,又需要新的方法来平衡功耗。

对芯片行业影响重大的FinFET就是平衡芯片性能与功耗的方法之一,通过类似于鱼鳍式的架构控制电路的连接和断开,改善电路控制并减少漏电流,晶体管的沟道也随之大幅度缩短,静态功耗随之降低。

不过,从7nm演进到5nm则更为复杂。

Moortec首席技术官Oliver King曾接受外媒体采访时称:“当我们升级到16nm或14nm时,处理器速度有了很大的提高,而且漏电流也下降得比较快,以至于我们在使用处理器时能够用有限的电量做更多的事情。不过当从7nm到5nm的过程中,漏电情况又变得严重,几乎与28nm水平相同,现在我们不得不去平衡他们。”

Cadence的数字和签准组高级产品管理总监Kam Kittrell也曾表示,“很多人都没有弄清能够消耗如此多电能的东西,他们需要提前获取工作负载的信息才能优化动态功耗。长期以来,我们一直专注于静态功耗,以至于一旦切换到FinFET节点时,动态功耗就成为大问题。另外多核心的出现也有可能使系统过载,因此必须有更智能的解决方案。”

这是5nm芯片设计、制造公司共同面临的问题,因此也就能够稍微明白为何现有的几款5nm芯片集体“翻车”。不成熟的设计与制造都会影响性能与功耗的最大化折中,当然也不排除芯片设计厂商为追求性能更好的芯片,而不愿花大力气降低功耗的情况。

尴尬的是,越顶尖的工艺,需要的资金投入就越大,事实上追求诸如7nm、5nm等先进工艺的领域并不多,如果先进的工艺无法在功耗与性能上有极大的改善,那么追求更加先进的制程似乎不再有原本的意义。

三、走向3nm,真的准备好了吗?

根据市场研究机构International Business Strategies (IBS)给出的数据显示,65nm 工艺时的设计成本只需要0.24亿美元,到了28nm工艺时需要0.629亿美元,7nm和5nm成本急速增长,5nm设计成本达到4.76亿美元。

同时,根据乔治敦大学沃尔什外交学院安全与新兴技术中心(CSET)的两位作者编写的一份题为《AI Chips: What They Are and Why They Matter》的报告,作者借助模型预估得出台积电每片5nm晶圆的收费可能约为17,000美元,是7nm的近两倍。

在估算的模型中,作者估算出每颗5nm芯片需要238美元的制造成本,108美元的设计成本以及80美元的封装和测试成本。这使得芯片设计公司将为每颗5nm芯片支付高到426美元(约2939元)的总成本金额。

这意味着,无论是芯片设计厂商还是芯片制造厂商,遵循摩尔定律发展到5nm及以下的先进制程,除了需要打破技术上的瓶颈,还需要有巨大的资本作为支撑,熬过研发周期和测试周期,为市场提供功耗和性能均有改善的芯片最终进入回报期。

因此,并不是业界所有人都对5nm芯片的推进持积极乐观的态度。芯片IP供应商Kandou的首席执行官Amin Shokrollahi曾在接受外媒采访时表示:“对我们而言,从7nm到5nm 是令人讨厌的,电路不会按比例缩放,而且需要很多费用,我们没有看到这其中的优势。但是客户希望我们这样做,所以我们不得不这样做。”

还有全球第二大芯片代工厂Global Foundries出于经济考虑,于2018年宣布搁置7nm 项目,将资源回归12nm/14nm 上。就连实力强大的英特尔也在10nm、7nm的研发过程中多次受阻。

不过,这依然无法阻止各家手机芯片设计厂商在先进制程上的竞争,更无法阻止三星和台积电之间的制程霸主争夺。

此前雷锋网报道过,在先进制程的芯片制造方面,三星视台积电为最大的竞争对手,三星在同台积电的竞争中,先进制程的推进断断续续,曾经为了先发制人直接从7nm跳到7nm LPP EUV,二者同时在2020年实现5nm FF EUV 的量产,如今又都斥巨资投入3nm的研发与量产中。

上周五,台积电CEO魏哲家在投资人会议上宣布,台积电2021年资本的支出将高到250亿至280亿美元,其中80%会使用在包括3nm、5nm及7nm的先进制程上,10%用在高端封装及光罩作用,另外10%用在特殊制程上。

根据台积电3nm制程的进度,预计将在2021年试产,在2022年下半年进入量产,帮助英特尔代工3nm处理器芯片。

与此同时,三星也曾对外称其3nm GAA的成本可能会超过5亿美元,预期在2022年大规模生产采用比FinFET更为先进的GAAFET 3nm制程芯片。

回归到5nm移动处理器的实际情况,无论是出自哪家厂商的设计与生产,均面临性能和功耗方面的问题,5nm芯片似乎还未成熟,3nm量产就要今年开始试产。越来越趋于摩尔定律极限的3nm,真的准备好了吗?

本文参考来源:

  • https://www.leiphone.com/news/202009/ft8Mx9l2A1T3kCru.html

  • https://semiengineering.com/power-and-performance-optimization-at-7-5-3nm/

  • http://www.paper.edu.cn/scholar/showpdf/MUT2EN1IOTD0Mx3h

往期精选

汇总篇 | FPGA零基础学习系列

基于FPGA的以太网控制器(MAC)设计(下)

基于 FPGA 的 UART 控制器设计(VHDL)(下)

一周掌握FPGA Verilog HDL语法 汇总篇

为什么越来越多的数据中心使用 FPGA ?

资料汇总更新|FPGA软件安装包、书籍、源码、技术文档…(2021.01.04更新)

5nm芯片集体“翻车”,先进制程的尴尬相关推荐

  1. 全球半导体业瞬息万变 先进制程加快中国已崛起

    2015年匆匆将过,在这一年中全球半导体业发生了许多故事,哪些值得我们去回顾: 预测大修正 年初时众多市场分析公司预测今年半导体业增长在3%-7%,然而时至年底纷纷都调低至持平,或稍有下降. 业界有兴 ...

  2. 台积电先进制程布局:2020年量产5nm 2021年量产5+nm

    [TechWeb]近日,晶圆代工龙头台积电制程又现大动作,目前5nm制程晶圆已经顺利试产,将于2020年上半年投入量产.量产一年后将再推出效能及功耗表现更好的5+nm,直接拉大与竞争对手的技术差距. ...

  3. 服务器芯片能降低制程吗,主流移动芯片盘点 架构与制程决定成败

    三星S6.HTC One M9等旗舰机型的如约而至让2015年手机行业弥漫着浓浓的火药味.作为操作体验的重要决定因素,处理器性能很大程度上决定了用户能否用上流畅稳定的智能手机.然而不知不觉中,如今剩下 ...

  4. 英特尔cpu发布时间表_英特尔10nm芯片开始大规模出货,先进制程时间表浮出水面...

    多年延期之后,英特尔终于宣布其 10nm 芯片产品开始大量出货. 近日,英特尔公布了公司 2019 年 Q3 财报.在财报会议中,英特尔透露了这一消息.具体而言,英特尔已有晶圆厂开始大批量生产 10n ...

  5. 华为海思Hi1620芯片发布在即 7nm制程ARM架构最高可达3.0GHz

    一夜间,华为海思"备胎转正",不仅周边的"备胎股"受到广泛关注.5月23日,普华基础软件在公众号透露"海思hi1620系列即将发布"的消息. ...

  6. 11.11,苹果首次揭开了盛传已久的自研 5nm 制程芯片的神秘面纱

    11 月 11 日凌晨,苹果"One more thing"发布会如期而至.在其发布会上,苹果首次揭开了盛传已久的自研 5nm 制程芯片的神秘面纱.虽然早在今年 6 月的 WWDC ...

  7. 国产28nm制程光刻机突破在即,助力国产芯片

    摘要:光刻机在芯片制造相关设备中处于核心地位,随着半导体行业对芯片制程要求的不断提高,促进了光刻机产品从低端向高端的升级,光刻机市场规模逐步提升.目前IC前道光刻机高端市场被ASML垄断,国产光刻机的 ...

  8. 芯片制程3nm5nm7nm

    1.台积电方面 现在先进制程的重要性占8成,先进封装占2成. 到3nm2nm的时候,就颠倒过来,先进制程占2成,先进封装占8成. 台积电扩产7nm和28nm. 未来很多客户会停留在7nm+先进封装很长 ...

  9. 芯片开发者46%年收入达30万元,7纳米制程以内开发者30%超50万元

    梦晨 发自 凹非寺 量子位 报道 | 公众号 QbitAI 在一个全球缺芯的时代,芯片行业的开发者近况如何? 芯片设计领域的EDA(电子设计自动化)巨头新思科技(Synopsys)发布的一份调研报告显 ...

最新文章

  1. 宜昌市计算机一级考试真题,2018年上半年湖北省宜昌市计算机等级考试考务通知...
  2. 生成android_Android开发:生成桌面快捷方式是这样做的
  3. CSS布局最常用属性float(浮动)和position(定位)
  4. jQuery中$(document).ready()和window.onload的区别?
  5. 腾讯,你妈喊你抄完作业回家吃饭
  6. 生产替代物料_一种替代的多生产者方法
  7. 开启防火墙web服务器访问权限 开启必要端口共外部使用
  8. cython加密代码python_python通过cython加密代码
  9. Python csv文件读写(csv模块)(转载)
  10. python图形绘制星空图_天文星空图谱开源软件Stellarium
  11. 电脑怎么装linux系统
  12. sl4a+android截屏,使用SL4A Python在android桌面上显示数据(示例)
  13. Android Studio 按钮样式实现
  14. 设置和取消Word文档打开密码的三种方法
  15. 陈景润定理的数学证明何处寻?
  16. 玩转基因组浏览器之IGV展示bam文件
  17. 树莓派开发板入门学习笔记1:[转]资料收集及树莓派系统在Ubuntu安装
  18. 中国电信“公板”计划主攻中端市场
  19. Java集合数据类型
  20. iNFTnews | 呵护“雪山精灵”,42VERSE“数字生态保护”公益项目即将盛启

热门文章

  1. opensips与对方tls sip trunk对接注意事项
  2. 技术合集 | 【MySQL技术专题】「数据库锁技术」深入浅出透析MySQL数据库的锁基础概念和原理(上下全)
  3. P1880 [NOI1995]石子合并
  4. 饱暖思淫欲之美女图片的Python爬虫实例(二)
  5. 一文了解各种高精度室内定位技术
  6. freeswitch系列五 解决xlite和freeswitch通话没有语音的问题
  7. Linux中文显示乱码问题解决方法 和 将英文提示换成中文提示
  8. Unity Shader - 类似七龙珠的人物气焰效果
  9. POI 创建PPT小记
  10. Python程控泰克示波器(4)