上节 现代opengl 设计入门,着色器  介绍了着色器语言GLSL, 可以绘制多彩的三角形。这节介绍更高级的着色,纹理贴图。

先做纹理贴图的基本介绍,然后介绍其中几个重要设置:纹理环绕方式,纹理过滤,多级渐远纹理。接着介绍加载与创建纹理,应用纹理。最后是代码调试说明,三个附录文件。

本文参照 https://learnopengl.com/  和 https://learnopengl-cn.github.io/ 学习而来,同时包含自己的学习体会和图示在内。在visual studio 2010下完成代码测试的。

纹理贴图基本介绍

我们已经了解到,我们可以为每个顶点添加颜色来增加图形的细节,从而创建出有趣的图像。但是,如果想让图形看起来更真实,我们就必须有足够多的顶点,从而指定足够多的颜色。这将会产生很多额外开销,因为每个模型都会需求更多的顶点,每个顶点又需求一个颜色属性。

艺术家和程序员更喜欢使用纹理(Texture)。纹理是一个2D图片(甚至也有1D和3D的纹理),它可以用来添加物体的细节;你可以想象纹理是一张绘有砖块的纸,无缝折叠贴合到你的3D的房子上,这样你的房子看起来就像有砖墙外表了。因为我们可以在一张图片上插入非常多的细节,这样就可以让物体非常精细而不用指定额外的顶点。

为了能够把纹理映射(Map)到三角形上,我们需要指定三角形的每个顶点各自对应纹理的哪个部分。这样每个顶点就会关联着一个纹理坐标(Texture Coordinate),用来标明该从纹理图像的哪个部分采样(译注:采集片段颜色)。之后在图形的其它片段上进行片段插值(Fragment Interpolation)。

纹理坐标在x和y轴上,范围为0到1之间(注意我们使用的是2D纹理图像)。使用纹理坐标获取纹理颜色叫做采样(Sampling)。纹理坐标起始于(0, 0),也就是纹理图片的左下角,终始于(1, 1),即纹理图片的右上角。下面的图片展示了我们是如何把纹理坐标映射到三角形上的。

我们为三角形指定了3个纹理坐标点。如上图所示,我们希望三角形的左下角对应纹理的左下角,因此我们把三角形左下角顶点的纹理坐标设置为(0, 0);三角形的上顶点对应于图片的上中位置所以我们把它的纹理坐标设置为(0.5, 1.0);同理右下方的顶点设置为(1, 0)。我们只要给顶点着色器传递这三个纹理坐标就行了,接下来它们会被传片段着色器中,它会为每个片段进行纹理坐标的插值。

纹理坐标看起来就像这样:

float texCoords[] = {0.0f, 0.0f, // 左下角1.0f, 0.0f, // 右下角0.5f, 1.0f // 上中
};

对纹理采样的解释非常宽松,它可以采用几种不同的插值方式。所以我们需要自己告诉OpenGL该怎样对纹理采样

纹理环绕方式

纹理坐标的范围通常是从(0, 0)到(1, 1),那如果我们把纹理坐标设置在范围之外会发生什么?OpenGL默认的行为是重复这个纹理图像(我们基本上忽略浮点纹理坐标的整数部分),但OpenGL提供了更多的选择:

环绕方式 描述
GL_REPEAT 对纹理的默认行为。重复纹理图像。
GL_MIRRORED_REPEAT 和GL_REPEAT一样,但每次重复图片是镜像放置的。
GL_CLAMP_TO_EDGE 纹理坐标会被约束在0到1之间,超出的部分会重复纹理坐标的边缘,产生一种边缘被拉伸的效果。
GL_CLAMP_TO_BORDER 超出的坐标为用户指定的边缘颜色。

纹理过滤

纹理坐标不依赖于分辨率(Resolution),它可以是任意浮点值,所以OpenGL需要知道怎样将纹理像素(Texture Pixel,也叫Texel,译注1)映射到纹理坐标。当你有一个很大的物体但是纹理的分辨率很低的时候这就变得很重要了。你可能已经猜到了,OpenGL也有对于纹理过滤(Texture Filtering)的选项。纹理过滤有很多个选项,但是现在我们只讨论最重要的两种:GL_NEAREST和GL_LINEAR。

Texture Pixel也叫Texel,你可以想象你打开一张.jpg格式图片,不断放大你会发现它是由无数像素点组成的,这个点就是纹理像素;注意不要和纹理坐标搞混,纹理坐标是你给模型顶点设置的那个数组,OpenGL以这个顶点的纹理坐标数据去查找纹理图像上的像素,然后进行采样提取纹理像素的颜色。

GL_NEAREST(也叫邻近过滤,Nearest Neighbor Filtering)是OpenGL默认的纹理过滤方式。当设置为GL_NEAREST的时候,OpenGL会选择中心点最接近纹理坐标的那个像素。下图中你可以看到四个像素,加号代表纹理坐标。左上角那个纹理像素的中心距离纹理坐标最近,所以它会被选择为样本颜色:

GL_LINEAR(也叫线性过滤,(Bi)linear Filtering)它会基于纹理坐标附近的纹理像素,计算出一个插值,近似出这些纹理像素之间的颜色。一个纹理像素的中心距离纹理坐标越近,那么这个纹理像素的颜色对最终的样本颜色的贡献越大。下图中你可以看到返回的颜色是邻近像素的混合色:

GL_NEAREST产生了颗粒状的图案,我们能够清晰看到组成纹理的像素,而GL_LINEAR能够产生更平滑的图案,很难看出单个的纹理像素。GL_LINEAR可以产生更真实的输出,但有些开发者更喜欢8-bit风格,所以他们会用GL_NEAREST选项。

当进行放大(Magnify)和缩小(Minify)操作的时候可以设置纹理过滤的选项,比如你可以在纹理被缩小的时候使用邻近过滤,被放大时使用线性过滤。我们需要使用glTexParameter*函数为放大和缩小指定过滤方式。这段代码看起来会和纹理环绕方式的设置很相似:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

多级渐远纹理

想象一下,假设我们有一个包含着上千物体的大房间,每个物体上都有纹理。有些物体会很远,但其纹理会拥有与近处物体同样高的分辨率。由于远处的物体可能只产生很少的片段,OpenGL从高分辨率纹理中为这些片段获取正确的颜色值就很困难,因为它需要对一个跨过纹理很大部分的片段只拾取一个纹理颜色。在小物体上这会产生不真实的感觉,更不用说对它们使用高分辨率纹理浪费内存的问题了。

OpenGL使用一种叫做多级渐远纹理(Mipmap)的概念来解决这个问题,它简单来说就是一系列的纹理图像,后一个纹理图像是前一个的二分之一。多级渐远纹理背后的理念很简单:距观察者的距离超过一定的阈值,OpenGL会使用不同的多级渐远纹理,即最适合物体的距离的那个。由于距离远,解析度不高也不会被用户注意到。同时,多级渐远纹理另一加分之处是它的性能非常好。让我们看一下多级渐远纹理是什么样子的:

手工为每个纹理图像创建一系列多级渐远纹理很麻烦,幸好OpenGL有一个glGenerateMipmaps函数,在创建完一个纹理后调用它OpenGL就会承担接下来的所有工作了。后面的教程中你会看到该如何使用它。

在渲染中切换多级渐远纹理级别(Level)时,OpenGL在两个不同级别的多级渐远纹理层之间会产生不真实的生硬边界。就像普通的纹理过滤一样,切换多级渐远纹理级别时你也可以在两个不同多级渐远纹理级别之间使用NEAREST和LINEAR过滤。为了指定不同多级渐远纹理级别之间的过滤方式,你可以使用下面四个选项中的一个代替原有的过滤方式:

过滤方式 描述
GL_NEAREST_MIPMAP_NEAREST 使用最邻近的多级渐远纹理来匹配像素大小,并使用邻近插值进行纹理采样
GL_LINEAR_MIPMAP_NEAREST 使用最邻近的多级渐远纹理级别,并使用线性插值进行采样
GL_NEAREST_MIPMAP_LINEAR 在两个最匹配像素大小的多级渐远纹理之间进行线性插值,使用邻近插值进行采样
GL_LINEAR_MIPMAP_LINEAR 在两个邻近的多级渐远纹理之间使用线性插值,并使用线性插值进行采样

就像纹理过滤一样,我们可以使用glTexParameteri将过滤方式设置为前面四种提到的方法之一:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

一个常见的错误是,将放大过滤的选项设置为多级渐远纹理过滤选项之一。这样没有任何效果,因为多级渐远纹理主要是使用在纹理被缩小的情况下的:纹理放大不会使用多级渐远纹理,为放大过滤设置多级渐远纹理的选项会产生一个GL_INVALID_ENUM错误代码。

加载与创建纹理

使用纹理之前要做的第一件事是把它们加载到我们的应用中。纹理图像可能被储存为各种各样的格式,每种都有自己的数据结构和排列,所以我们如何才能把这些图像加载到应用中呢?一个解决方案是选一个需要的文件格式,比如.PNG,然后自己写一个图像加载器,把图像转化为字节序列。写自己的图像加载器虽然不难,但仍然挺麻烦的,而且如果要支持更多文件格式呢?你就不得不为每种你希望支持的格式写加载器了。

另一个解决方案也许是一种更好的选择,使用一个支持多种流行格式的图像加载库来为我们解决这个问题。比如说我们要用的stb_image.h库。

stb_image.h

stb_image.h是Sean Barrett的一个非常流行的单头文件图像加载库,它能够加载大部分流行的文件格式,并且能够很简单得整合到你的工程之中。stb_image.h可以在这里下载。下载这一个头文件,将它以stb_image.h的名字加入你的工程,并另创建一个新的C++文件,输入以下代码:

#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

通过定义STB_IMAGE_IMPLEMENTATION,预处理器会修改头文件,让其只包含相关的函数定义源码,等于是将这个头文件变为一个 .cpp 文件了。现在只需要在你的程序中包含stb_image.h并编译就可以了。

下面的教程中,我们会使用一张木箱的图片。要使用stb_image.h加载图片,我们需要使用它的stbi_load函数:

int width, height, nrChannels;
unsigned char *data = stbi_load("container.jpg", &width, &height, &nrChannels, 0);

这个函数首先接受一个图像文件的位置作为输入。接下来它需要三个int作为它的第二、第三和第四个参数,stb_image.h将会用图像的宽度高度颜色通道的个数填充这三个变量。我们之后生成纹理的时候会用到的图像的宽度和高度的。

生成纹理

和之前生成的OpenGL对象一样,纹理也是使用ID引用的。让我们来创建一个:

unsigned int texture;
glGenTextures(1, &texture);

glGenTextures函数首先需要输入生成纹理的数量,然后把它们储存在第二个参数的unsigned int数组中(我们的例子中只是单独的一个unsigned int),就像其他对象一样,我们需要绑定它,让之后任何的纹理指令都可以配置当前绑定的纹理:

glBindTexture(GL_TEXTURE_2D, texture);

现在纹理已经绑定了,我们可以使用前面载入的图片数据生成一个纹理了。纹理可以通过glTexImage2D来生成:

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);

函数很长,参数也不少,所以我们一个一个地讲解:

  • 第一个参数指定了纹理目标(Target)。设置为GL_TEXTURE_2D意味着会生成与当前绑定的纹理对象在同一个目标上的纹理(任何绑定到GL_TEXTURE_1D和GL_TEXTURE_3D的纹理不会受到影响)。
  • 第二个参数为纹理指定多级渐远纹理的级别,如果你希望单独手动设置每个多级渐远纹理的级别的话。这里我们填0,也就是基本级别。
  • 第三个参数告诉OpenGL我们希望把纹理储存为何种格式。我们的图像只有RGB值,因此我们也把纹理储存为RGB值。
  • 第四个和第五个参数设置最终的纹理的宽度和高度。我们之前加载图像的时候储存了它们,所以我们使用对应的变量。
  • 下个参数应该总是被设为0(历史遗留的问题)。
  • 第七第八个参数定义了源图的格式和数据类型。我们使用RGB值加载这个图像,并把它们储存为char(byte)数组,我们将会传入对应值。
  • 最后一个参数是真正的图像数据。

当调用glTexImage2D时,当前绑定的纹理对象就会被附加上纹理图像。然而,目前只有基本级别(Base-level)的纹理图像被加载了,如果要使用多级渐远纹理,我们必须手动设置所有不同的图像(不断递增第二个参数)。或者,直接在生成纹理之后调用glGenerateMipmap。这会为当前绑定的纹理自动生成所有需要的多级渐远纹理。

生成了纹理和相应的多级渐远纹理后,释放图像的内存是一个很好的习惯。

stbi_image_free(data);

生成一个纹理的过程应该看起来像这样:

unsigned int texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
// 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 加载并生成纹理
int width, height, nrChannels;
unsigned char *data = stbi_load("container.jpg", &width, &height, &nrChannels, 0);
if (data)
{glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);
}
else
{std::cout << "Failed to load texture" << std::endl;
}
stbi_image_free(data);

应用纹理

后面的这部分我们会使用glDrawElements绘制「你好,三角形」教程最后一部分的矩形。我们需要告知OpenGL如何采样纹理,所以我们必须使用纹理坐标更新顶点数据:

float vertices[] = {
//     ---- 位置 ----       ---- 颜色 ----     - 纹理坐标 -0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,   1.0f, 1.0f,   // 右上0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   1.0f, 0.0f,   // 右下-0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   0.0f, 0.0f,   // 左下-0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   0.0f, 1.0f    // 左上
};

由于我们添加了一个额外的顶点属性,我们必须告诉OpenGL我们新的顶点格式:

glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
glEnableVertexAttribArray(2);

注意,我们同样需要调整前面两个顶点属性的步长参数为8 * sizeof(float)

接着我们需要调整顶点着色器使其能够接受顶点坐标为一个顶点属性,并把坐标传给片段着色器:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;out vec3 ourColor;
out vec2 TexCoord;void main()
{gl_Position = vec4(aPos, 1.0);ourColor = aColor;TexCoord = aTexCoord;
}

片段着色器应该接下来会把输出变量TexCoord作为输入变量。

片段着色器也应该能访问纹理对象,但是我们怎样能把纹理对象传给片段着色器呢?GLSL有一个供纹理对象使用的内建数据类型,叫做采样器(Sampler),它以纹理类型作为后缀,比如sampler1Dsampler3D,或在我们的例子中的sampler2D。我们可以简单声明一个uniform sampler2D把一个纹理添加到片段着色器中,稍后我们会把纹理赋值给这个uniform。

#version 330 core
out vec4 FragColor;in vec3 ourColor;
in vec2 TexCoord;uniform sampler2D ourTexture;void main()
{FragColor = texture(ourTexture, TexCoord);
}

我们使用GLSL内建的texture函数来采样纹理的颜色,它第一个参数是纹理采样器,第二个参数是对应的纹理坐标。texture函数会使用之前设置的纹理参数对相应的颜色值进行采样。这个片段着色器的输出就是纹理的(插值)纹理坐标上的(过滤后的)颜色。

现在只剩下在调用glDrawElements之前绑定纹理了,它会自动把纹理赋值给片段着色器的采样器:

glBindTexture(GL_TEXTURE_2D, texture);
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);

如果你跟着这个教程正确地做完了,你会看到下面的图像:

代码,调试说明

要完成本工程的代码调试和运行要注意如下几点:

代码有好几个文件,stb_image.h 在 这里,着色器类shader_s.h 在这里,4.1.texture.vs,4.1.texture.fs在后面贴出了,主程序也在后面。

所有程序文件都准备好了,应该可以 编译链接成功了,如果不成功, 请看 现代opengl 设计入门 准备第一个工程 可能你GLFW, GLAD,包含路径,库文件没有设置好,glad.c文件没有加入工程。

调试运行时,你要准备好你的顶点着色器文件4.1.texture.vs,片段着色器文件4.1.texture.fs,还有纹理贴图文件lena.jpg。纹理贴图文件你可以找一个bmp,png,jpg 等等图片文件,然后你要修改主程序中贴图文件的名字,如果不是lena.jpg。这三个文件在程序运行时要打开,你可以放在一个目录里,然后在那个目录(工作目录)里运行。debug 的话,需修改工程属性:Configuration Properties-> Debugging->Working Drirectory,指向这三个文件在的目录,如下图

如果你不想这么设置,也可以用绝对路径。

如果你运行有驱动问题,请查看现代 opengl 的驱动安装。

附录3个文件

4.1.texture.vs 文件内容:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;out vec3 ourColor;
out vec2 TexCoord;void main()
{gl_Position = vec4(aPos, 1.0);ourColor = aColor;TexCoord = aTexCoord;
}

4.1.texture.fs 文件内容:

#version 330 core
out vec4 FragColor;in vec3 ourColor;
in vec2 TexCoord;uniform sampler2D ourTexture;void main()
{FragColor = texture(ourTexture, TexCoord);
}

程序源代码openglA.cpp:

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#define STB_IMAGE_IMPLEMENTATION
#include <stb_image.h>#include <shader_s.h>#include <iostream>void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;int main()
{// glfw: initialize and configure// ------------------------------glfwInit();glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);#ifdef __APPLE__glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // uncomment this statement to fix compilation on OS X
#endif// glfw window creation// --------------------GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);if (window == NULL){std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();return -1;}glfwMakeContextCurrent(window);glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);// glad: load all OpenGL function pointers// ---------------------------------------if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){std::cout << "Failed to initialize GLAD" << std::endl;return -1;}// build and compile our shader zprogram// ------------------------------------Shader ourShader("4.1.texture.vs", "4.1.texture.fs"); // set up vertex data (and buffer(s)) and configure vertex attributes// ------------------------------------------------------------------float vertices[] = {// positions          // colors           // texture coords0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,   1.0f, 0.0f, // top right0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   1.0f, 1.0f, // bottom right-0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   0.0f, 1.0f, // bottom left-0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   0.0f, 0.0f  // top left };unsigned int indices[] = {  0, 1, 3, // first triangle1, 2, 3  // second triangle};unsigned int VBO, VAO, EBO;glGenVertexArrays(1, &VAO);glGenBuffers(1, &VBO);glGenBuffers(1, &EBO);glBindVertexArray(VAO);glBindBuffer(GL_ARRAY_BUFFER, VBO);glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);// position attributeglVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);glEnableVertexAttribArray(0);// color attributeglVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));glEnableVertexAttribArray(1);// texture coord attributeglVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));glEnableVertexAttribArray(2);// load and create a texture // -------------------------unsigned int texture;glGenTextures(1, &texture);glBindTexture(GL_TEXTURE_2D, texture); // all upcoming GL_TEXTURE_2D operations now have effect on this texture object// set the texture wrapping parametersglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);  // set texture wrapping to GL_REPEAT (default wrapping method)glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);// set texture filtering parametersglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);// load image, create texture and generate mipmapsint width, height, nrChannels;// The FileSystem::getPath(...) is part of the GitHub repository so we can find files on any IDE/platform; replace it with your own image path.unsigned char *data = stbi_load(("lena.jpg"), &width, &height, &nrChannels, 0);if (data){glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);}else{std::cout << "Failed to load texture" << std::endl;}stbi_image_free(data);// render loop// -----------while (!glfwWindowShouldClose(window)){// input// -----processInput(window);// render// ------glClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT);// bind TextureglBindTexture(GL_TEXTURE_2D, texture);// render containerourShader.use();glBindVertexArray(VAO);glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)// -------------------------------------------------------------------------------glfwSwapBuffers(window);glfwPollEvents();}// optional: de-allocate all resources once they've outlived their purpose:// ------------------------------------------------------------------------glDeleteVertexArrays(1, &VAO);glDeleteBuffers(1, &VBO);glDeleteBuffers(1, &EBO);// glfw: terminate, clearing all previously allocated GLFW resources.// ------------------------------------------------------------------glfwTerminate();return 0;
}// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)glfwSetWindowShouldClose(window, true);
}// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{// make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays.glViewport(0, 0, width, height);
}

现代opengl 设计入门,纹理贴图相关推荐

  1. 现代opengl 设计入门,坐标系统和立方体的纹理贴图

    本文在 现代opengl 设计入门,纹理贴图 一文的基础上,引入opengl坐标系统,实现立方体的纹理贴图.介绍了opengl 的5个空间,3个变换矩阵.如果看这部分介绍比较繁琐,可以直接看看效果图, ...

  2. OpenGL基本概念入门——纹理贴图

    1. 创建纹理图像 OpenGL要求纹理的高度和宽度都必须是2的n次方大小,只有满足这个条件,这个纹理图片才是有效的.     一旦获取了像素值,我们就可以将这些数据传给OpenGL,让OpenGL生 ...

  3. 现代opengl 设计入门,摄像头

    前面的教程 现代opengl 设计入门,坐标系统和立方体的纹理贴图 中讨论了观察矩阵view以及如何使用观察矩阵移动场景.OpenGL本身没有摄像机(Camera)的概念,但我们完全可以类比摄像头,来 ...

  4. 现代opengl 设计入门,着色器

    上节现代opengl 设计入门,画图第一个三角形中我们在opengl 窗口画了一个三角形,其中也用到了着色器.本节主要介绍OpenGL着色器语言(GLSL)以及应用实例.先介绍GLSL语言,可以明白上 ...

  5. OpenGL学习笔记——纹理贴图

    简单地说,纹理就是矩形的数据数组.例如,颜色数据.亮度数据.颜色和alpha数据.纹理数组中的单个值常常称为纹理单元(texel).纹理贴图之所以复杂,是因为矩形的纹理可以映射到非矩形的区域,并且必须 ...

  6. 16. OPenGL加载纹理贴图

    1. 说明 在OPenGL中,三维物体模型并非只能渲染单一颜色,还可以通过纹理贴图的方式进行渲染,增强物体模型的渲染效果,本篇文章简单讲解给一个矩形添加纹理图片效果. 效果展示: 纹理数据加载 2. ...

  7. 现代opengl 设计入门,变换基础,向量和矩阵运算

    直到目前,我们介绍opengl 的工程准备,窗口建立,画第一个三角形,着色器,纹理贴图.所有这些,都寻求问题描述简单,看上去是平面的操作一样.下面我们要进入opengl 的3D,因此需要了解一些必要的 ...

  8. OpenGL png图片 纹理贴图,去除png图片黑边

    http://blog.csdn.net/cjkwin/article/details/6011882 用libpng把png图片读出来就可以用读出的数据生成文理了. 将png图片作为纹理贴图,在图片 ...

  9. 2.x最终照着教程,成功使用OpenGL ES 绘制纹理贴图,添加了灰度图

    在之前成功绘制变色的几何图形之后,今天利用Openg ES的可编程管线绘制出第一张纹理. 学校时候不知道OpenGL的重要性,怕晦涩的语法.没有跟老师学习OpenGL的环境配置,现在仅仅能利用coco ...

最新文章

  1. GitHub开源游戏:CityBound(模拟城市)
  2. Python sorted
  3. IIS与ASP.NET对请求的处理
  4. 【转】C# 调用 C++ 数据转换
  5. 用区块链改变人工智能:去中心化带来数据新范式
  6. synchronized的基本语法
  7. Java基础知识回顾之七 ----- 总结篇
  8. TIOBE 11 月榜单:Python 挤掉 Java,Java的下跌趋势确立了?
  9. postgres复制表结构
  10. java 注解 方法 参数_java在注解中绑定方法参数的解决方案
  11. 建网站如何选择好用的网站源码程序
  12. 【恋上数据结构】回溯、剪枝(八皇后、n皇后)、LeetCode51.N皇后、LeetCode52.N皇后 II
  13. [2] 图像处理之----二值化处理
  14. 删除数据库中的所有表
  15. 让我们自己来破解命运外挂999
  16. ACM纪念日 C语言
  17. 2023第八届少儿模特明星盛典 福州赛区 初赛圆满收官
  18. 利用CSS改变图片颜色的100种方法!
  19. React 中 TypeScript 和装饰器及 Hooks
  20. lol中各服务器的位置,LOL四大服务器王者常用位置分析

热门文章

  1. 国潮音乐酒吧介绍PPT模板
  2. php点击开始停止按钮,H5的开始暂停按钮
  3. java自定义排序函数_JAVA中sort函数的 自定义排序 cmp函数的写法 【java】【cmp】...
  4. office计算机二级作业,计算机二级office复习资料
  5. android 3d 游戏,盘点Android平台十款画面最强3D游戏
  6. Windows Vista 与 Windows Seven 回顾
  7. GIF、PNG和JPG的区别
  8. unturned进服务器失去位置,unturned服务器地址
  9. http://www.drivergenius.com/驱动精灵也是牛b软件了,
  10. 秒级处理海量数据,浙江移动大数据平台是怎么做到的