吴恩达deeplearning.ai课程作业,自己写的答案。
补充说明:
1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学习方法,况且作业也不算难。
2. 关于评论中有人说我是抄袭,注释还没别人详细,复制下来还运行不过。答复是:做伸手党之前,请先搞清这个作业是干什么的。大家都是从GitHub上下载原始的作业,然后根据代码前面的提示(通常会指定函数和公式)来编写代码,而且后面还有expected output供你比对,如果程序正确,结果一般来说是一样的。请不要无脑喷,说什么跟别人的答案一样的。说到底,我们要做的就是,看他的文字部分,根据提示在代码中加入部分自己的代码。我们自己要写的部分只有那么一小部分代码。
3. 由于实在很反感无脑喷子,故禁止了下面的评论功能,请见谅。如果有问题,请私信我,在力所能及的范围内会尽量帮忙。

Gradient Checking

Welcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking.

You are part of a team working to make mobile payments available globally, and are asked to build a deep learning model to detect fraud–whenever someone makes a payment, you want to see if the payment might be fraudulent, such as if the user’s account has been taken over by a hacker.

But backpropagation is quite challenging to implement, and sometimes has bugs. Because this is a mission-critical application, your company’s CEO wants to be really certain that your implementation of backpropagation is correct. Your CEO says, “Give me a proof that your backpropagation is actually working!” To give this reassurance, you are going to use “gradient checking”.

Let’s do it!

# Packages
import numpy as np
from testCases import *
from gc_utils import sigmoid, relu, dictionary_to_vector, vector_to_dictionary, gradients_to_vector

1) How does gradient checking work?

Backpropagation computes the gradients ∂J∂θ∂J∂θ\frac{\partial J}{\partial \theta}, where θθ\theta denotes the parameters of the model. JJJ is computed using forward propagation and your loss function.

Because forward propagation is relatively easy to implement, you’re confident you got that right, and so you’re almost 100% sure that you’re computing the cost J" role="presentation" style="position: relative;">JJJ correctly. Thus, you can use your code for computing JJJ to verify the code for computing ∂J∂θ" role="presentation" style="position: relative;">∂J∂θ∂J∂θ\frac{\partial J}{\partial \theta}.

Let’s look back at the definition of a derivative (or gradient):

∂J∂θ=limε→0J(θ+ε)−J(θ−ε)2ε(1)(1)∂J∂θ=limε→0J(θ+ε)−J(θ−ε)2ε

\frac{\partial J}{\partial \theta} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} \tag{1}

If you’re not familiar with the “limε→0limε→0\displaystyle \lim_{\varepsilon \to 0}” notation, it’s just a way of saying “when εε\varepsilon is really really small.”

We know the following:

  • ∂J∂θ∂J∂θ\frac{\partial J}{\partial \theta} is what you want to make sure you’re computing correctly.
  • You can compute J(θ+ε)J(θ+ε)J(\theta + \varepsilon) and J(θ−ε)J(θ−ε)J(\theta - \varepsilon) (in the case that θθ\theta is a real number), since you’re confident your implementation for JJJ is correct.

Lets use equation (1) and a small value for ε" role="presentation" style="position: relative;">εε\varepsilon to convince your CEO that your code for computing ∂J∂θ∂J∂θ\frac{\partial J}{\partial \theta} is correct!

2) 1-dimensional gradient checking

Consider a 1D linear function J(θ)=θxJ(θ)=θxJ(\theta) = \theta x. The model contains only a single real-valued parameter θθ\theta, and takes xxx as input.

You will implement code to compute J(.)" role="presentation" style="position: relative;">J(.)J(.)J(.) and its derivative ∂J∂θ∂J∂θ\frac{\partial J}{\partial \theta}. You will then use gradient checking to make sure your derivative computation for JJJ is correct.

Figure 1 : 1D linear model

The diagram above shows the key computation steps: First start with x" role="presentation" style="position: relative;">xxx, then evaluate the function J(x)J(x)J(x) (“forward propagation”). Then compute the derivative ∂J∂θ∂J∂θ\frac{\partial J}{\partial \theta} (“backward propagation”).

Exercise: implement “forward propagation” and “backward propagation” for this simple function. I.e., compute both J(.)J(.)J(.) (“forward propagation”) and its derivative with respect to θθ\theta (“backward propagation”), in two separate functions.

# GRADED FUNCTION: forward_propagationdef forward_propagation(x, theta):"""Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x)Arguments:x -- a real-valued inputtheta -- our parameter, a real number as wellReturns:J -- the value of function J, computed using the formula J(theta) = theta * x"""### START CODE HERE ### (approx. 1 line)J = x * theta### END CODE HERE ###return J
x, theta = 2, 4
J = forward_propagation(x, theta)
print ("J = " + str(J))
J = 8

Expected Output:

# GRADED FUNCTION: backward_propagationdef backward_propagation(x, theta):"""Computes the derivative of J with respect to theta (see Figure 1).Arguments:x -- a real-valued inputtheta -- our parameter, a real number as wellReturns:dtheta -- the gradient of the cost with respect to theta"""### START CODE HERE ### (approx. 1 line)dtheta = x### END CODE HERE ###return dtheta
x, theta = 2, 4
dtheta = backward_propagation(x, theta)
print ("dtheta = " + str(dtheta))
dtheta = 2

Expected Output:

dtheta 2

Exercise: To show that the backward_propagation() function is correctly computing the gradient ∂J∂θ∂J∂θ\frac{\partial J}{\partial \theta}, let’s implement gradient checking.

Instructions:
- First compute “gradapprox” using the formula above (1) and a small value of εε\varepsilon. Here are the Steps to follow:
1. θ+=θ+εθ+=θ+ε\theta^{+} = \theta + \varepsilon
2. θ−=θ−εθ−=θ−ε\theta^{-} = \theta - \varepsilon
3. J+=J(θ+)J+=J(θ+)J^{+} = J(\theta^{+})
4. J−=J(θ−)J−=J(θ−)J^{-} = J(\theta^{-})
5. gradapprox=J+−J−2εgradapprox=J+−J−2εgradapprox = \frac{J^{+} - J^{-}}{2 \varepsilon}
- Then compute the gradient using backward propagation, and store the result in a variable “grad”
- Finally, compute the relative difference between “gradapprox” and the “grad” using the following formula:

difference=∣∣grad−gradapprox∣∣2∣∣grad∣∣2+∣∣gradapprox∣∣2(2)(2)difference=∣∣grad−gradapprox∣∣2∣∣grad∣∣2+∣∣gradapprox∣∣2

difference = \frac {\mid\mid grad - gradapprox \mid\mid_2}{\mid\mid grad \mid\mid_2 + \mid\mid gradapprox \mid\mid_2} \tag{2}
You will need 3 Steps to compute this formula:
- 1’. compute the numerator using np.linalg.norm(…)
- 2’. compute the denominator. You will need to call np.linalg.norm(…) twice.
- 3’. divide them.
- If this difference is small (say less than 10−710−710^{-7}), you can be quite confident that you have computed your gradient correctly. Otherwise, there may be a mistake in the gradient computation.

# GRADED FUNCTION: gradient_checkdef gradient_check(x, theta, epsilon = 1e-7):"""Implement the backward propagation presented in Figure 1.Arguments:x -- a real-valued inputtheta -- our parameter, a real number as wellepsilon -- tiny shift to the input to compute approximated gradient with formula(1)Returns:difference -- difference (2) between the approximated gradient and the backward propagation gradient"""# Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.### START CODE HERE ### (approx. 5 lines)thetaplus = theta + epsilon                               # Step 1thetaminus = theta - epsilon                              # Step 2J_plus = forward_propagation(x, thetaplus)                                  # Step 3J_minus = forward_propagation(x, thetaminus)                                 # Step 4gradapprox = (J_plus - J_minus) / (2 * epsilon)                              # Step 5### END CODE HERE #### Check if gradapprox is close enough to the output of backward_propagation()### START CODE HERE ### (approx. 1 line)grad = backward_propagation(x, theta)### END CODE HERE ###### START CODE HERE ### (approx. 1 line)
#     print(grad)
#     print(gradapprox)numerator = np.linalg.norm(grad-gradapprox)                              # Step 1'denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)                             # Step 2'difference = numerator / denominator                              # Step 3'### END CODE HERE ###if difference < 1e-7:print ("The gradient is correct!")else:print ("The gradient is wrong!")return difference
x, theta = 2, 4
difference = gradient_check(x, theta)
print("difference = " + str(difference))
The gradient is correct!
difference = 2.91933588329e-10

Expected Output:
The gradient is correct!

difference 2.9193358103083e-10

Congrats, the difference is smaller than the 10−710−710^{-7} threshold. So you can have high confidence that you’ve correctly computed the gradient in backward_propagation().

Now, in the more general case, your cost function JJJ has more than a single 1D input. When you are training a neural network, θ" role="presentation" style="position: relative;">θθ\theta actually consists of multiple matrices W[l]W[l]W^{[l]} and biases b[l]b[l]b^{[l]}! It is important to know how to do a gradient check with higher-dimensional inputs. Let’s do it!

3) N-dimensional gradient checking

The following figure describes the forward and backward propagation of your fraud detection model.

Figure 2 : deep neural network
LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

Let’s look at your implementations for forward propagation and backward propagation.

def forward_propagation_n(X, Y, parameters):"""Implements the forward propagation (and computes the cost) presented in Figure 3.Arguments:X -- training set for m examplesY -- labels for m examples parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":W1 -- weight matrix of shape (5, 4)b1 -- bias vector of shape (5, 1)W2 -- weight matrix of shape (3, 5)b2 -- bias vector of shape (3, 1)W3 -- weight matrix of shape (1, 3)b3 -- bias vector of shape (1, 1)Returns:cost -- the cost function (logistic cost for one example)"""# retrieve parametersm = X.shape[1]W1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]W3 = parameters["W3"]b3 = parameters["b3"]# LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOIDZ1 = np.dot(W1, X) + b1A1 = relu(Z1)Z2 = np.dot(W2, A1) + b2A2 = relu(Z2)Z3 = np.dot(W3, A2) + b3A3 = sigmoid(Z3)# Costlogprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)cost = 1./m * np.sum(logprobs)cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)return cost, cache

Now, run backward propagation.

def backward_propagation_n(X, Y, cache):"""Implement the backward propagation presented in figure 2.Arguments:X -- input datapoint, of shape (input size, 1)Y -- true "label"cache -- cache output from forward_propagation_n()Returns:gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables."""m = X.shape[1](Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cachedZ3 = A3 - YdW3 = 1./m * np.dot(dZ3, A2.T)db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)dA2 = np.dot(W3.T, dZ3)dZ2 = np.multiply(dA2, np.int64(A2 > 0))# 这里是故意使用一个错误的形式来验证gradient_check是否正常工作dW2 = 1./m * np.dot(dZ2, A1.T) * 2# 正确的形式,最后再修改的
#     dW2 = 1./m * np.dot(dZ2, A1.T)db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)dA1 = np.dot(W2.T, dZ2)dZ1 = np.multiply(dA1, np.int64(A1 > 0))dW1 = 1./m * np.dot(dZ1, X.T)# 这里是故意使用一个错误的形式来验证gradient_check是否正常工作db1 = 4./m * np.sum(dZ1, axis=1, keepdims = True)# 正确的形式,最后再修改的
#     db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,"dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}return gradients

You obtained some results on the fraud detection test set but you are not 100% sure of your model. Nobody’s perfect! Let’s implement gradient checking to verify if your gradients are correct.

How does gradient checking work?.

As in 1) and 2), you want to compare “gradapprox” to the gradient computed by backpropagation. The formula is still:

∂J∂θ=limε→0J(θ+ε)−J(θ−ε)2ε(1)(1)∂J∂θ=limε→0J(θ+ε)−J(θ−ε)2ε

\frac{\partial J}{\partial \theta} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} \tag{1}

However, θθ\theta is not a scalar anymore. It is a dictionary called “parameters”. We implemented a function “dictionary_to_vector()” for you. It converts the “parameters” dictionary into a vector called “values”, obtained by reshaping all parameters (W1, b1, W2, b2, W3, b3) into vectors and concatenating them.

The inverse function is “vector_to_dictionary” which outputs back the “parameters” dictionary.

Figure 2 : dictionary_to_vector() and vector_to_dictionary()
You will need these functions in gradient_check_n()

We have also converted the “gradients” dictionary into a vector “grad” using gradients_to_vector(). You don’t need to worry about that.

Exercise: Implement gradient_check_n().

Instructions: Here is pseudo-code that will help you implement the gradient check.

For each i in num_parameters:
- To compute J_plus[i]:
1. Set θ+θ+\theta^{+} to np.copy(parameters_values)
2. Set θ+iθi+\theta^{+}_i to θ+i+εθi++ε\theta^{+}_i + \varepsilon
3. Calculate J+iJi+J^{+}_i using to forward_propagation_n(x, y, vector_to_dictionary(θ+θ+\theta^{+} )).
- To compute J_minus[i]: do the same thing with θ−θ−\theta^{-}
- Compute gradapprox[i]=J+i−J−i2εgradapprox[i]=Ji+−Ji−2εgradapprox[i] = \frac{J^{+}_i - J^{-}_i}{2 \varepsilon}

Thus, you get a vector gradapprox, where gradapprox[i] is an approximation of the gradient with respect to parameter_values[i]. You can now compare this gradapprox vector to the gradients vector from backpropagation. Just like for the 1D case (Steps 1’, 2’, 3’), compute:

difference=∥grad−gradapprox∥2∥grad∥2+∥gradapprox∥2(3)(3)difference=‖grad−gradapprox‖2‖grad‖2+‖gradapprox‖2

difference = \frac {\| grad - gradapprox \|_2}{\| grad \|_2 + \| gradapprox \|_2 } \tag{3}

# GRADED FUNCTION: gradient_check_ndef gradient_check_n(parameters, gradients, X, Y, epsilon = 1e-7):"""Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_nArguments:parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters. x -- input datapoint, of shape (input size, 1)y -- true "label"epsilon -- tiny shift to the input to compute approximated gradient with formula(1)Returns:difference -- difference (2) between the approximated gradient and the backward propagation gradient"""# Set-up variablesparameters_values, _ = dictionary_to_vector(parameters)grad = gradients_to_vector(gradients)num_parameters = parameters_values.shape[0]J_plus = np.zeros((num_parameters, 1))J_minus = np.zeros((num_parameters, 1))gradapprox = np.zeros((num_parameters, 1))# Compute gradapproxfor i in range(num_parameters):# Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".# "_" is used because the function you have to outputs two parameters but we only care about the first one### START CODE HERE ### (approx. 3 lines)thetaplus = np.copy(parameters_values)                                      # Step 1thetaplus[i][0] = thetaplus[i][0] + epsilon                                # Step 2J_plus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaplus))                                   # Step 3### END CODE HERE #### Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".### START CODE HERE ### (approx. 3 lines)thetaminus = np.copy(parameters_values)                                     # Step 1thetaminus[i][0] = thetaminus[i][0] - epsilon                               # Step 2        J_minus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaminus))                                  # Step 3### END CODE HERE #### Compute gradapprox[i]### START CODE HERE ### (approx. 1 line)gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)### END CODE HERE #### Compare gradapprox to backward propagation gradients by computing difference.### START CODE HERE ### (approx. 1 line)
#     print("grad: {}".format(grad))
#     print("gradapprox: {}".format(gradapprox))numerator = np.linalg.norm(grad-gradapprox, ord=2)                                           # Step 1'denominator = np.linalg.norm(grad, ord=2) + np.linalg.norm(gradapprox, ord=2)                                         # Step 2'difference = numerator / denominator                                        # Step 3'### END CODE HERE ###if difference > 1e-7:print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")else:print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")return difference
X, Y, parameters = gradient_check_n_test_case()cost, cache = forward_propagation_n(X, Y, parameters)
gradients = backward_propagation_n(X, Y, cache)
difference = gradient_check_n(parameters, gradients, X, Y)
[93mThere is a mistake in the backward propagation! difference = 0.285093156776[0m

Expected output:

There is a mistake in the backward propagation! difference = 0.285093156781

It seems that there were errors in the backward_propagation_n code we gave you! Good that you’ve implemented the gradient check. Go back to backward_propagation and try to find/correct the errors (Hint: check dW2 and db1). Rerun the gradient check when you think you’ve fixed it. Remember you’ll need to re-execute the cell defining backward_propagation_n() if you modify the code.

Can you get gradient check to declare your derivative computation correct? Even though this part of the assignment isn’t graded, we strongly urge you to try to find the bug and re-run gradient check until you’re convinced backprop is now correctly implemented.

Note
- Gradient Checking is slow! Approximating the gradient with ∂J∂θ≈J(θ+ε)−J(θ−ε)2ε∂J∂θ≈J(θ+ε)−J(θ−ε)2ε\frac{\partial J}{\partial \theta} \approx \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} is computationally costly. For this reason, we don’t run gradient checking at every iteration during training. Just a few times to check if the gradient is correct.
- Gradient Checking, at least as we’ve presented it, doesn’t work with dropout. You would usually run the gradient check algorithm without dropout to make sure your backprop is correct, then add dropout.

Congrats, you can be confident that your deep learning model for fraud detection is working correctly! You can even use this to convince your CEO. :)

What you should remember from this notebook:
- Gradient checking verifies closeness between the gradients from backpropagation and the numerical approximation of the gradient (computed using forward propagation).
- Gradient checking is slow, so we don’t run it in every iteration of training. You would usually run it only to make sure your code is correct, then turn it off and use backprop for the actual learning process.

吴恩达深度学习课程deeplearning.ai课程作业:Class 2 Week 1 3.Gradient Checking相关推荐

  1. 吴恩达深度学习第二周--logistic回归作业1

    吴恩达深度学习第二周–logistic回归作业1 本系列为吴恩达老师深度学习作业的总结,其中参考了很多优秀的文章,本文为了方便日后的复习与巩固,更为详细的作业讲解参考 目录 吴恩达深度学习第二周--l ...

  2. 吴恩达深度学习之tensorflow2.0 课程

    课链接 吴恩达深度学习之tensorflow2.0入门到实战 2019年最新课程 最佳配合吴恩达实战的教程 代码资料 自己取 链接:https://pan.baidu.com/s/1QrTV3KvKv ...

  3. 吴恩达深度学习-Course4第三周作业 yolo.h5文件读取错误解决方法

    这个yolo.h5文件走了不少弯路呐,不过最后终于搞好了,现在把最详细的脱坑过程记录下来,希望小伙伴们少走些弯路. 最初的代码是从下面这个大佬博主的百度网盘下载的,但是h5文件无法读取.(22条消息) ...

  4. 吴恩达深度学习的实用层面编程作业:正则化Regularization

  5. 吴恩达深度学习的实用层面编程作业:初始化Initialization

  6. 360题带你走进深度学习!吴恩达深度学习课程测试题中英对照版发布

    吴恩达的深度学习课程(deepLearning.ai)是公认的入门深度学习的宝典,本站将课程的课后测试题进行了翻译,建议初学者学习.所有题目都翻译完毕,适合英文不好的同学学习. 主要翻译者:黄海广 内 ...

  7. github标星8331+:吴恩达深度学习课程资源(完整笔记、中英文字幕视频、python作业,提供百度云镜像!)...

    吴恩达老师的深度学习课程(deeplearning.ai),可以说是深度学习入门的最热门课程,我和志愿者编写了这门课的笔记,并在github开源,star数达到8331+,曾经有相关报道文章.为解决g ...

  8. 吴恩达深度学习课程之第四门课 卷积神经网络 第二周 深度卷积网络

    本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai <深度学习课程 笔记 (V5.1 )> 第二周 深度卷积网络 2.1 为什么要进行实例探究?(Why look at ...

  9. 吴恩达深度学习课程笔记之卷积神经网络(2nd week)

    0 参考资料 [1]  大大鹏/Bilibili资料 - Gitee.com [2] [中英字幕]吴恩达深度学习课程第四课 - 卷积神经网络_哔哩哔哩_bilibili [3]  深度学习笔记-目录 ...

  10. 吴恩达 深度学习1 2022, 浙大AI第一课

    强推![浙大公开课]2022B站最好最全的机器学习课程,从入门到实战!人工智能/AI/机器学习/数学基础_哔哩哔哩_bilibili 我们规定了行为和收益函数后,就不管了,构造一个算法,让计算机自己去 ...

最新文章

  1. Android 内存管理 amp;Memory Leak amp; OOM 分析
  2. 基于python的大数据分析实战学习笔记-pandas(数据分析包)
  3. php impload 展开,PHP implode()函数用法讲解
  4. 浅谈Java内存泄漏问题
  5. 去掉状态条并全屏_一个人住180㎡,大大的落地窗,足够的收纳,简洁又舒适,宅在家是她最享受的状态!...
  6. C++ STL简介(转)
  7. anaconda进出某个环境
  8. Asp.net Mvc使用PagedList分页
  9. php redis 签到,基于Redis位图实现用户签到功能
  10. matlab warp,matlab warpimg
  11. 【中秋快乐】求问meta-learning和few-shot learning的关系是什么?
  12. SD卡、TF卡坏道及容量检测
  13. 服务器如何安装center os7系统,centeros7安装教程
  14. 华为HCIE云计算培训笔记第3天
  15. 高端存储技术与应用趋势
  16. 网络嗅探器(影音神探) v4.63 绿色正式版http://down.hotlife.cn/html/download/2006/6/05/1149478572.shtml
  17. 【洛谷】P1427 小鱼的数字游戏
  18. 查看自己本地IP地址方法
  19. 用Matlab的.m脚本文件处理实验室数据
  20. 上个周末走访福州市2家软件公司,感受颇多,把经验分享给大家

热门文章

  1. 「消息队列」看过来!
  2. spring + redis 实现数据的缓存
  3. 深度学习(二十七)可视化理解卷积神经网络-ECCV 2014
  4. 深度学习(一)深度学习学习资料
  5. 人工智能:第七章 机器学习
  6. 编程面试的10大算法概念汇总
  7. 初探 es6 promise
  8. 从Apache Kafka 重温文件高效读写
  9. 选择列表中的列……无效,因为该列没有包含在聚合函数或 GROUP BY 子句中
  10. vCenter的安装与部署