自己主动编码线性解码器

自己主动编码线性解码器主要是考虑到稀疏自己主动编码器最后一层输出假设用sigmoid函数。因为稀疏自己主动编码器学习是的输出等于输入。simoid函数的值域在[0,1]之间,这就要求输入也必须在[0,1]之间。这是对输入特征的隐藏限制。为了解除这一限制,我们能够使最后一层用线性函数及a = z

习题答案:

SparseAutoEncoderLinerCost.m

function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...lambda, sparsityParam, beta, data)
% -------------------- YOUR CODE HERE --------------------
% Instructions:
%   Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your
%   earlier exercise onto this file, renaming the function to
%   sparseAutoencoderLinearCost, and changing the autoencoder to use a
%   linear decoder.
% -------------------- YOUR CODE HERE --------------------      % visibleSize: the number of input units (probably 64)
% hiddenSize: the number of hidden units (probably 25)
% lambda: weight decay parameter
% sparsityParam: The desired average activation for the hidden units (denoted in the lecture
%                           notes by the greek alphabet rho, which looks like a lower-case "p").
% beta: weight of sparsity penalty term
% data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. % The input theta is a vector (because minFunc expects the parameters to be a vector).
% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this
% follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);    %W1为25*64
W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);  % W2为64*25
b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);     % b1为25维
b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);              %b2为64维% Cost and gradient variables (your code needs to compute these values).
% Here, we initialize them to zeros.
cost = 0;
W1grad = zeros(size(W1));      %W1grad 为25*64
W2grad = zeros(size(W2));     %W2grad为64*25
b1grad = zeros(size(b1));      % 25   hidden
b2grad = zeros(size(b2));      %64   visible%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,
%                and the corresponding gradients W1grad, W2grad, b1grad, b2grad.
%
% W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.
% Note that W1grad has the same dimensions as W1, b1grad has the same dimensions
% as b1, etc.  Your code should set W1grad to be the partial derivative of J_sparse(W,b) with
% respect to W1.  I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b)
% with respect to the input parameter W1(i,j).  Thus, W1grad should be equal to the term
% [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2
% of the lecture notes (and similarly for W2grad, b1grad, b2grad).
%
% Stated differently, if we were using batch gradient descent to optimize the parameters,
% the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2.
% %1.forward propagation
data_size=size(data);           % [64, 10000]
active_value2=repmat(b1,1,data_size(2));    % 将b1扩展10000列 25*10000
active_value3=repmat(b2,1,data_size(2));    % 将b2扩展10000列 64*10000
active_value2=sigmoid(W1*data+active_value2);  %隐结点的值 矩阵表示全部的样本     25*10000 一列表示一个样本 hidden
active_value3=W2*active_value2+active_value3;   %输出结点的值 矩阵表示全部的样本  64*10000 一列表示一个样本 output
%2.computing error term and cost
ave_square=sum(sum((active_value3-data).^2)./2)/data_size(2);   %cost第一项  最小平方和
weight_decay=lambda/2*(sum(sum(W1.^2))+sum(sum(W2.^2)));         %cost第二项   全部參数的平方和 贝叶斯学派p_real=sum(active_value2,2)./data_size(2);       % 稀疏惩处项中的预计p 为25维
p_para=repmat(sparsityParam,hiddenSize,1);       %稀疏化參数
sparsity=beta.*sum(p_para.*log(p_para./p_real)+(1-p_para).*log((1-p_para)./(1-p_real)));   %KL diversion
cost=ave_square+weight_decay+sparsity;      % 终于的cost functiondelta3=(active_value3-data);      % 为error 是64*10000 矩阵表示全部的样本,每一列表示一个样本
average_sparsity=repmat(sum(active_value2,2)./data_size(2),1,data_size(2));  %求error中的稀疏项
default_sparsity=repmat(sparsityParam,hiddenSize,data_size(2));     %稀疏化參数
sparsity_penalty=beta.*(-(default_sparsity./average_sparsity)+((1-default_sparsity)./(1-average_sparsity)));
delta2=(W2'*delta3+sparsity_penalty).*((active_value2).*(1-active_value2));  %error 是25*10000 矩阵表示全部的样本,每一列表示一个样本
%3.backword propagation
W2grad=delta3*active_value2'./data_size(2)+lambda.*W2;      % 梯度 为64*25
W1grad=delta2*data'./data_size(2)+lambda.*W1;          %梯度 为25*64
b2grad=sum(delta3,2)./data_size(2);           %64   visible
b1grad=sum(delta2,2)./data_size(2);          % 25   hidden%-------------------------------------------------------------------
% After computing the cost and gradient, we will convert the gradients back
% to a vector format (suitable for minFunc).  Specifically, we will unroll
% your gradient matrices into a vector.grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];                              end%-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients.  This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x)sigm = 1 ./ (1 + exp(-x));
end

处理大型图像

处理大型图像主要採用的是卷积和池化。卷积来源于自然图像有其固有特性,也就是说,图像的一部分的统计特性与其它部分是一样的。

这也意味着我们在这一部分学习的特征也能用在还有一部分上,所以对于这个图像上的全部位置,我们都能使用相同的学习特征。过程是首先须要用无标签的数据对图像进行训练得到一个稀疏自编码器。这种參数就是hidden*inputlayer 的矩阵。对每个1*inputlayer的參数w与大图像做卷积。

卷积的计算过程是,该层每一个feature map的卷积核与输入图像的三通道做卷积。然后结果相加,再加上偏置參数,再取sigmoid函数,结果作为该feature map。

池化主要考虑卷积得到的特征过多易产生过拟合。然图像具有一种“静态性”的属性,意味着在一个图像区域实用的特征极有可能在另外一个区域相同适用,因此我们能够对不同位置的特征进行聚合统计(平均池化和最大池化)。

池化的计算过程,为在上一层feature map的p*q区域内取均值或者最大值。

对于一副m*n大小图像,设k为隐结点的数量,a*b为输入结点数量,那么通过卷积后会得到k*(m-a+1)*(n-b+1)维的特征向量。设[p,q]为pooling窗体的大小,那么pooling后特征维数就为k*(m-a+1)/p *(n-b+1)/q

训练:卷积神经网络的训练能够採用BP,用到的都是有监督学习。公式推导见这篇blog:http://blog.csdn.net/lu597203933/article/details/46575871。。

这里提供了第二种思路,在线性解码器的练习中。用8*8的小图片(大图片上随机裁剪的)训练稀疏自编码器,当中有400个隐藏层,针对于大图片,400就相当于feature map的个数,隐藏层的每一个结点參数(1*192 = 8*8*3, 3为通道数)就相应一个卷积核。

然后将训练得到的卷积核用于大图片上(64*64*3).

习题答案

cnnConvolve.m

function convolvedFeatures = cnnConvolve(patchDim, numFeatures, images, W, b, ZCAWhite, meanPatch)  % patcheDim =8  numFeatures = hidden images
%cnnConvolve Returns the convolution of the features given by W and b with
%the given images
%
% Parameters:
%  patchDim - patch (feature) dimension
%  numFeatures - number of features
%  images - large images to convolve with, matrix in the form
%           images(r, c, channel, image number)
%  W, b - W, b for features from the sparse autoencoder
%  ZCAWhite, meanPatch - ZCAWhitening and meanPatch matrices used for
%                        preprocessing
%
% Returns:
%  convolvedFeatures - matrix of convolved features in the form
%                      convolvedFeatures(featureNum, imageNum, imageRow, imageCol)numImages = size(images, 4);
imageDim = size(images, 1);        %% = 64
imageChannels = size(images, 3);convolvedFeatures = zeros(numFeatures, numImages, imageDim - patchDim + 1, imageDim - patchDim + 1);% Instructions:
%   Convolve every feature with every large image here to produce the
%   numFeatures x numImages x (imageDim - patchDim + 1) x (imageDim - patchDim + 1)
%   matrix convolvedFeatures, such that
%   convolvedFeatures(featureNum, imageNum, imageRow, imageCol) is the
%   value of the convolved featureNum feature for the imageNum image over
%   the region (imageRow, imageCol) to (imageRow + patchDim - 1, imageCol + patchDim - 1)
%
% Expected running times:
%   Convolving with 100 images should take less than 3 minutes
%   Convolving with 5000 images should take around an hour
%   (So to save time when testing, you should convolve with less images, as
%   described earlier)% -------------------- YOUR CODE HERE --------------------
% Precompute the matrices that will be used during the convolution. Recall
% that you need to take into account the whitening and mean subtraction
% stepsWT = W*ZCAWhite;    % 能够看exercise中的推导
b_mean = b - WT * meanPatch;% --------------------------------------------------------
patchSize = patchDim * patchDim;convolvedFeatures = zeros(numFeatures, numImages, imageDim - patchDim + 1, imageDim - patchDim + 1);
for imageNum = 1:numImagesfor featureNum = 1:numFeatures% convolution of image with feature matrix for each channelconvolvedImage = zeros(imageDim - patchDim + 1, imageDim - patchDim + 1);for channel = 1:imageChannels% Obtain the feature (patchDim x patchDim) needed during the convolution% ---- YOUR CODE HERE ----feature = zeros(8,8); % You should replace thisoffset = (channel -1) * patchSize;feature = reshape(WT(featureNum, offset+1 : offset+patchSize), patchDim, patchDim);% ------------------------% Flip the feature matrix because of the definition of convolution, as explained laterfeature = flipud(fliplr(squeeze(feature)));% Obtain the imageim = squeeze(images(:, :, channel, imageNum));% Convolve "feature" with "im", adding the result to convolvedImage% be sure to do a 'valid' convolution% ---- YOUR CODE HERE ----convolvedoneChannel = conv2(im, feature, 'valid');    %卷积操作convolvedImage = convolvedImage + convolvedoneChannel;    %三通道相加% ------------------------end% Subtract the bias unit (correcting for the mean subtraction as well)% Then, apply the sigmoid function to get the hidden activation% ---- YOUR CODE HERE ----convolvedIamge = sigmoid(convolvedImage + b_mean(featureNum));    %最后的取值为sigmoid函数得到的结果% ------------------------% The convolved feature is the sum of the convolved values for all channelsconvolvedFeatures(featureNum, imageNum, :, :) = convolvedImage;end
endendfunction sigm = sigmoid(x)sigm = 1./(1+exp(-x));
end

cnnPool.m

function pooledFeatures = cnnPool(poolDim, convolvedFeatures)
%cnnPool Pools the given convolved features
%
% Parameters:
%  poolDim - dimension of pooling region
%  convolvedFeatures - convolved features to pool (as given by cnnConvolve)
%                      convolvedFeatures(featureNum, imageNum, imageRow, imageCol)
%
% Returns:
%  pooledFeatures - matrix of pooled features in the form
%                   pooledFeatures(featureNum, imageNum, poolRow, poolCol)
%     numImages = size(convolvedFeatures, 2);
numFeatures = size(convolvedFeatures, 1);
convolvedDim = size(convolvedFeatures, 3);resultDim  = floor(convolvedDim / poolDim);
pooledFeatures = zeros(numFeatures, numImages, resultDim, resultDim);% -------------------- YOUR CODE HERE --------------------
% Instructions:
%   Now pool the convolved features in regions of poolDim x poolDim,
%   to obtain the
%   numFeatures x numImages x (convolvedDim/poolDim) x (convolvedDim/poolDim)
%   matrix pooledFeatures, such that
%   pooledFeatures(featureNum, imageNum, poolRow, poolCol) is the
%   value of the featureNum feature for the imageNum image pooled over the
%   corresponding (poolRow, poolCol) pooling region
%   (see http://ufldl/wiki/index.php/Pooling )
%
%   Use mean pooling here.
% -------------------- YOUR CODE HERE --------------------for imageNum = 1:numImagesfor featureNum = 1:numFeaturesfor poolRow = 1:resultDimoffsetRow = 1+(poolRow-1)*poolDim;for poolCol = 1:resultDimoffsetCol = 1 + (poolCol-1)*poolDim;patch = convolvedFeatures(featureNum, imageNum, offsetRow:offsetRow+poolDim-1, offsetCol:offsetCol+poolDim-1);pooledFeatures(featureNum, imageNum, poolRow, poolCol) = mean(patch(:));endendend
endend

cnnExercise.m

%% CS294A/CS294W Convolutional Neural Networks Exercise%  Instructions
%  ------------
%
%  This file contains code that helps you get started on the
%  convolutional neural networks exercise. In this exercise, you will only
%  need to modify cnnConvolve.m and cnnPool.m. You will not need to modify
%  this file.%%======================================================================
%% STEP 0: Initialization
%  Here we initialize some parameters used for the exercise.imageDim = 64;         % image dimension
imageChannels = 3;     % number of channels (rgb, so 3)patchDim = 8;          % patch dimension
numPatches = 50000;    % number of patchesvisibleSize = patchDim * patchDim * imageChannels;  % number of input units
outputSize = visibleSize;   % number of output units
hiddenSize = 400;           % number of hidden units epsilon = 0.1;          % epsilon for ZCA whiteningpoolDim = 19;          % dimension of pooling region%%======================================================================
%% STEP 1: Train a sparse autoencoder (with a linear decoder) to learn
%  features from color patches. If you have completed the linear decoder
%  execise, use the features that you have obtained from that exercise,
%  loading them into optTheta. Recall that we have to keep around the
%  parameters used in whitening (i.e., the ZCA whitening matrix and the
%  meanPatch)% --------------------------- YOUR CODE HERE --------------------------
% Train the sparse autoencoder and fill the following variables with
% the optimal parameters:optTheta =  zeros(2*hiddenSize*visibleSize+hiddenSize+visibleSize, 1);
ZCAWhite =  zeros(visibleSize, visibleSize);
meanPatch = zeros(visibleSize, 1);load STL10Features.mat;% --------------------------------------------------------------------% Display and check to see that the features look good
W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize);
b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);displayColorNetwork( (W*ZCAWhite)');%%======================================================================
%% STEP 2: Implement and test convolution and pooling
%  In this step, you will implement convolution and pooling, and test them
%  on a small part of the data set to ensure that you have implemented
%  these two functions correctly. In the next step, you will actually
%  convolve and pool the features with the STL10 images.%% STEP 2a: Implement convolution
%  Implement convolution in the function cnnConvolve in cnnConvolve.m% Note that we have to preprocess the images in the exact same way
% we preprocessed the patches before we can obtain the feature activations.load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels%% Use only the first 8 images for testing
convImages = trainImages(:, :, :, 1:8); % NOTE: Implement cnnConvolve in cnnConvolve.m first!
convolvedFeatures = cnnConvolve(patchDim, hiddenSize, convImages, W, b, ZCAWhite, meanPatch);%% STEP 2b: Checking your convolution
%  To ensure that you have convolved the features correctly, we have
%  provided some code to compare the results of your convolution with
%  activations from the sparse autoencoder% For 1000 random points
for i = 1:1000    featureNum = randi([1, hiddenSize]);imageNum = randi([1, 8]);imageRow = randi([1, imageDim - patchDim + 1]);imageCol = randi([1, imageDim - patchDim + 1]);    patch = convImages(imageRow:imageRow + patchDim - 1, imageCol:imageCol + patchDim - 1, :, imageNum);patch = patch(:);            patch = patch - meanPatch;patch = ZCAWhite * patch;features = feedForwardAutoencoder(optTheta, hiddenSize, visibleSize, patch); if abs(features(featureNum, 1) - convolvedFeatures(featureNum, imageNum, imageRow, imageCol)) > 1e-9fprintf('Convolved feature does not match activation from autoencoder\n');fprintf('Feature Number    : %d\n', featureNum);fprintf('Image Number      : %d\n', imageNum);fprintf('Image Row         : %d\n', imageRow);fprintf('Image Column      : %d\n', imageCol);fprintf('Convolved feature : %0.5f\n', convolvedFeatures(featureNum, imageNum, imageRow, imageCol));fprintf('Sparse AE feature : %0.5f\n', features(featureNum, 1));       error('Convolved feature does not match activation from autoencoder');end
enddisp('Congratulations! Your convolution code passed the test.');%% STEP 2c: Implement pooling
%  Implement pooling in the function cnnPool in cnnPool.m% NOTE: Implement cnnPool in cnnPool.m first!
pooledFeatures = cnnPool(poolDim, convolvedFeatures);%% STEP 2d: Checking your pooling
%  To ensure that you have implemented pooling, we will use your pooling
%  function to pool over a test matrix and check the results.testMatrix = reshape(1:64, 8, 8);
expectedMatrix = [mean(mean(testMatrix(1:4, 1:4))) mean(mean(testMatrix(1:4, 5:8))); ...mean(mean(testMatrix(5:8, 1:4))) mean(mean(testMatrix(5:8, 5:8))); ];testMatrix = reshape(testMatrix, 1, 1, 8, 8);pooledFeatures = squeeze(cnnPool(4, testMatrix));if ~isequal(pooledFeatures, expectedMatrix)disp('Pooling incorrect');disp('Expected');disp(expectedMatrix);disp('Got');disp(pooledFeatures);
elsedisp('Congratulations! Your pooling code passed the test.');
end%%======================================================================
%% STEP 3: Convolve and pool with the dataset
%  In this step, you will convolve each of the features you learned with
%  the full large images to obtain the convolved features. You will then
%  pool the convolved features to obtain the pooled features for
%  classification.
%
%  Because the convolved features matrix is very large, we will do the
%  convolution and pooling 50 features at a time to avoid running out of
%  memory. Reduce this number if necessarystepSize = 50;
assert(mod(hiddenSize, stepSize) == 0, 'stepSize should divide hiddenSize');load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels
load stlTestSubset.mat  % loads numTestImages,  testImages,  testLabelspooledFeaturesTrain = zeros(hiddenSize, numTrainImages, ...floor((imageDim - patchDim + 1) / poolDim), ...floor((imageDim - patchDim + 1) / poolDim) );
pooledFeaturesTest = zeros(hiddenSize, numTestImages, ...floor((imageDim - patchDim + 1) / poolDim), ...floor((imageDim - patchDim + 1) / poolDim) );tic();for convPart = 1:(hiddenSize / stepSize)featureStart = (convPart - 1) * stepSize + 1;featureEnd = convPart * stepSize;fprintf('Step %d: features %d to %d\n', convPart, featureStart, featureEnd);  Wt = W(featureStart:featureEnd, :);bt = b(featureStart:featureEnd);    fprintf('Convolving and pooling train images\n');convolvedFeaturesThis = cnnConvolve(patchDim, stepSize, ...trainImages, Wt, bt, ZCAWhite, meanPatch);pooledFeaturesThis = cnnPool(poolDim, convolvedFeaturesThis);pooledFeaturesTrain(featureStart:featureEnd, :, :, :) = pooledFeaturesThis;   toc();clear convolvedFeaturesThis pooledFeaturesThis;fprintf('Convolving and pooling test images\n');convolvedFeaturesThis = cnnConvolve(patchDim, stepSize, ...testImages, Wt, bt, ZCAWhite, meanPatch);pooledFeaturesThis = cnnPool(poolDim, convolvedFeaturesThis);pooledFeaturesTest(featureStart:featureEnd, :, :, :) = pooledFeaturesThis;   toc();clear convolvedFeaturesThis pooledFeaturesThis;end% You might want to save the pooled features since convolution and pooling takes a long time
save('cnnPooledFeatures.mat', 'pooledFeaturesTrain', 'pooledFeaturesTest');
toc();%%======================================================================
%% STEP 4: Use pooled features for classification
%  Now, you will use your pooled features to train a softmax classifier,
%  using softmaxTrain from the softmax exercise.
%  Training the softmax classifer for 1000 iterations should take less than
%  10 minutes.% Add the path to your softmax solution, if necessary
% addpath /path/to/solution/% Setup parameters for softmax
softmaxLambda = 1e-4;
numClasses = 4;
% Reshape the pooledFeatures to form an input vector for softmax
softmaxX = permute(pooledFeaturesTrain, [1 3 4 2]);
softmaxX = reshape(softmaxX, numel(pooledFeaturesTrain) / numTrainImages,...numTrainImages);
softmaxY = trainLabels;options = struct;
options.maxIter = 200;
softmaxModel = softmaxTrain(numel(pooledFeaturesTrain) / numTrainImages,...numClasses, softmaxLambda, softmaxX, softmaxY, options);%%======================================================================
%% STEP 5: Test classifer
%  Now you will test your trained classifer against the test imagessoftmaxX = permute(pooledFeaturesTest, [1 3 4 2]);
softmaxX = reshape(softmaxX, numel(pooledFeaturesTest) / numTestImages, numTestImages);
softmaxY = testLabels;[pred] = softmaxPredict(softmaxModel, softmaxX);
acc = (pred(:) == softmaxY(:));
acc = sum(acc) / size(acc, 1);
fprintf('Accuracy: %2.3f%%\n', acc * 100);% You should expect to get an accuracy of around 80% on the test images.

终于得到的准确率为80.406%

UFLDL教程笔记及练习答案五(自编码线性解码器与处理大型图像**卷积与池化)...相关推荐

  1. UFLDL教程笔记及练习答案三(Softmax回归与自我学习***)

    UFLDL教程笔记及练习答案三(Softmax回归与自我学习***) 1:softmax回归 当p(y|x,theta)满足多项式分布,通过GLM对其进行建模就能得到htheta(x)关于theta的 ...

  2. 卷积和池化matlab 实现,UFLDL新版教程与编程练习(七):Convolution and Pooling(卷积和池化)...

    UFLDL是吴恩达团队编写的较早的一门深度学习入门,里面理论加上练习的节奏非常好,每次都想快点看完理论去动手编写练习,因为他帮你打好了整个代码框架,也有详细的注释,所以我们只要实现一点核心的代码编写工 ...

  3. 深度学习笔记(一):卷积层+池化层+激活函数+全连接层

    写在前面:大家好!我是[AI 菌],一枚爱弹吉他的程序员.我热爱AI.热爱分享.热爱开源! 这博客是我对学习的一点总结与记录.如果您也对 深度学习.机器视觉.算法.Python.C++ 感兴趣,可以关 ...

  4. 深度学习笔记 5 卷积、池化

    目录 1. 卷积 1.1 卷积的目的 1.2 卷积的基本属性 1.3 卷积的特点 2. 卷积分类与计算 2.1 标准卷积 2.2 反卷积(转置卷积) ​2.3 空洞卷积 2.4 深度可分离卷积 2.5 ...

  5. 斯坦福大学UFLDL教程列表

    UFLDL教程 说明:本教程将阐述无监督特征学习和深度学习的主要观点.通过学习,你也将实现多个功能学习/深度学习算法,能看到它们为你工作,并学习如何应用/适应这些想法到新问题上. 本教程假定机器学习的 ...

  6. Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)...

    前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...

  7. 人工智能数学课高等数学线性微积分数学教程笔记(1. 数学内容概述)

    前言 对人工智能数学课高等数学线性微积分数学教程的学习笔记.主要用于快速回忆已学的数学知识点,不适合基础学习.博客园中同步更新. 文章目录 人工智能数学课高等数学线性微积分数学教程笔记(目录) 人工智 ...

  8. 人工智能数学课高等数学线性微积分数学教程笔记(2. 一元函数微分学)

    前言 对人工智能数学课高等数学线性微积分数学教程的学习笔记.主要用于快速回忆已学的数学知识点,不适合基础学习.博客园中同步更新. 文章目录 人工智能数学课高等数学线性微积分数学教程笔记(目录) 人工智 ...

  9. 人工智能数学课高等数学线性微积分数学教程笔记(3. 线性代数基础)

    前言 对人工智能数学课高等数学线性微积分数学教程的学习笔记.主要用于快速回忆已学的数学知识点,不适合基础学习.博客园中同步更新. 文章目录 人工智能数学课高等数学线性微积分数学教程笔记(目录) 人工智 ...

  10. 人工智能数学课高等数学线性微积分数学教程笔记(4. 多元函数的微分学)

    前言 对人工智能数学课高等数学线性微积分数学教程的学习笔记.主要用于快速回忆已学的数学知识点,不适合基础学习.博客园中同步更新. 文章目录 人工智能数学课高等数学线性微积分数学教程笔记(目录) 人工智 ...

最新文章

  1. pycharm如何修改背景成护眼色和字体大小
  2. 分享一个数据库工具DTOOLS
  3. 复习宝典之Maven项目管理
  4. Linux基础知识part3
  5. 详解链表在前端的应用,顺便再弄懂原型和原型链!
  6. linux-buff/cache过大导致内存不足-程序异常
  7. MFC制作简易音乐播放器
  8. sql管理器指定服务器名字,如何修改sql server 服务管理器 服务器名称
  9. 数组遍历,判断数组中的对象中某一属性值时候为空
  10. 黑马品优购项目的总结二
  11. 详解PWM原理、频率与占空比
  12. 网站优化加速经验总结
  13. 软件测试环境的搭建及详解
  14. excel文件无法打印提示内存不足_Mac应用程序无法打开提示不明开发者或文件损坏的处理方法...
  15. 5-6 uniapp 图片压缩
  16. 电脑使用技巧提升篇8:Office数据文件加密(以Word文档加密为例)
  17. css书写顺序规范---规范书写很重要
  18. vue2的生命周期函数
  19. 【Android】动态获取当前背景图,根据背景图色动态改变字体颜色
  20. 把数据库中的数据写出到excel表格中

热门文章

  1. Atiitt 项目 产品 实现的目标
  2. Atitit 软件开发中 瓦哈比派的核心含义以及修行方法以及对我们生活与工作中的指导意义
  3. atitit.报表最佳实践oae 与报表引擎选型
  4. Atitit.实现反向代理(1)----url rewrite 配置and内容改写 and -绝对路径链接改写 java php
  5. (转)密码学研究与区块链实践应该打破隔空喊话
  6. 5天玩转C#并行和多线程编程 —— 第二天 并行集合和PLinq
  7. 重磅预告!企业上云的正确姿势
  8. 【特征提取】基于matlab一帧语音共振峰提取【含Matlab源码 1768期】
  9. 【优化求解】基于matlab粒子群与遗传算法混合算法求解切削参数优化问题(以成本和碳排放量为目标函数)【含Matlab源码 1619期】
  10. 【优化算法】混合蛙跳优化算法(SFLA)【含Matlab源码 1472期】