**

  • -

雷达(微波)感应天线设计

**
一、 原理简介:

1. 主要功能与原理:如上图所示,上图是雷达感应开关模块的感应板的电路原理图,由集电极外PCB两层铜箔间的电容、三极管内阻、寄生电容等构成RC震荡电路,该震荡电路震荡产生高频信号,经过三极管放大,再经过围绕PCB三边的天线发射出去。发射的2.4-3.2GHz的微波信号如果遇到移动物体,则反射波相对发射波就会有相位变化,回型天线接收到反射信号,反射波与发射信号的相位移频就会以3-20MHz左右的低频输出(P4),该信号再由后级运放放大,驱动继电器,从而由继电器控制灯光。另外,中间也可以加上光敏二极管检测昼夜光线,作为夜间条件下控制输出的前提条件。
2. 发射频率:RC振荡电路的频率f=1/2πRC,公式中的R是原理图中三极管的输入阻抗,C是PCB上三极管集电极基极引线正反面铜箔之间的电容以及三极管寄生电容组成的总电容。该电容量公式为C=εS/d,式中ε为介质(在这里就是指的PCB板材的介电常数),S为PCB极板面积,d为极板间距也就是PCB厚度。
3. 接收:通过回型天线接收反射回来的雷达波,如果发射与接收波之间有相位移频,则输出低频信号P4。
4. 发射避开公共频段又不能过高:因为3G和4G手机信号和WIFI信号的频率范围在1.8-2.4GHz,模块的工作频率尽可能避开这个频段,避免相互干扰。一般的发射频率2.5GHz左右最佳,频率过高,则高频三极管增益降低,感应距离近。发射频率同天线部分PCB线路板尺寸大小、厚度、布线、三极管输入阻抗与电容等有关。
5. 发射频率与发射信号强度:如果有频谱仪测试发射天线端的发射信号,可以测试到发射频点及其发射信号幅度。发射信号强度越大,感应距离越远。但是,高频三极管来说,随着频率的增加,其增益逐渐降低,发射的信号强度也就降低。另外,同一个频率,三极管的特征频率fT越大,其高频增益就越高,感应距离也就越远,所以,最好设计调整PCB,将频点做到2.4GHz。
6. 接收灵敏度:同样频率,高频三极管对高频信号的fT越大,高频增益越高,接收的移频信号输出幅度越大,感应灵敏度就越高,感应距离就越远。适当调整后级运放的放大倍数也可以调整感应距离,但是,如果单纯的提高后级运放的倍数,虽然感应较远距离,但会将小幅度的其它干扰信号也放大输出,造成误报。
影响感应距离的几个因素:A .发射天线板的尺寸,该尺寸越大,天线越长,则感应距离越远。B .高频三极管的特征频率越高,其高频增益越大,感应距离也就越远。C.后级运放的放大倍数适当的高,其对输出的移频信号放大的幅度大。D.发射频率最好在标准规范的2.4GHz。高频三极管的增益会随着频率的增大而降低降低,频点太高,发射信号功率降低、接收灵敏度也降低。
如果调试得当,使用9GHz的高频三极管的,天线板尺寸在20*30mm左右时,感应距离会在3-5米。天线尺寸在30*40mm左右,感应距离会到8-10米。天线尺寸到40*50mm最远感应距离会达到20米左右。如果你想在此基础上降低感应距离,可以调整降低后面放大板上的运算放大器的增益,或者改变输入的驱动电平,来满足不同感应距离的要求。
7. 发射天线:围绕天线板3边,用于将本振频率信号发射出去,天线板尺寸越大,该天线越长,则发射信号越强,发射距离越远,感应距离也就越远,但是,这个发射天线又不能形成四边闭环。天线对电源之间的4个电容主要是对与发射频率相同、从电源串扰进来的其它模块的信号与WIFI信号屏蔽滤波,如果出现串扰,请调整电容容量或者数量,使得滤波频点同本板发射频率相同。
8. 感应信号放大灯光控制:原理图中,通过P4输出感应信号SING OUT到后面的放大电路,将该信号通过运放放大,再去控制光源。为了避免被干扰误报,建议在后级放大电路中采用带有运放功能的CPU,植入信号判断程序,从而将其它非感应信号滤除并加入不同状态的灯光控制,提高抗干扰能力。
9. 回型天线:发射极外的回型天线接收反射信号,为了使反射信号有效穿过回型天线,回型天线后面不敷设覆铜板。另外,回型天线只需要一个正弦波形就可以。还可以通过适当加宽回型天线线宽、加大波形幅度,并且在线上密布过孔来提高感应信号强度和灵敏度(注意:PCB三边和回型天线上的过孔一定要满镀锡或者镀化学金,以加强发射接收信号的强度)。
10. 基极外去耦合铜箔天线:基极B外那个长方形天线(基极与R3之间的矩形铜箔天线)用作与其背面的PCB覆铜板形成的电容退耦合。该去耦尺寸太小,则退耦没做好,感应距离很差并不稳定,如果尺寸过大,又会持续输出感应信号,一般24*33mm的天线板的去耦合天线尺寸在3*8mm,如果天线尺寸大于或者小于24*33mm,则该去耦天线同比例增加或者缩小面积。这个去耦天线的形状还与感应方向性(水平还是垂直)有关系,设计成长条形状,则是垂直于PCB板的感应距离近,水平于PCB方向的感应距离远。如果想水平与垂直的感应距离相等,则可以设计成方形的,但是面积不要变。
11. 发射极引出的线条要适当宽长一些,这个线条以及基极外去耦合铜箔与背面铜箔之间的电容,是发射振荡电路的电容,电容大小调整,也会调整发射频点。

注意以下关键选型参数:
12. 高频三极管:最好采用特征频率f T为9GHz以上的高频三极管,f T越高,其在高频微波频段的高频增益就越高,具体到使用中,f T越高,其发射信号幅度就越强、接收感应微弱微波信号越灵敏,感应的距离就越远BFS520-SOT323-N2t与PRF947-SOT323-7N是9GHz的高频三极管,BFR370F、BFR360F、BFG340F是f T为12GHz的高频三极管。另外,尽可能的采用SOT323封装的芯片。因为SOT323同SOT23相比较,SOT323封装的芯片固定在引线框架的背面(见右图),可以屏蔽正面过来的干扰波。并且,在PCB布线时,在高频三极管的背面要敷设覆铜板,挡住背面进来的反射波,提高三极管的抗干扰能力。
13. 下雨受潮报警:该产品发射的是厘米波,波长较短,任何微波雷达在下雨时都容易被雨折射反射,所以,下雨时,检测信号有可能有输出。另外,PCB受潮也会造成板材的介电常数变化,板间电容变化,发射频点变化,因而PCB正反面要涂油防潮。
14. PCB板材:最好采用高频板材的介电常数适当稳定的普通板材(高频板材成本价格太高),开始做实验投板时,最好多选用厚度1.2mm、1.0mm的板材,从而可能得到不同分布电容的PCB,也会得到不同的发射频率和感应距离,最终从中选用最佳的。另外,PCB板材要用品质因数高,并且一定要稳定(否则频率漂移并逐渐感应距离近)。
二、 调试建议:
1. 发射频率过低(低于2.4GHz以下的话,抗干扰能力就差,反射能力差,感应距离会时远时近,产生误报。请调节发射信号震荡电路集电极与基极外铜箔面积和接收信号电路或者PCB的板材厚度,改变发射频率。(用3GHz以上的频谱仪可以直观的测试发射接收信号的频谱与幅度)。
2. 感应距离近:发射天线太短、线宽太窄、过孔没有金属化,接收天线尺寸小,其相应的发射信号强度和接收灵敏度就低,感应距离就近。
3. 振荡电路中的阻容器件的均匀性、一致性、温度稳定性要好一些,建议使用优质温飘小的精密电阻、电容。
4. 一点也不感应:A.可能是你的振荡电路没有起振,调整发射频率震荡电路,满足起振条件。B.可能是高频三极管的f T太低,对高频信号的放大增益太小,至少要使用f T大于9GHz的高频三极管。C.天线板尺寸太小,天线太短,发射信号太弱。D.三极管的偏置电路有问题,进入截止区或者饱和区。
5. 相互串扰:直流的电源对微波波段的滤波不好,造成其它信号源以及间隔近的模块之间的微波信号通过电源串进来,产生周围杂波的干扰,会误感应而持续亮灯、感应距离近。不要用整流二极管简单整流供电,而要采用电源稳压器芯片稳压后供电,并且要调整四个滤波电容对外来同本板发射频点相同的高频信号滤波。
6. 后级运放放大:大家大多使用的之前红外声光控开关上的运放BISS0001。
最好使用带有运放的单片机,并在单片机里面植入对感应信号判断的程序,
这样,就会判断去除串扰杂波信号和非感应信号,还能通过感应信号幅度变化来判断人体与汽车是由远及近再由近到远,还是由远及近到灯下不走,这样可以更人性化的延时控制灯光。
7. 3.3V供电:使用3.3V供电,就要将高频三极管的偏置做调整,提高基极与集电极的偏置压降,以尽可能提高高频三极管的工作点,避免因为电压降低而造成的发射功率降低。
大家使用的原理图都一样,做出来的产品的感应距离却不同,原因就是:PCB的布线产生的分布参数、元器件板材的采用、电源滤波、PCB尺寸、厚度等因素对产品的影响非常大。

若有更加深入专研的欢迎指点留言一起学习。谢谢!

                                                                        Lester  网络寻剑2016-6-18

雷达(微波)感应天线设计相关推荐

  1. 智能家居领域技术应用,微波雷达人体感应模块,雷达传感器方案

    雷达感知是一种无线感知技术,通过分析接收到的目标回波特性,提取并发现目标的位置.形状.运动特性和运动轨迹,作用类似于人类的眼睛和耳朵. 与其它传感器相比,雷达模块感应具有许多独特的优势.例如,与视觉传 ...

  2. 346雷达有多少tr组件_有源相控阵的天线设计的核心:T/R组件

    有源相控阵天线设计的核心是T/R组件.T/R组件设计考虑的主要因素有:不同形式集成电路的个数,功率输出的高低,接收的噪声系数大小,幅度和相位控制的精度.同时,辐射单元阵列形式的设计也至关重要. 1 芯 ...

  3. 基于Matlab的天线阵列综合 微波与电磁场 计算成像 波束赋形 相控阵 阵列天线设计

    基于Matlab的天线阵列综合 微波与电磁场 计算成像 波束赋形 相控阵 阵列天线设计 ID:27120641446494948理查德椰子

  4. 角雷达“突破”天线设计瓶颈,巨大增量市场机会爆发

    毫米波雷达正在受益整车搭载数量提升的利好,其中,和前向雷达(市场份额集中于少数几家)不同,角雷达市场份额集中度相对较低,量产供应商数量也更多. 近年来角雷达(盲区预警及变道辅助)搭载率也呈现快速上升趋 ...

  5. 微波雷达人体感应开关模块 智能感应探测器 XBG-M555

    一.概括 XBG-M555是一款采用多普勒雷达技术,专门检测物体移动的微波感应模块.采用2.9G微波信号检测,该模块具有灵敏度高,可靠性强,感应角度大,工作电压宽等特点.高电平输出,可直接驱动外部 L ...

  6. 5.8G存在感应雷达模块,雷达智能感应灯应用,多普勒雷达技术发展

    微波雷达感应也叫雷达感应,是运用多普勒效应,在人和物运动前后的波长和频率发生改变,通过感应检测这种变化来达到控制的功能,从而实现自动开和关的功能. 雷达感应模块是一款自动感应控制产品,灵敏度高,感应距 ...

  7. 天线设计中的磁介质材料 探索可重构潜力

    ​from:IEEE Antennas & Propagation Magazine (Vol. 61 / No. 1 / Feb. 2019, pp:29-40) -- 文 前 -- 这篇文 ...

  8. pcb天线和纯铜天线_如何简化天线设计?相控阵波束成形IC来助您

    为提高性能,无线通信和雷达系统对天线架构的需求不断增长.只有那些功耗低于传统机械操纵碟形天线的天线才能实现许多新的应用.除了这些要求以外,还需要针对新的威胁或新的用户快速重新定位,传输多个数据流,并以 ...

  9. 微波感应模块电路图_关于人体感应灯,你不知道的“冷”知识

    早些年前,人体感应灯大多应用在小区楼道,公共洗手间等场所,"人来灯亮,人走灯灭",使他们在生活中极为常见. 近几年来,智能人体感应灯越来越多的应用到家庭生活中,给我们的生活带来很多 ...

  10. 阵列天线相位加权 matlab,相控阵波束赋形,阵列天线设计实例

    为了提高无线通信和雷达系统的性能,对天线架构的需求在不断增长.相比于传统的机械控制抛物面天线,在新型应用中需要功耗更小,剖面更低的天线.除了这些需求之外,还需要快速重新定位到新的威胁或用户,传输多个通 ...

最新文章

  1. Hadoop-虚拟机环境准备
  2. SANS:2014年安全分析与安全智能调研报告
  3. 遥感图像处理-阴影检测
  4. 《Spring设计思想》AOP设计思想与原理(图文并茂)
  5. [linux命令技巧] mkdir -p
  6. java yml value_Spring Boot:从YAML文件加载@Value
  7. matlab中x从0到5不含0,关于MATLAB的数学建模算法学习笔记
  8. 自然语言处理工具HanLP被收录中国大数据产业发展的创新技术新书《数据之翼》...
  9. 动图展示16个Sublime Text快捷键用法 ---------------物化的sublime
  10. 一个类似权限挂载的设计
  11. BatchPhoto Pro for Mac(照片批量处理软件)
  12. PHP多功能自动发卡平台源码 带手机版 带多套商户模板
  13. TM Forum的TAM中文架构图
  14. ijkplayer系列1:ijkplayer介绍
  15. 内部类有哪些好处?什么时候使用内部类
  16. Mariadb数据库之主从复制同步配置实战
  17. Appium 学习笔记 -- 1. 安装和验证
  18. 中国量化融业解金工计机计金领就指
  19. matlab mcr调用,mcr环境下,vs调用matlab,报错access violation
  20. 三角型角平分线与对边的交点

热门文章

  1. fgo服务器维护补偿什么时候才有,FGO11月02日临时维护公告 补偿奖励一览
  2. OSI常用网络协议(七层)
  3. xps13 9360黑苹果
  4. 实现OPEN 哈希表模板类
  5. SpringBoot及SpringCloud版本管理(Gradle版本)
  6. linux上多个CUDA切换使用(小白教程)
  7. 【Idea+Vim】Idea安装Vim插件/IdeaVim剪切板
  8. 回归模型1:优化的灰色模型matlab实现
  9. Manchester Reunited 网站设计报告 // 当初的课程论文,纯怀念了=v=
  10. php999换算人民币计算器,将cm换算为px (厘米换算为像素)