YUV

  做视频采集与处理,自然少不了要学会分析YUV数据。因为从采集的角度来说,一般的视频采集芯片输出的码流一般都是YUV数据流的形式,而从视频处理(例如H.264、MPEG视频编解码)的角度来说,也是在原始YUV码流进行编码和解析,所以,了解如何分析YUV数据流对于做视频领域的人而言,至关重要。YUV是指亮度参量和色度参量分开表示的像素格式,而这样分开的好处就是不但可以避免相互干扰,还可以降低色度的采样率而不会对图像质量影响太大。

人眼对色度的敏感程度要低于对亮度的敏感程度。

YUV,分为三个分量,“Y”表示明亮度(Luminance或Luma),也就是灰度值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。与我们熟知的RGB类似,YUV也是一种颜色编码方法,主要用于电视系统以及模拟视频领域,它将亮度信息(Y)与色彩信息(UV)分离,没有UV信息一样可以显示完整的图像,只不过是黑白的,这样的设计很好地解决了彩色电视机与黑白电视的兼容问题。并且,YUV不像RGB那样要求三个独立的视频信号同时传输,所以用YUV方式传送占用极少的频宽。

YUV码流有多种不同的格式,要分析YUV码流,就必须搞清楚你面对的到底是哪一种格式,并且必须搞清楚这种格式的YUV采样和分布情况。

  YUV格式有两大类:planar和packed。
  对于planar的YUV格式,先连续存储所有像素点的Y,紧接着存储所有像素点的U,随后是所有像素点的V。

  对于packed的YUV格式,每个像素点的Y,U,V是连续交叉存储的。

1.  采样方式

YUV码流的存储格式其实与其采样的方式密切相关,主流的采样方式有三种,YUV4:4:4,YUV4:2:2,YUV4:2:0,如何根据其采样格式来从码流中还原每个像素点的YUV值,因为只有正确地还原了每个像素点的YUV值,才能通过YUV与RGB的转换公式提取出每个像素点的RGB值,然后显示出来。

用三个图来直观地表示采集的方式吧,以黑点表示采样该像素点的Y分量,以空心圆圈表示采用该像素点的UV分量。

先记住下面这段话,以后提取每个像素的YUV分量会用到。

  1. YUV 4:4:4采样,每一个Y对应一组UV分量,每像素32位

  2. YUV 4:2:2采样,每两个Y共用一组UV分量,每像素16位

  3. YUV 4:2:0采样,每四个Y共用一组UV分量,每像素16位

平常所讲的YUV A:B:C的意思一般是指基于4个象素来讲,其中Y采样了A次,U采样了B次,V采样了C次.

YUV 格式可以分为打包格式packed format和平面格式planar format。打包格式将YUV分量存放在同一个数组中,通常是几个相邻的像素组成一个宏像素(macro-pixel);而平面格使用三个数组分开存放YUV三个分量,就像是一个三维平面一样。Packed format和planner format的区别在于,packed format中的YUV是混合在一起的,因此就有了UYVY、YUYV等等,他们在码流中排列的方式有所不同。而对于planner format每一个Y分量,U分量和V分量都是以独立的平面组织的,也就是说所有的U分量都在Y分量之后出现,而V分量在所有的U分量之后。就像三个大色块一样。

2.  存储方式

下面用图的形式给出常见的YUV码流的存储方式,并在存储方式后面附有取样每个像素点的YUV数据的方法,其中,Cb、Cr的含义等同于U、V。因为我们在实验中芷使用到YUV422的格式,这里只介绍这个,其他的可以去其他博文了找。

(1) YUYV 格式 (属于YUV422)

YUYV(YUY2)为YUV422采样的存储格式中的一种,相邻的两个Y共用其相邻的两个Cb(U)、Cr(V),分析,对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00,其他的像素点的YUV取值依次类推。YVYU(YVY2)也一样,只是UV的位置调换了一下,先V后U。

(2) UYVY 格式 (属于YUV422)

UYVY格式也是YUV422采样的存储格式中的一种,只不过与YUYV不同的是UV的排列顺序不一样而已,还原其每个像素点的YUV值的方法与上面一样。

(3) YUV422P(属于YUV422)

YUV422P也属于YUV422的一种,它是一种Plane模式,即打包模式,并不是将YUV数据交错存储,而是先存放所有的Y分量,然后存储所有的U(Cb)分量,最后存储所有的V(Cr)分量,如上图所示。其每一个像素点的YUV值提取方法也是遵循YUV422格式的最基本提取方法,即两个Y共用一个UV。比如,对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00。

以YUV420 planar数据为例, 以720×480大小图象YUV420 planar为例,

其存储格式是: 共大小为(720×480×3>>1)字节,

分为三个部分:Y,U和V

Y分量:    (720×480)个字节

U(Cb)分量:(720×480>>2)个字节

V(Cr)分量:(720×480>>2)个字节

三个部分内部均是行优先存储,三个部分之间是Y,U,V 顺序存储。

即YUV数据的0--720×480字节是Y分量值,

720×480--720×480×5/4字节是U分量

720×480×5/4 --720×480×3/2字节是V分量。

这里Y分量其实就是我们常说的灰度值,所以需要对图片进行灰度处理的话,可以直接提取出图片的Y分量。这点对我们后面的处理很重要。

YUV4:4:4

下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]

存放的码流为: Y0 U0 V0 Y1 U1 V1 Y2 U2 V2 Y3 U3 V3

映射出像素点保持原样

YUV4:2:2

每个色差信道的抽样率是亮度信道的一半,所以水平方向的色度抽样率只是4:4:4的一半。对非压缩的8比特量化的图像来说,每个由两个水平方向相邻的像素组成的宏像素需要占用4字节内存。  
下面的四个像素为:[Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]

存放的码流为:Y0 U0 Y1 V1 Y2 U2 Y3 V3

映射出像素点为:[Y0 U0 V1] [Y1 U0 V1] [Y2 U2 V3] [Y3 U2 V3]

YUV 4:1:1

4:1:1的色度抽样,是在水平方向上对色度进行4:1抽样。对于低端用户和消费类产品这仍然是可以接受的。对非压缩的8比特量化的视频来说,每个由4个水平方向相邻的像素组成的宏像素需要占用6字节内存。  
原来四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]

存放的码流为: Y0 U0 Y1 Y2 V2 Y3

还原出像素点为:[Y0 U0 V2] [Y1 U0 V2] [Y2 U0 V2] [Y3 U0 V2]

用6个YUV分量描述了原来的12个YUV分量,因此压缩比为1/2,平均来讲,就是用了12bit表示了一个象素点,原来YUV(8bit*3)是24bit。

YUV4:2:0 
4:2:0并不意味着只有Y,Cb而没有Cr分量。它指得是对每行扫描线来说,只有一种色度分量以2:1的抽样率存储。相邻的扫描行存储不同的色度分 量,也就是说,如果一行是4:2:0的话,下一行就是4:0:2,再下一行是4:2:0...以此类推。对每个色度分量来说,水平方向和竖直方向的抽样率 都是2:1,所以可以说色度的抽样率是4:1。对非压缩的8比特量化的视频来说,每个由2x2个2行2列相邻的像素组成的宏像素需要占用6字节内存。  
下面八个像素为:[Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3] [Y5 U5 V5] [Y6 U6 V6] [Y7U7 V7] [Y8 U8 V8] 
存放的码流为:Y0 U0 Y1 Y2 U2 Y3 Y5 V5 Y6 Y7 V7 Y8 
映射出的像素点为:[Y0 U0 V5] [Y1 U0 V5] [Y2 U2 V7] [Y3 U2 V7] [Y5 U0 V5] [Y6 U0 V5] [Y7U2 V7] [Y8 U2 V7]

RGB

  计算机彩色显示器显示色彩的原理与彩色电视机一样,都是采用R(Red)、G(Green)、B(Blue)相加混色的原理:通过发射出三种不同强度的电子束,使屏幕内侧覆盖的红、绿、蓝磷光材料发光而产生色彩。这种色彩的表示方法称为RGB色彩空间表示(它也是多媒体计算机技术中用得最 多的一种色彩空间表示方法)。根据色度学的介绍,不同波长的单色光会引起不同的彩色感觉,但相同的彩色感觉却可以来源于不同的光谱成分组合。自然界中几乎所有的颜色都能用三种基本彩色混合配出,在彩色电视技术中选择红色、绿色、和蓝色作为三基色。其他的颜色都可以用红色、绿色和蓝色按照不同的比例混合而成。所选取的红色、绿色和蓝色三基色空间。简称为RGB颜色空间。

RGB565    每个像素用16位表示,RGB分量分别使用5位、6位、5位

RGB555    每个像素用16位表示,RGB分量都使用5位(剩下1位不用)

RGB24    每个像素用24位表示,RGB分量各使用8位

RGB32    每个像素用32位表示,RGB分量各使用8位(剩下8位不用)

ARGB32    每个像素用32位表示,RGB分量各使用8位(剩下的8位用于表示Alpha通道值)

RGB565(我们使用的格式)

使用16位表示一个像素,这16位中的5位用于R,6位用于G,5位用于B。

程序中通常使用一个字(WORD,一个字等于两个字节)来操作一个像素。当读出一个像素后,这个字的各个位意义如下:

高字节              低字节

R R R R R G G G     G G G B B B B B

可以组合使用屏蔽字和移位操作来得到RGB各分量的值:

#define RGB565_MASK_RED    0xF800

#define RGB565_MASK_GREEN  0x07E0

#define RGB565_MASK_BLUE   0x001F

R = (wPixel & RGB565_MASK_RED) >> 11;   // 取值范围0-31

G = (wPixel & RGB565_MASK_GREEN) >> 5;  // 取值范围0-63

B =  wPixel & RGB565_MASK_BLUE;         // 取值范围0-31

#define RGB(r,g,b) (unsigned int)( (r|0x08 << 11) | (g|0x08 << 6) | b|0x08 )

#define RGB(r,g,b) (unsigned int)( (r|0x08 << 10) | (g|0x08 << 5) | b|0x08 )

该代码可以解决24位与16位相互转换的问题

RGB555

是另一种16位的RGB格式,RGB分量都用5位表示(剩下的1位不用)。

使用一个字读出一个像素后,这个字的各个位意义如下:

高字节             低字节

X R R R R G G       G G G B B B B B       (X表示不用,可以忽略)

RGB24使用24位来表示一个像素,RGB分量都用8位表示,取值范围为0-255

RGB32使用32位来表示一个像素,RGB分量各用去8位,剩下的8位不用

RGB24

RGB24使用24位来表示一个像素,RGB分量都用8位表示,取值范围为0-255。注意在内存中RGB各分量的排列顺序为:BGR BGR BGR…。通常可以使用RGBTRIPLE数据结构来操作一个像素,它的定义为:

typedef struct tagRGBTRIPLE {

BYTE rgbtBlue; // 蓝色分量

BYTE rgbtGreen; // 绿色分量

BYTE rgbtRed; // 红色分量

} RGBTRIPLE;

RGB32

RGB32使用32位来表示一个像素,RGB分量各用去8位,剩下的8位用作Alpha通道或者不用。(ARGB32就是带Alpha通道的RGB24。)注意在内存中RGB各分量的排列顺序为:BGRA BGRA BGRA…。通常可以使用RGBQUAD数据结构来操作一个像素,它的定义为:

typedef struct tagRGBQUAD {

BYTE rgbBlue; // 蓝色分量

BYTE rgbGreen; // 绿色分量

BY

TE rgbRed; // 红色分量

BYTE rgbReserved; // 保留字节(用作Alpha通道或忽略)

} RGBQUAD。

RGB是一种颜色的表示法,计算机中一般采用24位来存储,每个颜色占8位。YUV也是一种颜色空间,为什么要出现YUV,主要有两个原因,一个是为了让彩色信号兼容黑白电视机,另外一个原因是为了减少传输的带宽。YUV中,Y表示亮度,U和V表示色度,总之它是将RGB信号进行了一种处理,根据人对亮度更敏感些,增加亮度的信号,减少颜色的信号,以这样“欺骗”人的眼睛的手段来节省空间。YUV到RGB颜色空间转换关系是:

R = Y + 1.042*(V-128);
G = Y - 0.34414*(U-128) - 0.71414*(V-128);
B = Y + 1.772*(U-128);

http://www.cnblogs.com/silence-hust/p/4465354.html

http://www.cnblogs.com/surpassal/archive/2012/12/19/zed_webcam_lab1.html

http://download.csdn.net/detail/yuyangyg/9780338  里面有讲RGB和YUV的区别

YUY与RGB格式区别相关推荐

  1. 使用C++实现YUV格式图像与RGB格式图像之间相互转换

    使用C++实现YUV格式图像与RGB格式图像之间相互转换 一.RGB与YUV转换公式 1.RGB转YUV 1)RGB转换亮度与色差信号公试: 2)归一化为YUV的转化公试为: 2.YUV转RGB 二. ...

  2. YUV / RGB 格式及快速转换算法

    1 前言 自然界的颜色千变万化,为了给颜色一个量化的衡量标准,就需要建立色彩空间模型来描述各种各样的颜色,由于人对色彩的感知是一个复杂的生理和心理联合作用 的过程,所以在不同的应用领域中为了更好更准确 ...

  3. YUV 格式与 RGB 格式的相互转换公式总结(C++版)

    YUV 格式与 RGB 格式的相互转换公式 最近在用的一个工业相机,输出的图像格式是 YUY2 格式.而在电脑上显示时需要 RGB 格式,所以就花了些时间在网上查了些相关的资料.说实话,网上关于 YU ...

  4. 【DSP开发】【VS开发】YUV与RGB格式转换

    [视频处理]YUV与RGB格式转换 YUV格式具有亮度信息和色彩信息分离的特点,但大多数图像处理操作都是基于RGB格式. 因此当要对图像进行后期处理显示时,需要把YUV格式转换成RGB格式. RGB与 ...

  5. YUY2(YUV) 与 RGB 格式图片的相互转换 以及 基于YUY2(YUV)的blending

    这是一个项目里使用的,API里从pool里取出的格式都是YUY2,但是图像处理的API库中要求都是jepg格式. YUY2经常用于电视制式以及许多摄像头的输出格式.而我们在处理时经常需要将其转化为RG ...

  6. 程序猿(媛)实用颜色表 [颜色图示,英文代码,形象颜色,HEX格式,RGB格式]

    非ie6 例如:if ( document.getElementById("XX").style.color == "rgb(184, 0, 0)") 注意:& ...

  7. 【镜像取证篇】DD和E01镜像格式区别(简)

    [镜像取证篇]DD和E01镜像格式区别(简) ​ 简单总结下-[蘇小沐] 文章目录 [镜像取证篇]DD和E01镜像格式区别(简) 1.实验环境 (一)DD镜像-原始镜像(和源盘大小一致) (二)E01 ...

  8. 随机颜色十六进制(#ffffff)或rgb格式

    // 定义一个随机颜色的函数 function getRandomColor(flag = true) { // 如果是true就传递 #ffffff格式,否则传rgb格式 if (flag) { l ...

  9. 十六进制颜色值域RGB格式颜色值之间的相互转换

    2019独角兽企业重金招聘Python工程师标准>>> //十六进制颜色值的正则表达式 var reg = /^#([0-9a-fA-f]{3}|[0-9a-fA-f]{6})$/; ...

  10. 在Python中使用OpenCV将RGB格式的图像转换为HSV格式的图像

    An HSV is another type of color space in which H stands for Hue, S stands for Saturation and V stand ...

最新文章

  1. Hadoop SequenceFile BLOCK压缩类型写入数据机制
  2. 滤波电容、去耦电容、旁路电容作用
  3. cs224n第一讲深度自然语言处理
  4. [爬虫]通过url获取连接地址中的数据
  5. 2018 疯狂微服务之死
  6. (18)System Verilog运算精度补齐示例
  7. Go的http库详解
  8. SqlSever2005 一千万条以上记录分页数据库优化经验总结【索引优化 + 代码优化】一周搞定...
  9. Ubuntu16.04上使用Anaconda3的Python3.6的pip安装UWSGI报错解决办法
  10. WSS3 Elevation of Privilege 替代 用户身份模拟Impersonate 进行权限提升
  11. php的substr函数的作用是,PHP substr函数的实现功能技巧讲解
  12. java redis学习记录
  13. 电机噪声之谐波分析(内附simulink中FFT分析的相关参数配置与解析)
  14. 公司简介ppt模板如何利用曲线时间轴提升质感
  15. lpush rpush 区别_关于redis之lpush、rpush、lset、lrem
  16. 每个星座的出生日期php,php根据出生日期计算年龄 生肖 星座程序
  17. Cadence Allegro批量编辑元件属性的方法图文教程及视频演示
  18. 关于DM36x IPNC中IRCUT的使用
  19. python一行代码实现白噪声检测
  20. EXCEL常规搜索命令

热门文章

  1. js刷新当前页面的5种方式
  2. hive-sql中平方和开根号函数
  3. xposed框架定位修改怎么用_硬核!教你三种方法,实现微信自定义修改地区!
  4. b区计算机考研招不满的大学,b区考研招不满的大学 适合调剂的学校有哪些
  5. css设置行高居中,CSS line-height行高上下居中垂直居中样式属性
  6. JanusGraph安装和配置教程
  7. CAS算法中的ABA问题的解决
  8. PayPal WebHook事件异步通知
  9. 算法基本知识,入门必备
  10. xshell写JS脚本自动进行操作