输入阻抗,输出阻抗,这两个参数似乎没那么重要,但事实并非如此。下面说下我的看法吧。

一个问题

音频中的耦合电容从0.1uF-220uF都有,这是有病吗?都是用作隔离直流的,怎么就不能统一呢?

明白这个问题其实很简单,我们看信号是如何传输就容易明白了。这里就讲一个电路的分析方法,或者说是思维方式。

电路分析方法

我们经常会看到各种复杂的电路,如果是新手,可能就蒙了。其实化繁为简非常简单:
只需要把电路分两块,一边输出信号,另外一边接收信号。姑且把输出信号的叫输出模块,接收信号的叫接收模块吧。

我们如果搞清楚这个信号在传输过程中发生了什么变化,那就什么都明白了。
输出模块
对于左边输出模块,我们通常知道输出的信号是什么,频率在什么范围,另外有一个重要的参数就是输出阻抗,所以电路模型是下面这个

这个很容易看出来,输出阻抗Zout非常重要了,它衡量了这个模块的输出能力。假如输出模块是个电源,那么Zout就是电源内阻,必定很小。不然的话,假如Zout=100Ω,接个10Ω负载,结果负载分得的电压只有电源电压的十分之一还不到,那还能叫电源吗?

所以呢,一般对于输出模块来说,这个输出阻抗越小越好。
接收模块
接收信号的电路太多了,花里胡哨。有的信号输入到IC芯片,有的信号接到MOS管上面驱动开关,有的接喇叭,等等很多很多类。
我们不管它到底是什么,就用一个Zin来表示,也就是输入阻抗。应该很容易知道,这个输入阻抗比较大是有好处的。

我们极端一点,假如输入阻抗无穷大,也就是开路了,那么不管前面的输出信号模块的输出阻抗是多大,信号都能很好的接收,跟输出的信号一样。而往小极端一点,如果输入无穷小,为0,其实就是接地短路了,那还传个球的信号。
我们把输入和输出接起来,就是下面这个。

总的来说,我们看信号传输时会发生哪些变化,只需要在头脑中将电路等效成这个样子就好了。
这样一等效,是不是简单多了?运用欧姆定律,接收端接收到的信号就出来啦。当然了,有时电路中间串联有电阻,电容,或者是电感,我们只需在中间加上这些器件即可。

如何分析
举例1:拿开篇的音频耦合电容来举例。

这个是某音频codec典型电路,音频输入MIC管脚串联的是0.1uF电容,这个电容这么小可以吗?
我们按照前面的方法来分析。
先看输出模块
咪头mic拾取音频,输出模拟信号,所以它是前面说的模型中的输出模块,它的输出阻抗是多少呢?
我们随便找个咪头规格书看下,说是2.2KΩ,一般咪头的输出阻抗也都是差不多的的。

如图,芯片规格书也提供了咪头的内部电路,其实就是个FET管放大电路。如果好好学习的话(论大学好好学习的重要性),就知道这个FET管放大电路的输出阻抗就是那个RL,厂家这个RL是2.2KΩ,所以它就标注输出阻抗是2.2KΩ。
而我们前面贴出的codec电路用的是1KΩ的电阻,所以实际输出阻抗是1KΩ,我们就用1KΩ吧。
我们再来看接收模块。
接收模块是codec芯片,管脚是它的输入阻抗是多少呢?我们查看规格,输入阻抗是20KΩ或者是80KΩ(与配置有关),我们取不利的值,也就是最小的值,20KΩ

输出模块和输入模块中间有个隔直电容,我们加上这个电容。所以,电路化简完后就是这样的了。

其实,这就是个RC高通滤波器,截止频率为1/2π(Zin+Zout)C。
现在Zin+Zout =20KΩ+1KΩ,C=0.1uF,所以3dB截止频率为75.8Hz。我们知道,人的声音频率范围是300Hz-3.4Khz,所以可以判断,这个音频信号可以很好的传输过去了,也就是说电容0.1uF的大小就够了,如果增大到1uF,截止频率变为7.58Hz,也没有问题。不过1uF电容肯定要比0.1uF电容要贵些,选0.1uF更经济。
这个codec图中还有个耳机输出端口,串联的是220uF的电容,为什么接这么大呢?

对于这个电路,是芯片输出信号送到耳机。输出模块是芯片,接收模块是耳机
我们先看输出模块codec芯片,查看规格书,芯片对应管脚输出阻抗是16Ω。在看接收端——耳机,耳机的阻抗有16Ω,32Ω,64Ω。我们取最差的(不利于信号接收),也就是16Ω,电路简化之后电路跟上面是一样的,我就不画了
也是个高通滤波器,截止频率为1/2π(Zin+Zout)C。现在Zin+Zout=16+16=32Ω,C=220uF,所以3dB截止频率为22.6Hz。同样,人声的300Hz-3.4Khz可以很好的传过去。如果我们选用10uF电容,那么截止频率就变为了497.6Hz,显然,低频就被衰减了,音频就不能很好的传输了,出现失真。
估计有人会问,220uF太大了,我选用22uF行不行呢?22uF带入进去,截至频率是226Hz,也在人的声音频率300Hz之外啊,应该可以吧。
这个我想说看自己应用吧,看你放的声音是什么频率段的。麦克风拾音一般是人的声音,在200Hz-3.4K范围。但是放音就不一定只有人的声音了,人耳的听力范围是20Hz-20Khz,所以最低可以到达20Hz。如果你要求高,一定要最低的频率也不能衰减,那么就需要220uF的电容。
如果就是为了听个响,低频失不失真的无所谓,你搞个22uF也行,甚至10uF也凑合,就是低频分量被削弱了。
除了这个音频的例子,我们再看另外一个例子。
举例2:MOS管栅极串联电阻的分析

分析方法跟前面说的是一样的,接收模块是MOS管,MOS管的输入电阻可以看成无穷大,但是寄生电容较大,所以它作为接收模块时,寄生电容站输入阻抗的主要部分,其输入阻抗就是电容的阻抗,为1/jwC。
我之所以把这个放到这里,其实主要是想说明一点。输入阻抗,输出阻抗,它俩是复阻抗,不仅仅包括电阻,还包括电容和电感。
这个电路以前详细分析过,就不再说了,想看下具体分析的话,可以点下面这个链接
【LC串联谐振的意义】
很多芯片也会给出相关端口的寄生电容大小,我们要根据实际情况考虑。前面举的音频的例子,因为频率较低,而相关端口的寄生电容也就10pF左右,这个影响是相当小的,所以自然就可以忽略掉电容了。

结尾
本文主要的目的不在于讲一个音频耦合电容的问题,重点在于分析方法。
如果你碰到一个新的电路,不知道如何下手的时候,不妨按照这个方法试一试。头脑中简单建个模,代入输出阻抗,输入阻抗。再思索一下所处理的信号是什么,其包含了哪些频率分量(傅里叶变换)。也许答案就出来了,不用其他人告诉你。
另外,我们现在应该知道,为什么厂家会给出输入阻抗,输出阻抗参数了吧。学习模电的时候,为什么要去算那个输入阻抗,输出阻抗。因为它们都是有用的。
看完了这个文章,至少应该不会再有耦合电容取多大这种问题了吧…

声明:本文经公众号“硬件工程师练成之路”授权转载,版权归原作者所有。转载仅为学习参考,不代表本号认同其观点,本号亦不对其内容、文字、图片承担任何侵权责任。
参考原文:《输入输出阻抗,你会玩不?》

深入浅出理解输入输出阻抗-音频电路输入输出阻抗相关推荐

  1. AM收音机前级电路理解(调频头电路)(AM收音机输入电路)

    我们知道AM收音机的使用范围为 540 KHz-1600KHz,因为波长很长,所以它可以通过天波传输电磁信号,一般可以覆盖很远范围,通常用于作为国际广播电台.一般在网上找到的电路图如下: 其包括3三部 ...

  2. 深刻理解GPIO(上拉输入、下拉输入、模拟输入、浮空输入,开漏输出,推挽输出的区别,以STM32为例)

    目录 前言 GPIO是什么 GPIO的八大模式 输入模式 浮空输入 上拉输入 下拉输入 模拟输入 输出模式 开漏输出 推挽输出 复用开漏输出 复用推挽输出 GPIO的输出速率 前言 学习了这么久的单片 ...

  3. 组合逻辑电路的设计(二) -- 五路输入呼叫显示电路和两个BCD8421码的加法运算电路

    一.实验任务及要求 1. 设计要求(2题任选1题,鼓励2题都做) (1) 设计一个五路输入呼叫显示电路,5个数码开关分别模拟用户的输入信号,用户优先权按用户编号依次递减,即1号的优先权最高,5号最低: ...

  4. 24V输入防反接电路

    #24V输入防反接电路 (部分图片参考东沃电子) 用于对输入的24V电源进行防反接及ESD保护,可用于EMC测试实验的电源输入保护,额定电流3A,后级电路最大损坏电压为48V. 1.24V输入防反接原 ...

  5. 搭建机器人电控系统——常用电路——输入保护,过压保护,过流保护,光耦隔离抗干扰,输入补偿,稳压

    文章目录 一些常用电路的总结 输入保护电路 ①PMOS+电容防反接和缓冲 ②TVS瞬态电压抑制二极管 ③稳压(齐纳)二极管 过压保护电路 ①稳压二极管和三极管配合 ②双稳压二极管的反向串联 过流保护电 ...

  6. 【转】深入浅出理解有限状态机

    转自:深入浅出理解有限状态机 - 知乎 有限状态机是一种用来进行对象行为建模的工具,其作用主要是描述对象在它的生命周期内所经历的状态序列,以及如何响应来自外界的各种事件.在计算机科学中,有限状态机被广 ...

  7. 【数字IC】深入浅出理解I2C协议

    深入浅出理解I2C协议 一.什么是I2C协议 二.I2C,SPI,UART协议的区别 三.I2C的信号线 四.I2C的连接方式 4.1 单主设备,单从设备 4.2 单主设备,多从设备 4.3 多主设备 ...

  8. AD的单端输入和查分输入

    单端输入,输入信号均以共同的地线为基准.这种输入方法主要应用于输入信号电压较高(高于1V),信号源到模拟输入硬件的导线较短(低于15 ft,1ft=304.8mm),且所有的输入信号共用一个基准地线. ...

  9. 计算机操作系统开启审计功能,深入浅出理解操作系统安全

    原标题:深入浅出理解操作系统安全 引言 操作系统安全在计算机信息系统的整体安全性中具有至关重要的作用,没有操作系统提供的安全性,计算机业务系统的安全性是没有基础的. 什么是操作系统 操作系统(英语:o ...

  10. 有关推挽输出、开漏输出、复用开漏输出、复用推挽输出以及上拉输入、下拉输入、浮空输入、模拟输入区别

    转自:http://www.cnblogs.com/Jezze/archive/2011/12/23/2299857.html 以及上拉输入.下拉输入.浮空输入.模拟输入的区别 最近在看数据手册的时候 ...

最新文章

  1. SuperMap iClient for Leaflet入门学习
  2. Cooperative Content Distribution and Traffic Engineering
  3. 【Python】如何在Excel中调用Python脚本,实现数据自动化处理
  4. [转]JavaScript构造函数及原型对象
  5. 小程序开发-利用canvas实现保存二维码海报到本机
  6. 单元测试框架之Robolectric踩坑
  7. 摄影获得最佳图像的十大要诀_十大最佳应用程序性能管理工具
  8. 微型计算机原理及应用 湖南大学,2011年10月自考02277微型计算机原理及应用真题及答案...
  9. 微信登录报错40125和-6签名秘钥问题解决方案
  10. 中国科学院大学2019年高等代数考研试题
  11. Android仿人人客户端(v5.7.1)——人人授权访问界面
  12. 如何提高技术团队协作能力
  13. 怎么连接云服务器共享文件夹,如何设置局域网共享文件夹
  14. 套壳截图王用户服务协议
  15. logback高级特性使用(一)
  16. QQ界面技术(DirectUI)
  17. mysql中实现分类统计查询的步骤_在MySQL中如何进行分组统计查询
  18. sql(集合,行专列,上下级)
  19. 怎样解决部分网站网页中IE9无法播放flash视频的问题--硬件加速功能存在冲突
  20. mysql的NULL和空值

热门文章

  1. 锂电池充电原理__2020.03.10
  2. 【mitmproxy手机端App抓包】
  3. 如何删除双系统(超级详细,手把手教学)
  4. 从阿里云故障说 Io hang 是什么?
  5. 在线对数函数计算机,计算器在线计算
  6. 读后感系列:2.《看见》柴静(三)
  7. 论文之生成对抗U-Net
  8. OpenCV识别图像中的颜色
  9. VBR、ABR、CBR三种编码方式
  10. Android中动态调整ImageView的宽高比