简单运算

(a±b)2=a2+b2±2ab(a \pm b)^2 = a^2 + b^2 \pm 2ab(a±b)2=a2+b2±2ab
(a±b)3=a3±3a2b+3ab2±b3(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3(a±b)3=a3±3a2b+3ab2±b3
a2−b2=(a+b)∗(a−b)a^2 - b^2 = (a + b) * (a - b)a2−b2=(a+b)∗(a−b)
x2+(a+b)x+a∗b=(x+a)∗(x−a)x^2 + (a + b)x + a * b = (x + a) * (x - a)x2+(a+b)x+a∗b=(x+a)∗(x−a)
a3+b3=(a+b)∗(a2+b2−ab)a^3 + b^3 = (a + b) * (a^2 + b^2 - ab)a3+b3=(a+b)∗(a2+b2−ab)
a3−b3=(a−b)∗(a2+b2+ab)a^3 - b^3 = (a - b) * (a^2 + b^2 + ab)a3−b3=(a−b)∗(a2+b2+ab)
a3+b3+c3=(a+b+c)∗(a2+b2+c2−ab−bc−ac)−3abca^3 + b^3 + c^3 = (a + b + c) * (a^2 + b^2 + c^2 - ab - bc - ac) - 3abca3+b3+c3=(a+b+c)∗(a2+b2+c2−ab−bc−ac)−3abc
奇函数:f(−x)=−f(x)f(-x) = -f(x)f(−x)=−f(x)
偶函数:f(−x)=f(x)f(-x) = f(x)f(−x)=f(x)

对数指数

ax∗ay=ax+ya^x * a^y = a^{x+y}ax∗ay=ax+y
ax∗bx=(a∗b)xa^x * b^x = (a * b)^xax∗bx=(a∗b)x
(ax)y=ax∗y(a^x)^y = a^{x * y}(ax)y=ax∗y
αx=y⟺yx=α⟺log⁡αy=x\alpha^x = y \iff \sqrt[x]y = \alpha \iff \log_\alpha y = xαx=y⟺xy​=α⟺logα​y=x
αx=α1x\sqrt[x]\alpha = \alpha^{\frac 1x}xα​=αx1​
α−x=1αx\alpha^{-x} = {1 \over \alpha^x}α−x=αx1​
log⁡a(x∗y)=log⁡ax+log⁡ay\log_a(x * y) = \log_ax + \log_ayloga​(x∗y)=loga​x+loga​y
log⁡axy=log⁡ax−log⁡ay\log_a\frac xy = \log_ax - \log_ayloga​yx​=loga​x−loga​y
log⁡axy=ylog⁡ax\log_ax^y = y\log_axloga​xy=yloga​x
log⁡ax=log⁡bxlog⁡ba\log_ax = {\log_bx \over \log_ba}loga​x=logb​alogb​x​
alog⁡ax=xa^{\log_ax} = xaloga​x=x
ln⁡x=log⁡ex\ln x = \log_exlnx=loge​x
lg⁡x=log⁡10x\lg x = \log_{10}xlgx=log10​x

三角函数

sin⁡0=0\sin 0 = 0sin0=0
sin⁡π=0\sin \pi = 0sinπ=0
sin⁡π2=1\sin \frac \pi 2 = 1sin2π​=1
sin⁡−α=−sin⁡α\sin -\alpha = -\sin \alphasin−α=−sinα
sin⁡(α±β)=sin⁡α∗cos⁡β±cos⁡α∗sin⁡β\sin(\alpha \pm \beta) = \sin \alpha * \cos \beta \pm \cos \alpha * \sin \betasin(α±β)=sinα∗cosβ±cosα∗sinβ
cos⁡0=1\cos 0 = 1cos0=1
cos⁡π=−1\cos \pi = -1cosπ=−1
cos⁡π2=0\cos \frac \pi 2 = 0cos2π​=0
cos⁡−α=cos⁡α\cos -\alpha = \cos \alphacos−α=cosα
cos⁡(α±β)=cos⁡α∗cos⁡β∓sin⁡α∗sin⁡β\cos(\alpha \pm \beta) = \cos \alpha * \cos \beta \mp \sin \alpha * \sin \betacos(α±β)=cosα∗cosβ∓sinα∗sinβ
tan⁡x=sin⁡xcos⁡x\tan x = {\sin x \over \cos x}tanx=cosxsinx​
sin⁡2x+cos⁡2x=1\sin^2x + \cos^2x = 1sin2x+cos2x=1
sin⁡x∗csc⁡x=1\sin x * \csc x = 1sinx∗cscx=1
cos⁡x∗sec⁡x=1\cos x * \sec x = 1cosx∗secx=1
sin⁡2x=1−cos⁡2x2\sin^2x = {1 - \cos 2x \over 2}sin2x=21−cos2x​
cos⁡2x=1+cos⁡2x2\cos^2x = {1 + \cos 2x \over 2}cos2x=21+cos2x​
sin⁡(arcsin⁡x)=cos⁡(arccos⁡x)=tan⁡(arctan⁡x)=x\sin(\arcsin x) = \cos(\arccos x) = \tan(\arctan x) = xsin(arcsinx)=cos(arccosx)=tan(arctanx)=x
y=arctan⁡x⟺x=tan⁡yy = \arctan x \iff x = \tan yy=arctanx⟺x=tany

极限运算法则

lim⁡x→x0f(x)=lim⁡x→x0±αf(x∓α)\lim\limits_{x \to x_0}f(x) = \lim\limits_{x \to x_0 \pm \alpha}f(x \mp \alpha)x→x0​lim​f(x)=x→x0​±αlim​f(x∓α)
lim⁡x→x0[f(x)±g(x)]=lim⁡x→x0f(x)+lim⁡x→x0g(x)\lim\limits_{x \to x_0}[f(x) \pm g(x)] = \lim\limits_{x \to x_0}f(x) + \lim\limits_{x \to x_0}g(x)x→x0​lim​[f(x)±g(x)]=x→x0​lim​f(x)+x→x0​lim​g(x)
lim⁡x→x0[f(x)∗g(x)]=lim⁡x→x0f(x)∗lim⁡x→x0g(x)\lim\limits_{x \to x_0}[f(x) * g(x)] = \lim\limits_{x \to x_0}f(x) * \lim\limits_{x \to x_0}g(x)x→x0​lim​[f(x)∗g(x)]=x→x0​lim​f(x)∗x→x0​lim​g(x)
lim⁡x→x0f(x)g(x)=lim⁡x→x0f(x)lim⁡x→x0g(x)\lim\limits_{x \to x_0}{f(x) \over g(x)} = {\lim\limits_{x \to x_0}f(x) \over \lim\limits_{x \to x_0}g(x)}x→x0​lim​g(x)f(x)​=x→x0​lim​g(x)x→x0​lim​f(x)​
lim⁡x→∞(1+1x)x=e⟺lim⁡x→0(1+x)1x=e⟺1∞\lim\limits_{x \to \infty}(1+\frac 1x)^x = e \iff \lim\limits_{x \to 0}(1+x)^{\frac 1x} = e \iff 1^\inftyx→∞lim​(1+x1​)x=e⟺x→0lim​(1+x)x1​=e⟺1∞

极限的无穷

有限的无穷小量的和、差、积为无穷小量
无穷小量和有界函数相加时无穷小量
已知lim⁡x→x0f(x)=A\lim\limits_{x \to x_0}f(x) = Ax→x0​lim​f(x)=A则f(x)=A+α且lim⁡x→x0α=0f(x)=A+\alpha且\lim\limits_{x \to x_0}\alpha = 0f(x)=A+α且x→x0​lim​α=0
已知α∼α′,β∼β′\alpha \sim \alpha\prime,\beta \sim \beta\primeα∼α′,β∼β′则lim⁡x→x0ab=lim⁡x→x0a′b′\lim\limits_{x \to x_0}{\frac ab} = \lim\limits_{x \to x_0}{\frac {a\prime}{b\prime}}x→x0​lim​ba​=x→x0​lim​b′a′​
已知x→0x \to 0x→0则x∼sin⁡x∼tan⁡x∼ln⁡(1+x)∼ex−1,1−cos⁡x∼12x2x \sim \sin x \sim \tan x \sim \ln (1+x) \sim e^x - 1,1 - \cos x \sim \frac 12x^2x∼sinx∼tanx∼ln(1+x)∼ex−1,1−cosx∼21​x2
高阶无穷小记做o(x)o(x)o(x)
极限连续中无意义的点是间断点
lim⁡x→x0f[g(x)]=f[lim⁡x→x0g(x)]=f[g(x0)]\lim\limits_{x \to x_0}f[g(x)] = f[\lim\limits_{x \to x_0}g(x)] = f[g(x_0)]x→x0​lim​f[g(x)]=f[x→x0​lim​g(x)]=f[g(x0​)]

导数运算

f(n)(x0)=lim⁡x→x0f(n−1)(x)−f(n−1)(xo)x−x0⟹f′(x0)=lim⁡x→x0f(x)−f(xo)x−x0f^{(n)}(x_0) = \lim\limits_{x \to x_0} {f^{(n-1)}(x)-f^{(n-1)}(x_o) \over x - x_0} \implies f'(x_0) = \lim\limits_{x \to x_0} {f(x)-f(x_o) \over x - x_0}f(n)(x0​)=x→x0​lim​x−x0​f(n−1)(x)−f(n−1)(xo​)​⟹f′(x0​)=x→x0​lim​x−x0​f(x)−f(xo​)​
$(c * \mu)^{(n)} = c * \mu^{(n)} $
(μ±ν)(n)=μ(n)±ν(n)(\mu \pm \nu)^{(n)} = \mu^{(n)} \pm \nu^{(n)}(μ±ν)(n)=μ(n)±ν(n)
$(\mu * \nu)’ = \mu’ * \nu + \mu * \nu’ $
(μν)′=μ′∗ν−μ∗ν′ν′({\mu \over \nu})' = {\mu' * \nu - \mu * \nu' \over \nu'}(νμ​)′=ν′μ′∗ν−μ∗ν′​
(xμ)′=μxμ−1(x^{\mu})' = \mu x^{\mu-1}(xμ)′=μxμ−1
(f[g(x)])′=f′[g(x)]g′(x)(f[g(x)])' = f'[g(x)]g'(x)(f[g(x)])′=f′[g(x)]g′(x)
隐函数求导:dydx=−Fx(x,y)Fy(x,y)\frac {dy}{dx} = - {\frac {F_x(x,y)}{F_y(x,y)}}dxdy​=−Fy​(x,y)Fx​(x,y)​

常用导数运算

(ex)(n)=ex(e^x)^{(n)} = e^x(ex)(n)=ex
$ (\ln x)’ = \frac 1x$
(sin⁡x)′=cos⁡x(\sin x)' = \cos x(sinx)′=cosx
(cos⁡x)′=−sin⁡x(\cos x)' = -\sin x(cosx)′=−sinx
(arcsin⁡x)′=11−x2(\arcsin x)' = {1 \over \sqrt{1 - x^2}}(arcsinx)′=1−x2​1​
(arctan⁡x)′=11+x2(\arctan x)' = {1 \over 1 + x^2}(arctanx)′=1+x21​
(ax)(n)=axln⁡na(a^x)^{(n)} = a^x\ln^na(ax)(n)=axlnna
(sin⁡kx)(n)=kn∗sin⁡(k∗x+n∗π2)(\sin kx)^{(n)} = k^n * \sin(k*x + n * \frac\pi2)(sinkx)(n)=kn∗sin(k∗x+n∗2π​)
[ln⁡(x+b)](n)=(−1)(n−1)(n−1)!(x+b)(n)[\ln(x+b)]^{(n)} = (-1)^{(n-1)}{(n-1)! \over (x+b)^{(n)}}[ln(x+b)](n)=(−1)(n−1)(x+b)(n)(n−1)!​

微分基本运算

dy=f′(x)dx⟺df(x)=f′(x)dxdy=f'(x)dx \iff df(x) = f'(x) dxdy=f′(x)dx⟺df(x)=f′(x)dx
dydx=dydu∗dudx=dydudxdu{dy \over dx} = {dy \over du} * {du \over dx} = {{dy \over du} \over {dx \over du}}dxdy​=dudy​∗dxdu​=dudx​dudy​​
dy=f′(u)∗dudy = f'(u) * dudy=f′(u)∗du
d(μ+c)=dμd(\mu+c) = d\mud(μ+c)=dμ
d(μ∗c)=c∗dμd(\mu * c) = c * d\mud(μ∗c)=c∗dμ

洛必达法则

00\frac 0000​、∞∞\frac \infty\infty∞∞​、0∗∞0 * \infty0∗∞、∞−∞\infty - \infty∞−∞
进行反复求导,直到不满足不定式
0∗∞⟺01∞⟺∞10⟺∞∗00 * \infty \iff {0 \over {1 \over \infty}} \iff {\infty \over {1 \over 0}} \iff \infty * 00∗∞⟺∞1​0​⟺01​∞​⟺∞∗0
f(x)−g(x)=f(x)−g(x)f(x)∗g(x)∗f(x)∗g(x)=1g(x)−1f(x)1f(x)∗1g(x)f(x) - g(x) = {f(x) - g(x) \over f(x) * g(x)} * f(x) * g(x) = {{1 \over g(x)} - {1 \over f(x)} \over {{1 \over f(x)} *{1 \over g(x)}}}f(x)−g(x)=f(x)∗g(x)f(x)−g(x)​∗f(x)∗g(x)=f(x)1​∗g(x)1​g(x)1​−f(x)1​​
f(x)g(x)=eln⁡f(x)g(x)=eg(x)∗ln⁡f(x)f(x)^{g(x)} = e^{\ln f(x)^{g(x)}} = e^{g(x) * \ln f(x)}f(x)g(x)=elnf(x)g(x)=eg(x)∗lnf(x)

导数的平面几何

切线与法线关系:k′=−1kk' = -\frac 1kk′=−k1​
切线公式:y−f(x0)=f′(x0)∗(x−x0)y - f(x_0) = f'(x_0) * (x - x_0)y−f(x0​)=f′(x0​)∗(x−x0​)
法线公式:y−f(x0)=−1f′(x0)∗(x−x0)y - f(x_0) = - {1 \over f'(x_0)} * (x - x_0)y−f(x0​)=−f′(x0​)1​∗(x−x0​)
导数为0的点为驻点
二阶导数在驻点处的值大于0为极大值,小于0为极小值
已知lim⁡x→∞f(x)=A\lim\limits_{x \to \infty}f(x) = Ax→∞lim​f(x)=A则y=Ay = Ay=A是水平渐近线
已知lim⁡x→af(x)=∞\lim\limits_{x \to a}f(x) = \inftyx→alim​f(x)=∞则x=ax = ax=a是垂直渐近线
在区间内导数大于零是单调增加,小于零是单调减少,等于零则判断两侧符号
驻点区间内导数符号判断单调性
比较所有驻点、不可导点的值大小可以得到最值
二阶导数大于零为凹,小于零为凸
二阶导数等于零时的点和不存在的点,将点的两侧代入二阶导函数结果异号为拐点

拉格朗日割线

f(b)−f(a)=f′(c)∗(b−a)⟺f′(c)=f(b)−f(a)b−af(b) - f(a) = f'(c) * (b - a) \iff f'(c) = {f(b)- f(a) \over b - a}f(b)−f(a)=f′(c)∗(b−a)⟺f′(c)=b−af(b)−f(a)​
f(a)=f(b)⟺f′(c)=0f(a) = f(b) \iff f'(c) = 0f(a)=f(b)⟺f′(c)=0

不定积分

∫f(x)dx=F(x)+C\int f(x)dx = F(x) + C∫f(x)dx=F(x)+C

∫kf(x)dx=k∫f(x)dx\int kf(x)dx = k\int f(x)dx∫kf(x)dx=k∫f(x)dx

∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx

[∫f(x)dx]′=f(x)⟺d[∫f(x)dx]=f(x)dx[\int f(x)dx]' = f(x) \iff d[\int f(x)dx] = f(x)dx[∫f(x)dx]′=f(x)⟺d[∫f(x)dx]=f(x)dx

∫f′(x)dx=f(x)+c⟺∫df(x)=f(x)+c\int f'(x)dx = f(x) + c \iff \int df(x) = f(x) + c∫f′(x)dx=f(x)+c⟺∫df(x)=f(x)+c

∫xadx=xa+1a+1+C\int x^adx = {x^{a+1} \over a+1} + C∫xadx=a+1xa+1​+C

∫dxx=ln⁡∣x∣+C\int {dx \over x} = \ln|x| + C∫xdx​=ln∣x∣+C

∫axdx=axln⁡a+C\int a^xdx = {a^x \over \ln a} + C∫axdx=lnaax​+C

∫sin⁡xdx=−cos⁡x+C\int\sin xdx = -\cos x + C∫sinxdx=−cosx+C

∫cos⁡xdx=sin⁡x+C\int\cos xdx = \sin x + C∫cosxdx=sinx+C

∫11−x2dx=arcsin⁡x+C\int {1 \over \sqrt {1 - x^2}}dx = \arcsin x + C∫1−x2​1​dx=arcsinx+C

∫11+x2dx=arcsin⁡x+C\int {1 \over {1 + x^2}}dx = \arcsin x + C∫1+x21​dx=arcsinx+C

∫f[ϕ(x)]ϕ′(x)dx=∫f(μ)du=F(μ)∣μ=ϕ(x)+C=F[ϕ(x)]+C\int f[\phi(x)]\phi'(x)dx = \int f(\mu)du = F(\mu)|_{\mu=\phi(x)} + C = F[\phi(x)] + C∫f[ϕ(x)]ϕ′(x)dx=∫f(μ)du=F(μ)∣μ=ϕ(x)​+C=F[ϕ(x)]+C

∫f(x)dx=∫f[ϕ(t)]ϕ′(t)dt=Φ(t)+C=Φ[ϕ−1(x)]+C\int f(x)dx = \int f[\phi(t)]\phi'(t)dt = \Phi(t) + C = \Phi[\phi^{-1}(x)] + C∫f(x)dx=∫f[ϕ(t)]ϕ′(t)dt=Φ(t)+C=Φ[ϕ−1(x)]+C

∫uv′dx=uv−∫u′vdx⟺∫udv=uv−∫vdu\int uv'dx = uv - \int u'vdx \iff \int udv = uv - \int vdu∫uv′dx=uv−∫u′vdx⟺∫udv=uv−∫vdu

定积分

∫abf(x)dx=F(b)−F(a)\int_a^b f(x)dx = F(b) - F(a)∫ab​f(x)dx=F(b)−F(a)

∫abkf(x)dx=k∫abf(x)dx\int_a^b kf(x)dx = k\int_a^b f(x)dx∫ab​kf(x)dx=k∫ab​f(x)dx

∫ab[f(x)±g(x)]dx=∫abf(x)dx±∫abg(x)dx\int_a^b [f(x) \pm g(x)]dx = \int_a^b f(x)dx \pm \int_a^b g(x)dx∫ab​[f(x)±g(x)]dx=∫ab​f(x)dx±∫ab​g(x)dx

∫abf(x)dx=∫acf(x)dx±∫cbf(x)dx\int_a^b f(x)dx = \int_a^c f(x)dx \pm \int_c^b f(x)dx∫ab​f(x)dx=∫ac​f(x)dx±∫cb​f(x)dx

∫ab1dx=b−a\int_a^b 1dx = b - a∫ab​1dx=b−a

f(x)⩽g(x)⟹∫abf(x)dx⩽∫abg(x)dxf(x) \leqslant g(x) \implies \int_a^bf(x)dx \leqslant \int_a^bg(x)dxf(x)⩽g(x)⟹∫ab​f(x)dx⩽∫ab​g(x)dx

∣∫abf(x)dx∣⩽∫ab∣f(x)∣dx|\int_a^b f(x)dx| \leqslant \int_a^b |f(x)|dx∣∫ab​f(x)dx∣⩽∫ab​∣f(x)∣dx

∫abf(x)dx=f(ξ)(b−a)\int_a^b f(x)dx = f(\xi)(b-a)∫ab​f(x)dx=f(ξ)(b−a)

ddx∫axf(t)dt=f(x)\frac d{dx}\int_a^xf(t)dt = f(x)dxd​∫ax​f(t)dt=f(x)

f(x)f(x)f(x)是在对称区间是奇函数:∫−aaf(x)dx=0\int_{-a}^af(x)dx = 0∫−aa​f(x)dx=0

f(x)f(x)f(x)是在对称区间是偶函数:∫−aaf(x)dx=2∗∫−aaf(x)dx\int_{-a}^af(x)dx = 2 * \int_{-a}^af(x)dx∫−aa​f(x)dx=2∗∫−aa​f(x)dx

∫abf(x)dx=∫αβf[ϕ(x)]ϕ′(x)dx\int_a^b f(x)dx = \int_\alpha^\beta f[\phi(x)]\phi'(x)dx∫ab​f(x)dx=∫αβ​f[ϕ(x)]ϕ′(x)dx

∫abuv′dx=uv∣ab−∫abu′vdx⟺∫abudv=uv∣ab−∫abvdu\int_a^b uv'dx = uv|_a^b - \int_a^b u'vdx \iff \int_a^b udv = uv|_a^b - \int_a^b vdu∫ab​uv′dx=uv∣ab​−∫ab​u′vdx⟺∫ab​udv=uv∣ab​−∫ab​vdu

积分几何

空间平面一般方程Ax+By+Cz+D=0Ax + By + Cz + D = 0Ax+By+Cz+D=0

空间曲面标准方程A(x−x0)+B(y−y0)+C(z−z0)+D=0A(x - x_0) + B(y - y_0) + C(z - z_0) + D = 0A(x−x0​)+B(y−y0​)+C(z−z0​)+D=0的法向量为(A,B,C)

空间直线标准方程x−x0A=y−y0B=z−z0C{x - x_0 \over A} = {y - y_0 \over B} = {z - z_0 \over C}Ax−x0​​=By−y0​​=Cz−z0​​的方向向量为(A,B,C)

垂直 A1A2+B1B2+C1C2=0A_1A_2 + B_1B_2 + C_1C_2 = 0A1​A2​+B1​B2​+C1​C2​=0

平行 A1A2=B1B2=C1C2\frac {A_1}{A_2} = \frac {B_1}{B_2} = \frac {C_1}{C_2}A2​A1​​=B2​B1​​=C2​C1​​

曲线区间面积:S=∫ab[f(x)−g(x)]dxS =\int_a^b [f(x) - g(x)]dxS=∫ab​[f(x)−g(x)]dx

旋转体体积:dV=π∫abf2(x)dxdV =\pi\int_a^b f^2(x)dxdV=π∫ab​f2(x)dx

偏导数、全微分、二元积分

lim⁡x→x0f(x0+x,y0)−f(x0,y0)x=σzσx∣x=x0y=y0=zx∣x=x0y=y0=fx(x0,y0)\lim\limits_{x \to x_0} {{f(x_0 + x,y_0) - f(x_0,y_0)} \over x} = \frac {\sigma z}{\sigma x}|_{x = x_0 \atop y = y_0} = z_x|_{x = x_0 \atop y = y_0} = f_x(x_0,y_0)x→x0​lim​xf(x0​+x,y0​)−f(x0​,y0​)​=σxσz​∣y=y0​x=x0​​​=zx​∣y=y0​x=x0​​​=fx​(x0​,y0​)

dz=σzσx∗dx+σzσy∗dydz = \frac {\sigma z}{\sigma x} * dx + \frac {\sigma z}{\sigma y} * dydz=σxσz​∗dx+σyσz​∗dy

σσx(σzσy)=σ2zσx∗σy=fxy(x,y)\frac \sigma {\sigma x}(\frac {\sigma z}{\sigma y}) = \frac {\sigma ^2z}{\sigma x * \sigma y} = f_{xy}(x,y)σxσ​(σyσz​)=σx∗σyσ2z​=fxy​(x,y)

σzσx=σzσu∗σuσx+σzσv∗σvσx\frac {\sigma z}{\sigma x} = \frac {\sigma z}{\sigma u} * \frac {\sigma u}{\sigma x} + \frac {\sigma z}{\sigma v} * \frac {\sigma v}{\sigma x}σxσz​=σuσz​∗σxσu​+σvσz​∗σxσv​

σyσx=−Fx(x,y,z)Fy(x,y,z)\frac {\sigma y}{\sigma x} = -{F_x(x,y,z) \over F_y(x,y,z)}σxσy​=−Fy​(x,y,z)Fx​(x,y,z)​

二重积分∬Df(x,y)dσ=lim⁡λ→0∑i=0nf(ξi,ηi)σi\iint\limits_D f(x,y)d\sigma = \lim\limits_{\lambda \to 0}\displaystyle\sum_ {i=0}^n f(\xi_i,\eta_i)\sigma_iD∬​f(x,y)dσ=λ→0lim​i=0∑n​f(ξi​,ηi​)σi​

∬Dkf(x,y)dσ=k∬Df(x,y)dσ\iint\limits_D kf(x,y)d\sigma = k\iint\limits_D f(x,y)d\sigmaD∬​kf(x,y)dσ=kD∬​f(x,y)dσ

∬D[f(x,y)±g(x,y)]dσ=∬Df(x,y)dσ±∬Dg(x,y)dσ\iint\limits_D [f(x,y) \pm g(x,y)]d\sigma = \iint\limits_D f(x,y)d\sigma \pm \iint\limits_D g(x,y)d\sigmaD∬​[f(x,y)±g(x,y)]dσ=D∬​f(x,y)dσ±D∬​g(x,y)dσ

∬Ddσ=σ\iint\limits_D d\sigma = \sigmaD∬​dσ=σ

∬Df(x,y)dσ=∬D1f(x,y)dσ+∬D2f(x,y)dσ\iint\limits_D f(x,y)d\sigma = \iint\limits_{D_1} f(x,y)d\sigma + \iint\limits_{D_2} f(x,y)d\sigmaD∬​f(x,y)dσ=D1​∬​f(x,y)dσ+D2​∬​f(x,y)dσ

二元函数极值

驻点fx(x0,y0)=0,fy(x0,y0)=0f_x(x_0,y_0) = 0,f_y(x_0,y_0) = 0fx​(x0​,y0​)=0,fy​(x0​,y0​)=0

极值存在fxx(x0,y0)∗fyy(xo,y0)>fxy(xo,y0)∗fxy(xo,y0)f_{xx}(x_0,y_0) * f_{yy}(x_o,y_0) > f_{xy}(x_o,y_0) * f_{xy}(x_o,y_0)fxx​(x0​,y0​)∗fyy​(xo​,y0​)>fxy​(xo​,y0​)∗fxy​(xo​,y0​)

存在的极之是极小值fxx(x0,y0)>0f_{xx}(x_0,y_0) > 0fxx​(x0​,y0​)>0

存在的极之是极大值fxx(x0,y0)<0f_{xx}(x_0,y_0) < 0fxx​(x0​,y0​)<0

拉格朗日函数 L(x,y)=f(x,y)+λϕ(x,y)⟺{fx(x,y)+λϕx(x,y)=0fy(x,y)+λϕy(x,y)=0ϕ(x,y)=0L(x,y) = f(x,y) + \lambda\phi(x,y) \iff \begin{cases} {f_x(x,y) + \lambda\phi_x(x,y) = 0} \\ {f_y(x,y) + \lambda\phi_y(x,y) = 0} \\ {\phi(x,y) = 0}\end{cases}L(x,y)=f(x,y)+λϕ(x,y)⟺⎩⎪⎨⎪⎧​fx​(x,y)+λϕx​(x,y)=0fy​(x,y)+λϕy​(x,y)=0ϕ(x,y)=0​

二重积分几何

二重积分在平面上的面积:σ\sigmaσ

∬Df(x,y)dσ=∫abf1(x)dx∗∫cdf2(y)dy\iint\limits_D f(x,y)d\sigma =\int_a^bf_1(x)dx * \int_c^df_2(y)dyD∬​f(x,y)dσ=∫ab​f1​(x)dx∗∫cd​f2​(y)dy

dσ=dxdy⟺∬Df(x,y)dxdy=∫abdx∫ϕ1(x)ϕ2(x)f(x,y)dyd\sigma = dxdy \iff \iint\limits_Df(x,y)dxdy = \int_a^bdx\int_{\phi_1(x)}^{\phi_2(x)}f(x,y)dydσ=dxdy⟺D∬​f(x,y)dxdy=∫ab​dx∫ϕ1​(x)ϕ2​(x)​f(x,y)dy

dσ=rdrdθ⟺∬Df(x,y)dσ=∫αβdθ∫r1(θ)r2(θ)f(rcos⁡θ,rsin⁡θ)rdrd\sigma = rdrd\theta \iff \iint\limits_Df(x,y)d\sigma = \int_{\alpha}^{\beta}d\theta\int_{r_1(\theta)}^{r_2(\theta)} f(r\cos\theta,r\sin\theta)rdrdσ=rdrdθ⟺D∬​f(x,y)dσ=∫αβ​dθ∫r1​(θ)r2​(θ)​f(rcosθ,rsinθ)rdr

级数

∑n=1∞un=u1+u2+u3+...+un+...\displaystyle\sum_ {n=1}^\infty u_n= u_1+u_2+u_3+...+u_n+...n=1∑∞​un​=u1​+u2​+u3​+...+un​+...

数列极限存在则收敛,不存在则发散

调和级数是发散的∑n=1∞1n\displaystyle\sum_ {n=1}^\infty \frac 1nn=1∑∞​n1​

等比级数∣q∣<1|q|<1∣q∣<1收敛,∣q∣⩾1|q|\geqslant1∣q∣⩾1发散,∑n=1∞aqn−1⟺a∗1−qn1−q\displaystyle\sum_ {n=1}^\infty aq^{n-1} \iff a * {1-q^n \over 1-q}n=1∑∞​aqn−1⟺a∗1−q1−qn​

级数乘以常数,两个相同敛散性的级数加减,基数前面改变有限项,敛散性都不变

正项级数每一项都非负

p级数:∑n=1∞1np\displaystyle\sum_ {n=1}^\infty \frac 1{n^p}n=1∑∞​np1​在p>1p>1p>1时收敛,在0<p⩽10 < p \leqslant 10<p⩽1时发散

正项级数大的收敛小的也收敛,小的发散大的也发散

正项级数∑n=1∞un\displaystyle\sum_ {n=1}^\infty u_nn=1∑∞​un​和∑n=1∞vn\displaystyle\sum_ {n=1}^\infty v_nn=1∑∞​vn​敛散性相同:0<lim⁡m→∞unvn<+∞0 < \lim\limits_{m \to \infty} \frac {u_n}{v_n} < +\infty0<m→∞lim​vn​un​​<+∞

正项级数lim⁡m→∞un+1un<1\lim\limits_{m \to \infty} {u_{n+1} \over u_n} < 1m→∞lim​un​un+1​​<1 收敛,lim⁡m→∞un+1un>1\lim\limits_{m \to \infty} {u_{n+1} \over u_n} > 1m→∞lim​un​un+1​​>1 发散,等于1无法判断

交错级数:∑n=1∞(−1)nun\displaystyle\sum_ {n=1}^\infty (-1)^nu_nn=1∑∞​(−1)nun​

绝对收敛:∑n=1∞∣un∣\displaystyle\sum_ {n=1}^\infty |u_n|n=1∑∞​∣un​∣收敛,∑n=1∞un\displaystyle\sum_ {n=1}^\infty u_nn=1∑∞​un​收敛

条件收敛:∑n=1∞un\displaystyle\sum_ {n=1}^\infty u_nn=1∑∞​un​收敛,∑n=1∞∣un∣\displaystyle\sum_ {n=1}^\infty |u_n|n=1∑∞​∣un​∣发散

若un>un+1u_n > u_{n+1}un​>un+1​且lim⁡n→∞un=0\lim\limits_{n \to \infty}u_n = 0n→∞lim​un​=0,则∑n=1∞(−1)n−1un\displaystyle\sum_ {n=1}^\infty (-1)^{n-1}u_nn=1∑∞​(−1)n−1un​收敛,且S⩽u1S \leqslant u_1S⩽u1​

幂级数:∑n=0∞an(x−x0)n\displaystyle\sum_ {n=0}^\infty a_n(x-x_0)^nn=0∑∞​an​(x−x0​)n

∑n=0∞anxn\displaystyle\sum_ {n=0}^\infty a_nx^nn=0∑∞​an​xn在∣x∣<R|x| < R∣x∣<R时绝对收敛,在∣x∣>R|x| > R∣x∣>R时发散,在x=0x=0x=0时收敛

∑n=0∞anxn\displaystyle\sum_ {n=0}^\infty a_nx^nn=0∑∞​an​xn在x=x0x = x_0x=x0​收敛,则−∣x0∣<x<∣x0∣-|x_0| < x < |x_0|−∣x0​∣<x<∣x0​∣时绝对收敛

∑n=0∞anxn\displaystyle\sum_ {n=0}^\infty a_nx^nn=0∑∞​an​xn在x=x0x = x_0x=x0​发散,则x<−∣x0∣x < -|x_0|x<−∣x0​∣和x>∣x0∣x > |x_0|x>∣x0​∣时发散

收敛半径:R=lim⁡n→∞∣anan+1∣R = {\lim\limits_{n \to \infty} |{a_n \over {a_{n+1}}}|}R=n→∞lim​∣an+1​an​​∣

泰勒级数:f(x)=∑n=0∞f(n)(x0)n!(x−x0)nf(x) = \displaystyle\sum_ {n=0}^\infty {f^{(n)}(x_0) \over n!}(x - x_0)^nf(x)=n=0∑∞​n!f(n)(x0​)​(x−x0​)n

麦克劳林级数:f(x)=∑n=0∞f(n)(0)n!(x)nf(x) = \displaystyle\sum_ {n=0}^\infty {f^{(n)}(0) \over n!}(x)^nf(x)=n=0∑∞​n!f(n)(0)​(x)n

S′(x)=∑n=0∞nanxx−1S'(x) = \displaystyle\sum_ {n=0}^\infty na_nx^{x-1}S′(x)=n=0∑∞​nan​xx−1

∫0xS(x)dx=∑n=0∞ann+1xn+1\int_0^xS(x)dx = \displaystyle\sum_ {n=0}^\infty {a_n \over n+1}x^{n+1}∫0x​S(x)dx=n=0∑∞​n+1an​​xn+1

常见幂级数展开

11−x=∑n=0∞xn,x∈(−1,1){1 \over 1 - x} = \displaystyle\sum_ {n=0}^\infty x^n,x \in (-1,1)1−x1​=n=0∑∞​xn,x∈(−1,1)

ex=∑n=0∞xnn!,x∈(−∞,+∞)e^x = \displaystyle\sum_ {n=0}^\infty {x^n \over n!},x \in (-\infty,+\infty)ex=n=0∑∞​n!xn​,x∈(−∞,+∞)

sin⁡x=∑n=0∞(−1)n(2n+1)!x2n+1,x∈(−∞,+∞)\sin x = \displaystyle\sum_ {n=0}^\infty {(-1)^n \over (2n+1)!}x^{2n+1},x \in (-\infty,+\infty)sinx=n=0∑∞​(2n+1)!(−1)n​x2n+1,x∈(−∞,+∞)

cos⁡x=∑n=0∞(−1)n(2n)!x2n,x∈(−∞,+∞)\cos x = \displaystyle\sum_ {n=0}^\infty {(-1)^n \over (2n)!}x^{2n},x \in (-\infty,+\infty)cosx=n=0∑∞​(2n)!(−1)n​x2n,x∈(−∞,+∞)

ln(1+x)=∑n=1∞(−1)n−1xnn,x∈(−1,1]ln(1 + x) = \displaystyle\sum_ {n=1}^\infty (-1)^{n-1}{x^n\over n},x \in (-1,1]ln(1+x)=n=1∑∞​(−1)n−1nxn​,x∈(−1,1]

ln(1−x)=−∑n=1∞xnn,x∈[−1,1)ln(1 - x) = - \displaystyle\sum_ {n=1}^\infty {x^n\over n},x \in [-1,1)ln(1−x)=−n=1∑∞​nxn​,x∈[−1,1)

一阶微分方程

可分离变量微分方程:dydx=f(x)g(y)⟺∫g(y)dy=∫f(x)dx\frac {dy}{dx} = f(x)g(y) \iff \int g(y)dy = \int f(x)dxdxdy​=f(x)g(y)⟺∫g(y)dy=∫f(x)dx
一阶线性微分方程:dydx+P(x)y=Q(x)\frac {dy}{dx} + P(x)y = Q(x)dxdy​+P(x)y=Q(x),等于零为齐次,否则非齐次
一阶线性齐次微分方程通解:y=Ce−∫P(x)dxy = Ce^{-\int P(x)dx}y=Ce−∫P(x)dx
一阶线性非齐次微分方程通解:y=Ce−∫P(x)dx[∫Q(x)e∫P(x)dxdx+C]y = Ce^{-\int P(x)dx}[\int Q(x)e^{\int P(x)dx}dx+ C]y=Ce−∫P(x)dx[∫Q(x)e∫P(x)dxdx+C]

二阶常系数线性微分方程

y′′+py′+qy=f(x)y''+ py' + qy = f(x)y′′+py′+qy=f(x),等于零为齐次,否则非齐次
若y1=y1(x)y_1=y_1(x)y1​=y1​(x)和y2=y2(x)y_2=y_2(x)y2​=y2​(x)线性无关,则有通解y=C1y1+C2y2y = C_1y_1 + C_2y_2y=C1​y1​+C2​y2​

齐次方程的特征函数:r2+pr+q=0r^2 + pr + q = 0r2+pr+q=0
特征函数有两个不相等的实根,则y‾=C1er1x+C2er2x\overline y = C_1e^{r_1x} + C_2e^{r_2x}y​=C1​er1​x+C2​er2​x
特征函数有两个相等的实根,则y‾=(C1+C2x)erx\overline y = (C_1 + C_2x)e^{rx}y​=(C1​+C2​x)erx
特征函数无实根,则y‾=(C1cos⁡βx+C2sin⁡βx)eax\overline y = (C_1\cos \beta x + C_2\sin \beta x)e^{ax}y​=(C1​cosβx+C2​sinβx)eax

非齐次方程通解:齐次方程通解加非齐次方程特解:y∗=xkQn(x)eaxy^* = x^kQ_n(x)e^{ax}y∗=xkQn​(x)eax,a不是特征根,则k=0,a是某一特征根,则k=1,a是唯一特征根,则k=2

成考专升本高等数学公式笔记相关推荐

  1. 成考专升本与自考专升本的区别

    成考专升本 成考专升本是由成教院举办并颁发毕业证书的成人高等学历教育,毕业证书与普通本科毕业证书不一样(加注成人高等教育字样), 属于第二学历 ,符合学位申请条件者可申请学士学位证书.成考专升本在省招 ...

  2. 山西计算机网络技术专升本分数线_2020山西成考专升本招生补录第一批公告!附补录院校专业缺额表!...

    ☞回复[成绩]查询2020年成人高考成绩 ☞回复[录取]查询20成考录取结果 ☞回复[补录]查询最新院校缺额信息 ☞加入学历备考交流群 550985358   专升本第一阶段补录通知与院校缺额信息  ...

  3. 2022年湖南成考专升本入学考试难度大吗

    湖南成考专升本入学考试的难度大不大?这就要通过比较才知道了.如果是跟高起专和高起本相比的话,那难度肯定要高一些,毕竟专升本考试科目中有一门专业基础课,是考查专科期间的所学知识,而不是历史.物理等高中知 ...

  4. 计算机应用对口专升后是什么专业了,成考中专升大专专业不对口可以吗

    中专是指中等专业学校,考生在此可以学习中等专业知识.所以与只上文化课的高中不同,中专生们都自己的专业.也因此,中专生在参加成考时便会面临着专业对口的问题.但很多中专生都不想报考自己的对口专业.那么,成 ...

  5. 专升本计算机基础笔记一

    专升本计算机基础笔记一 一. 信息与数据 信息:自然界.人类社会和人类思维活动中心普遍存在一切事物和物质的属性.(抽象的)     数据:存储在某种媒体上可以加以鉴别的符号资料.(具体的) 数据和信息 ...

  6. 山东专升本—计算机课堂笔记之目录篇

    为了激励我在明年专升本计算机科目中的考试,我要坚持完成笔记来记录我的学习成果.以此来监督自己 目录 第一章 计算机基础知识 第二章 windows7操作系统 第三章 Word2010字处理软件 第四章 ...

  7. 专升本英语 学习笔记

    专升本英语学习路线 Nothing to be got without pains but poverty(贫穷) 如果不努力除了贫穷就会一无所获 no pain no gain the distan ...

  8. 山东专升本-计算机课堂笔记之第一章 信息技术与计算机文化(一)

    第一单元,这是1~3章节 目录 一.信息与信息技术 二. 计算机技术概述 1.计算机起源 2.计算机发展 3. 计算机的特点及分类(可能考解答题) 4. 计算机的应用(常考)   ​ 5.计算机的发展 ...

  9. 专升本计算机基础笔记

    第一章 信息技术与计算机文化 数据与信息 数据是信息的具体表现形式,是信息的载体,而信息是对数据进行加工得到的结果 文化具有的基本属性: 广泛性 传递性 教育性 深刻性 计算机起源 ​ 1946s E ...

  10. 山东专升本—计算机课堂笔记之进制转换

    二进制:0  1 八进制:0~7 十进制:0~9 十六进制:0~15 --  0~9 + A~F(在十六进制 10~15,10后面用字母表示)     进制的数码不可能"=>" ...

最新文章

  1. Apriori算法简介及实现(python)
  2. python词云cannot open resource_centos flask验证码pil提示OSError: cannot open resource,问题解决方法...
  3. OpenCV中Mat总结
  4. Ctrl与Caps Lock键的交换
  5. python 接口自动化_Python 接口自动化测试
  6. 使用GZIP和Zip压缩Java数据流
  7. 《学习opencv》笔记——矩阵和图像处理——cvAnd、cvAndS、cvAvg and cvAvgSdv
  8. linux qt交叉编译opencv,c-使用Qt和opencv交叉编译到Raspberry Pi
  9. try catch 对于循环体,应放在外面还是里面?
  10. 四轮驱动移动机器人(4WD)运动模型及应用分析(图片版)
  11. HQL (迫切)左外连接
  12. pandas的离散化,面元划分
  13. 摩尔庄园服务器维护,《摩尔庄园》6月11日维护公告
  14. Proteus8.12无法仿真STC15系列单片机解决办法
  15. plc程序调试的顺序
  16. PhpStorm更换主题
  17. 安装文件MyEclipse6.5安装与卸载SVN插件方法
  18. mySQL的备份及导入
  19. 大厂码农在北京买房需要几年?
  20. 追忆第一次南下深圳有哪些重大抉择(二)?

热门文章

  1. OpenLayers动画效果显示路线
  2. 修复IOS上滑动HTML界面光标乱跳
  3. 从日志统计到大数据分析
  4. 计算机模拟水循环的过程,袋装水模拟做科学小实验水循环(步骤图解)
  5. 发光二极管压降、电流
  6. 焦点较中的网络视频相关
  7. 漫谈bufferbloat以及TCP公平性
  8. 用SpringBoot 做代web理服务器
  9. Mac终端 连接远程服务器
  10. 新年计划(2018)