原文链接:http://tecdat.cn/?p=8640

原文出处:拓端数据部落公众号

相关视频:LSTM神经网络架构和工作原理及其在Python中的预测应用

LSTM神经网络架构和原理及其在Python中的预测应用

介绍

在本文中,我们将看到如何开发具有多个输出的文本分类模型。我们开发一个文本分类模型,该模型可分析文本注释并预测与该注释关联的多个标签。多标签分类问题实际上是多个输出模型的子集。在本文结尾,您将能够对数据执行多标签文本分类。

相关视频:文本挖掘:主题模型(LDA)及R语言实现分析游记数据

文本挖掘:主题模型(LDA)及R语言实现分析游记数据

时长12:59


数据集

数据集包含来自Wikipedia对话页编辑的评论。 评论可以属于所有这些类别,也可以属于这些类别的子集,这是一个多标签分类问题。

现在,我们导入所需的库并将数据集加载到我们的应用程序中。以下脚本导入所需的库:


import pandas as pd
import numpy as np
import reimport matplotlib.pyplot as plt

现在,将数据集加载到内存中:

toxic_comments = pd.read_csv("/comments.csv")

以下脚本显示数据集的维度,并显示数据集的标题:

print(toxic_comments.shape)toxic_comments.head()

输出:

(159571,8)

数据集包含159571条记录和8列。数据集的标题如下所示:

让我们删除所有记录中任何行包含空值或空字符串的记录。

filter = toxic_comments["comment_text"] != ""
toxic_comments = toxic_comments[filter]
toxic_comments = toxic_comments.dropna()

comment_text列包含文本注释。

print(toxic_comments["comment_text"][168])

输出:

You should be fired, you're a moronic wimp who is too lazy to do research. It makes me sick that people like you exist in this world.

让我们看一下与此注释相关的标签:

print("Toxic:" + str(toxic_comments["toxic"][168]))
print("Severe_toxic:" + str(toxic_comments["severe_toxic"][168]))
print("Obscene:" + str(toxic_comments["obscene"][168]))
print("Threat:" + str(toxic_comments["threat"][168]))
print("Insult:" + str(toxic_comments["insult"][168]))
print("Identity_hate:" + str(toxic_comments["identity_hate"][168]))

输出:

Toxic:1
Severe_toxic:0
Obscene:0
Threat:0
Insult:1
Identity_hate:0

我们将首先过滤所有标签或输出列。

toxic_comments_labels = toxic_comments[["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]]
toxic_comments_labels.head()

输出:

使用toxic_comments_labels数据框,我们将绘制条形图,来显示不同标签的总注释数。

输出:

您可以看到,“有毒”评论的出现频率最高,其次是 “侮辱”。

创建多标签文本分类模型

创建多标签分类模型的方法有两种:使用单个密集输出层和多个密集输出层。

在第一种方法中,我们可以使用具有六个输出的单个密集层,并具有S型激活函数和二进制交叉熵损失函数。

在第二种方法中,我们将为每个标签创建一个密集输出层。

具有单输出层的多标签文本分类模型

在本节中,我们将创建具有单个输出层的多标签文本分类模型。

在下一步中,我们将创建输入和输出集。输入是来自该comment_text列的注释。

这里我们不需要执行任何一键编码,因为我们的输出标签已经是一键编码矢量的形式。

下一步,我们将数据分为训练集和测试集:
我们需要将文本输入转换为嵌入式向量。

我们将使用GloVe词嵌入将文本输入转换为数字输入。

以下脚本创建模型。我们的模型将具有一个输入层,一个嵌入层,一个具有128个神经元的LSTM层和一个具有6个神经元的输出层,因为我们在输出中有6个标签。


LSTM_Layer_1 = LSTM(128)(embedding_layer)
dense_layer_1 = Dense(6, activation='sigmoid')(LSTM_Layer_1)
model = Model()

让我们输出模型摘要:

print(model.summary())

输出:

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 200)               0
_________________________________________________________________
embedding_1 (Embedding)      (None, 200, 100)          14824300
_________________________________________________________________
lstm_1 (LSTM)                (None, 128)               117248
_________________________________________________________________
dense_1 (Dense)              (None, 6)                 774
=================================================================
Total params: 14,942,322
Trainable params: 118,022
Non-trainable params: 14,824,300

以下脚本输出了我们的神经网络的结构:

plot_model(model, to_file='model_plot4a.png', show_shapes=True, show_layer_names=True)

输出:

 

从上图可以看到,输出层仅包含1个具有6个神经元的密集层。现在让我们训练模型:

 可以用更多的时间训练模型,看看结果是好是坏。

结果如下:

rain on 102124 samples, validate on 25532 samples
Epoch 1/5
102124/102124 [==============================] - 245s 2ms/step - loss: 0.1437 - acc: 0.9634 - val_loss: 0.1361 - val_acc: 0.9631
Epoch 2/5
102124/102124 [==============================] - 245s 2ms/step - loss: 0.0763 - acc: 0.9753 - val_loss: 0.0621 - val_acc: 0.9788
Epoch 3/5
102124/102124 [==============================] - 243s 2ms/step - loss: 0.0588 - acc: 0.9800 - val_loss: 0.0578 - val_acc: 0.9802
Epoch 4/5
102124/102124 [==============================] - 246s 2ms/step - loss: 0.0559 - acc: 0.9807 - val_loss: 0.0571 - val_acc: 0.9801
Epoch 5/5
102124/102124 [==============================] - 245s 2ms/step - loss: 0.0528 - acc: 0.9813 - val_loss: 0.0554 - val_acc: 0.9807

现在让我们在测试集中评估模型:


print("Test Score:", score[0])
print("Test Accuracy:", score[1])

输出:

31915/31915 [==============================] - 108s 3ms/step
Test Score: 0.054090796736467786
Test Accuracy: 0.9810642735274182

我们的模型实现了约98%的精度 。

最后,我们将绘制训练和测试集的损失和准确度,以查看我们的模型是否过拟合。


plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train','test'], loc='upper left')
plt.show()

输出:

您可以看到模型在验证集上没有过拟合。

具有多个输出层的多标签文本分类模型

在本节中,我们将创建一个多标签文本分类模型,其中每个输出标签将具有一个 输出密集层。让我们首先定义预处理功能:

def preprocess_text(sen):# 删除标点符号和数字# 单字符删除# 删除多个空格sentence = re.sub(r'\s+', ' ', sentence)return sentence

第二步是为模型创建输入和输出。该模型的输入将是文本注释,而输出将是六个标签。以下脚本创建输入层和组合的输出层:

y = toxic_comments[["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]]

让我们将数据分为训练集和测试集:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)

y变量包含6个标签的组合输出。但是,我们要为每个标签创建单独的输出层。我们将创建6个变量,这些变量存储来自训练数据的各个标签,还有6个变量,分别存储测试数据的各个标签值。

下一步是将文本输入转换为嵌入的向量。

X_train = pad_sequences(X_train, padding='post', maxlen=maxlen)
X_test = pad_sequences(X_test, padding='post', maxlen=maxlen)

我们将再次使用GloVe词嵌入:


embedding_matrix = zeros((vocab_size, 100))

我们的模型将具有一层输入层,一层嵌入层,然后一层具有128个神经元的LSTM层。LSTM层的输出将用作6个密集输出层的输入。每个输出层具有1个具有S型激活功能的神经元。

以下脚本创建我们的模型:

model = Model()
以下脚本输出模型的摘要:
print(model.summary())

输出:

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to
==================================================================================================
input_1 (InputLayer)            (None, 200)          0
__________________________________________________________________________________________________
embedding_1 (Embedding)         (None, 200, 100)     14824300    input_1[0][0]
__________________________________________________________________________________________________
lstm_1 (LSTM)                   (None, 128)          117248      embedding_1[0][0]
__________________________________________________________________________________________________
dense_1 (Dense)                 (None, 1)            129         lstm_1[0][0]
__________________________________________________________________________________________________
dense_2 (Dense)                 (None, 1)            129         lstm_1[0][0]
__________________________________________________________________________________________________
dense_3 (Dense)                 (None, 1)            129         lstm_1[0][0]
__________________________________________________________________________________________________
dense_4 (Dense)                 (None, 1)            129         lstm_1[0][0]
__________________________________________________________________________________________________
dense_5 (Dense)                 (None, 1)            129         lstm_1[0][0]
__________________________________________________________________________________________________
dense_6 (Dense)                 (None, 1)            129         lstm_1[0][0]
==================================================================================================
Total params: 14,942,322
Trainable params: 118,022
Non-trainable params: 14,824,300

以下脚本显示了我们模型的体系结构:

plot_model(model, to_file='model_plot4b.png', show_shapes=True, show_layer_names=True)

输出:

您可以看到我们有6个不同的输出层。上图清楚地说明了我们在上一节中创建的具有单个输入层的模型与具有多个输出层的模型之间的区别。

现在让我们训练模型:

history = model.fit(x=X_train, y=[y1_train, y2_train, y3_train, y4_train, y5_train, y6_train], batch_size=8192, epochs=5, verbose=1, validation_split=0.2)

训练过程和结果如下所示:

输出:

Train on 102124 samples, validate on 25532 samples
Epoch 1/5
102124/102124 [==============================] - 24s 239us/step - loss: 3.5116 - dense_1_loss: 0.6017 - dense_2_loss: 0.5806 - dense_3_loss: 0.6150 - dense_4_loss: 0.5585 - dense_5_loss: 0.5828 - dense_6_loss: 0.5730 - dense_1_acc: 0.9029 - dense_2_acc: 0.9842 - dense_3_acc: 0.9444 - dense_4_acc: 0.9934 - dense_5_acc: 0.9508 - dense_6_acc: 0.9870 - val_loss: 1.0369 - val_dense_1_loss: 0.3290 - val_dense_2_loss: 0.0983 - val_dense_3_loss: 0.2571 - val_dense_4_loss: 0.0595 - val_dense_5_loss: 0.1972 - val_dense_6_loss: 0.0959 - val_dense_1_acc: 0.9037 - val_dense_2_acc: 0.9901 - val_dense_3_acc: 0.9469 - val_dense_4_acc: 0.9966 - val_dense_5_acc: 0.9509 - val_dense_6_acc: 0.9901
Epoch 2/5
102124/102124 [==============================] - 20s 197us/step - loss: 0.9084 - dense_1_loss: 0.3324 - dense_2_loss: 0.0679 - dense_3_loss: 0.2172 - dense_4_loss: 0.0338 - dense_5_loss: 0.1983 - dense_6_loss: 0.0589 - dense_1_acc: 0.9043 - dense_2_acc: 0.9899 - dense_3_acc: 0.9474 - dense_4_acc: 0.9968 - dense_5_acc: 0.9510 - dense_6_acc: 0.9915 - val_loss: 0.8616 - val_dense_1_loss: 0.3164 - val_dense_2_loss: 0.0555 - val_dense_3_loss: 0.2127 - val_dense_4_loss: 0.0235 - val_dense_5_loss: 0.1981 - val_dense_6_loss: 0.0554 - val_dense_1_acc: 0.9038 - val_dense_2_acc: 0.9900 - val_dense_3_acc: 0.9469 - val_dense_4_acc: 0.9965 - val_dense_5_acc: 0.9509 - val_dense_6_acc: 0.9900
Epoch 3/5
102124/102124 [==============================] - 20s 199us/step - loss: 0.8513 - dense_1_loss: 0.3179 - dense_2_loss: 0.0566 - dense_3_loss: 0.2103 - dense_4_loss: 0.0216 - dense_5_loss: 0.1960 - dense_6_loss: 0.0490 - dense_1_acc: 0.9043 - dense_2_acc: 0.9899 - dense_3_acc: 0.9474 - dense_4_acc: 0.9968 - dense_5_acc: 0.9510 - dense_6_acc: 0.9915 - val_loss: 0.8552 - val_dense_1_loss: 0.3158 - val_dense_2_loss: 0.0566 - val_dense_3_loss: 0.2074 - val_dense_4_loss: 0.0225 - val_dense_5_loss: 0.1960 - val_dense_6_loss: 0.0568 - val_dense_1_acc: 0.9038 - val_dense_2_acc: 0.9900 - val_dense_3_acc: 0.9469 - val_dense_4_acc: 0.9965 - val_dense_5_acc: 0.9509 - val_dense_6_acc: 0.9900
Epoch 4/5
102124/102124 [==============================] - 20s 198us/step - loss: 0.8442 - dense_1_loss: 0.3153 - dense_2_loss: 0.0570 - dense_3_loss: 0.2061 - dense_4_loss: 0.0213 - dense_5_loss: 0.1952 - dense_6_loss: 0.0493 - dense_1_acc: 0.9043 - dense_2_acc: 0.9899 - dense_3_acc: 0.9474 - dense_4_acc: 0.9968 - dense_5_acc: 0.9510 - dense_6_acc: 0.9915 - val_loss: 0.8527 - val_dense_1_loss: 0.3156 - val_dense_2_loss: 0.0558 - val_dense_3_loss: 0.2074 - val_dense_4_loss: 0.0226 - val_dense_5_loss: 0.1951 - val_dense_6_loss: 0.0561 - val_dense_1_acc: 0.9038 - val_dense_2_acc: 0.9900 - val_dense_3_acc: 0.9469 - val_dense_4_acc: 0.9965 - val_dense_5_acc: 0.9509 - val_dense_6_acc: 0.9900
Epoch 5/5
102124/102124 [==============================] - 20s 197us/step - loss: 0.8410 - dense_1_loss: 0.3146 - dense_2_loss: 0.0561 - dense_3_loss: 0.2055 - dense_4_loss: 0.0213 - dense_5_loss: 0.1948 - dense_6_loss: 0.0486 - dense_1_acc: 0.9043 - dense_2_acc: 0.9899 - dense_3_acc: 0.9474 - dense_4_acc: 0.9968 - dense_5_acc: 0.9510 - dense_6_acc: 0.9915 - val_loss: 0.8501 - val_dense_1_loss: 0.3153 - val_dense_2_loss: 0.0553 - val_dense_3_loss: 0.2069 - val_dense_4_loss: 0.0226 - val_dense_5_loss: 0.1948 - val_dense_6_loss: 0.0553 - val_dense_1_acc: 0.9038 - val_dense_2_acc: 0.9900 - val_dense_3_acc: 0.9469 - val_dense_4_acc: 0.9965 - val_dense_5_acc: 0.9509 - val_dense_6_acc: 0.9900

对于每个时期,我们在输出中的所有6个密集层都有 精度 。

现在让我们评估模型在测试集上的性能:


print("Test Score:", score[0])
print("Test Accuracy:", score[1])

输出:

31915/31915 [==============================] - 111s 3ms/step
Test Score: 0.8471985269747015
Test Accuracy: 0.31425264998511726

通过多个输出层只能达到31%的精度。

以下脚本绘制了第一密集层的训练和验证集的损失和准确值。


plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train','test'], loc='upper left')
plt.show()

输出:

从输出中可以看到,在第一个时期之后,测试(验证)的准确性并未收敛。

结论

多标签文本分类是最常见的文本分类问题之一。在本文中,我们研究了两种用于多标签文本分类的深度学习方法。在第一种方法中,我们使用具有多个神经元的单个密集输出层,其中每个神经元代表一个标签。

在第二种方法中,我们为每个带有一个神经元的标签创建单独的密集层。结果表明,在我们的情况下,具有多个神经元的单个输出层比多个输出层的效果更好。


最受欢迎的见解

1.探析大数据期刊文章研究热点

2.618网购数据盘点-剁手族在关注什么

3.r语言文本挖掘tf-idf主题建模,情感分析n-gram建模研究

4.python主题建模可视化lda和t-sne交互式可视化

5.疫情下的新闻数据观察

6.python主题lda建模和t-sne可视化

7.r语言中对文本数据进行主题模型topic-modeling分析

8.主题模型:数据聆听人民网留言板的那些“网事”

9.python爬虫进行web抓取lda主题语义数据分析

拓端tecdat|用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类相关推荐

  1. 拓端tecdat荣获掘金社区入驻新人奖

    2021年7月,由掘金发起了"入驻成长礼"颁奖活动.本次活动邀请到知名开发者.服务机构代表等业界人士. 据了解,掘金社区"新入驻创作者礼"主要对已经积累了一定历 ...

  2. 拓端tecdat荣获2022年度51CTO博主之星

    相信技术,传递价值,这是51CTO每一个技术创作者的动力与信念,2022 年度,拓端tecdat 作为新锐的数据分析咨询公司,在51CTO平台上,不断的输出优质的技术文章,分享前沿创新技术,输出最佳生 ...

  3. python中nlp的库_用于nlp的python中的网站数据清理

    python中nlp的库 The most important step of any data-driven project is obtaining quality data. Without t ...

  4. 拓端tecdat|bilibili视频流量数据潜望镜

    最近我们被客户要求撰写关于bilibili视频流量的研究报告,包括一些图形和统计输出. 最新研究表明,中国有超过7亿人在观看在线视频内容.Bilibili,被称为哔哩哔哩或简称为B站,是中国大陆第二个 ...

  5. python程序写诗_pytorch下使用LSTM神经网络写诗实例

    在pytorch下,以数万首唐诗为素材,训练双层LSTM神经网络,使其能够以唐诗的方式写诗. 代码结构分为四部分,分别为 1.model.py,定义了双层LSTM模型 2.data.py,定义了从网上 ...

  6. 拓端tecdat|R语言线性回归和时间序列分析北京房价影响因素可视化案例

    最近我们被客户要求撰写关于北京房价影响因素的研究报告,包括一些图形和统计输出. 目的 房价有关的数据可能反映了中国近年来的变化: 人们得到更多的资源(薪水),期望有更好的房子 人口众多 独生子女政策: ...

  7. 拓端tecdat|R语言用LOESS(局部加权回归)季节趋势分解(STL)进行时间序列异常检测

    最近我们被客户要求撰写关于LOESS(局部加权回归)的研究报告,包括一些图形和统计输出. 这篇文章描述了一种对涉及季节性和趋势成分的时间序列的中点进行建模的方法.我们将对一种叫做STL的算法进行研究, ...

  8. 拓端tecdat|R语言向量误差修正模型 (VECMs)分析长期利率和通胀率影响关系

    最近我们被客户要求撰写关于向量误差修正模型的研究报告,包括一些图形和统计输出. 向量自回归模型估计的先决条件之一是被分析的时间序列是平稳的.但是,经济理论认为,经济变量之间在水平上存在着均衡关系,可以 ...

  9. 拓端tecdat|R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险

    最近我们被客户要求撰写关于冠心病风险的研究报告,包括一些图形和统计输出. 相关视频:R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险 逻辑回归Logistic模型原理和R语言分类预测冠 ...

  10. NLP(二十八)多标签文本分类

    什么是多标签分类?   在分类问题中,我们已经接触过二分类和多分类问题了.所谓二(多)分类问题,指的是y值一共有两(多)个类别,每个样本的y值只能属于其中的一个类别.对于多标签问题而言,每个样本的y值 ...

最新文章

  1. c语言 宏 变长参数,科学网—C/C++中处理变长参数函数(Variadic Function)的几个宏 - 彭彬的博文...
  2. Tomcat源码解析六:Tomcat类加载器机制
  3. QQ浏览器怎么设置主页 QQ浏览器设置默认主页教程
  4. 传相互宝或于6月11日被关停 蚂蚁集团回应:假消息
  5. centos下MySQL Workbench连接时崩溃的解决方法
  6. 4.二叉搜索树转为有序双向链表(递归算法与非递归算法)
  7. 实验5 —— 编写、调试具有多个段的程序
  8. Keil/MDK(2):STM32堆栈使用情况分析
  9. 彻底理解ThreadLocal(转)
  10. 微软已成全球SaaS老大,谁将成为中国SaaS行业龙头
  11. 【车间调度】基于matlab改进的遗传算法求解车间调度问题【含Matlab源码 H002期】
  12. springboot自定义Servlet容器
  13. 服务器cpu哪个型号可以超频,CPU超频史上的14个神器:你用过几个?
  14. 《计算机网络教程》(微课版 第五版)第五章 运输层 课后习题及答案
  15. 9月【笔耕不辍】勋章活动获奖名单公布
  16. 【计算机视觉算法岗面经】“吐血”整理:2019秋招资料
  17. 共享服务器与独立服务器的区别是什么?
  18. 快速将正式环境的数据同步到本地测试库
  19. java maven log4j配置_如何在Maven构建的Java项目中使用log4j
  20. 两种方法简单实现网站随机语录的显示

热门文章

  1. 演示:取证分析IPV6组播地址的构成原理
  2. IIS7下发布.NET1.1应用
  3. Nginx二级目录反向代理网站
  4. 决策树随机森林adaboost理论实战
  5. 第二季-专题2-我从内部看ARM
  6. 简析边缘数据中心技术
  7. AMD上线Linux专版驱动17.10:支持最新API接口
  8. Ubuntu LVM扩展LV
  9. 【故障处理】ORA-19809错误处理
  10. 目标检测之2015iccv---objdetection 专题论文