使用一个非常容易理解的案例,讲解PostgreSQL的优化手段。
本文成文自2012年初,有一些性能指标数据已经过时了,但是优化方法没有过时,请关注优化的方法。
现在的硬件和软件,一台主机达到的性能数据已经可以替代我当时测试的8台主机性能了。【软件环境】
CentOS 5 x64
PostgreSQL 9.1.3  (还是以前测试的,所以用的老版本,你可以用最新的版本测试比如9.5)
plproxy 2.3
pgbouncer 1.4.2【测试模型】
设计一个包含INSERT, UPDATE, SELECT语句的业务模型用于本优化案例.
业务逻辑 :
【图1】 【测试表】
create table user_info
(userid int,
engname text,
cnname text,
occupation text,
birthday date,
signname text,
email text,
qq numeric,
crt_time timestamp without time zone,
mod_time timestamp without time zone
);create table user_session
(userid int,
logintime timestamp(0) without time zone,
login_count bigint default 0,
logouttime timestamp(0) without time zone,
online_interval interval default interval '0'
);create table user_login_rec
(userid int,
login_time timestamp without time zone,
ip inet
);create table user_logout_rec
(userid int,
logout_time timestamp without time zone,
ip inet
);【初始化数据】
insert into user_info (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(1,20000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;insert into user_session (userid) select generate_series(1,20000000);set work_mem='2048MB';
set maintenance_work_mem='2048MB';
alter table user_info add constraint pk_user_info primary key (userid);
alter table user_session add constraint pk_user_session primary key (userid);【业务函数】
-- 模拟用户登录的函数
create or replace function f_user_login
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;-- 模拟用户退出的函数
create or replace function f_user_logout
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;【搭建测试模型】
1.  搭建环境, 安装PostgreSQL9.1.3数据库软件并初始化数据库(略).
2.  调整数据库postgresql.conf参数. 打开日志, SQL统计, 跟踪, 以及性能参数, 便于优化过程中取证.
监听IPv4的所有IP.
listen_addresses = '0.0.0.0'最大允许1000个连接.
max_connections = 1000为超级用户保留3个可用连接.
superuser_reserved_connections = 13默认的unix socket文件放在/tmp, 修改为$PGDATA, 以确保安全.
unix_socket_directory = '.'默认的访问权限是0777, 修改为0700更安全.
unix_socket_permissions = 0700Linux下面默认是2小时. tcp的keepalives包发送间隔以及重试次数. 如果你的网络环境中有设备自动断开空闲会话,那么建议你设置心跳时间小于网络设备的断链接阈值。
tcp_keepalives_idle = 60
tcp_keepalives_interval = 10
tcp_keepalives_count = 6大的shared_buffers需要大的checkpoint_segments,同时需要申请更多的System V共享内存资源.
这个值不需要设的太大, 因为PostgreSQL还依赖操作系统的cache来提高读性能, 另外, 写操作频繁的数据库这个设太大反而会增加checkpoint压力(除非你使用了SSD或者IOPS能力很好的存储).
建议设置为内存大小的20%
shared_buffers = 1GB注意现在的PG版本已经支持大页了,如果需要的共享内存很多,建议使用大页。
需要在系统操作中开启大页支持。 cat /proc/meminfo |grep Hugepagesize   得到 2048 kB , 如果需要8G shared buffer, 输入 echo "vm.nr_hugepages=4096" (也可以略大) 这个值越大, VACUUM, CREATE INDEX的操作越快, 当然大到一定程度瓶颈就不在内存了, 可能是CPU例如创建索引.
这个值是一个操作的内存使用上限, 而不是一次性分配出去的. 并且需要注意如果开启了autovacuum, 最大可能有autovacuum_max_workers*maintenance_work_mem的内存被系统消耗掉.
maintenance_work_mem = 512MB建议防止暴力破解, 密码复杂度检测, 开启pg_stat_statements, 开启auto_explain, 参考 http://blog.163.com/digoal@126/blog/static/16387704020149852941586
shared_preload_libraries = 'auth_delay,passwordcheck,pg_stat_statements,auto_explain'           一般设置为比系统限制的略少,ulimit -a : stack size              (kbytes, -s) 10240
max_stack_depth = 8MB手动执行vacuum操作时, 默认是没有停顿执行到底的, 为了防止VACUUM操作消耗太多数据库服务器硬件资源, 这个值是指vacuum在消耗多少资源后停顿多少时间,以便其他的操作可以使用更多的硬件资源.
vacuum_cost_delay = 10ms
#vacuum_cost_page_hit = 1               # 0-10000 credits
#vacuum_cost_page_miss = 10             # 0-10000 credits
#vacuum_cost_page_dirty = 20            # 0-10000 credits
vacuum_cost_limit = 10000                # 1-10000 credits默认bgwriter进程执行一次后会停顿200ms再被唤醒执行下一次操作, 当数据库的写操作很频繁的时候, 200ms可能太长, 导致其他进程需要花费过多的时间来进行bgwriter的操作.
bgwriter_delay = 10ms如果需要做数据库WAL日志备份的话至少需要设置成archive级别, 如果需要做hot_standby那么需要设置成hot_standby, 由于这个值修改需要重启数据库, 所以先设置成hot_standby比较好. 当然hot_standby意味着WAL记录得更详细, 如果没有打算做hot_standby设置得越低性能越好.
wal_level = hot_standbyPostgreSQL 9.4已经支持逻辑复制了。如果是9.4,建议设置为logical。
# wal_level = logical                     # 如果将来打算使用logical复制, 最后先配置好, 不需要停机再改.wal buffers默认是-1 根据shared_buffers的设置自动调整shared_buffers*3% .最大限制是XLOG的segment_size.
wal_buffers = 16MB多少个xlog file产生后开始checkpoint操作, 这个值越大, 允许shared_buffer中的被频繁访问的脏数据存储得更久. 一定程度上可以提高数据库性能. 但是太大的话会导致在数据库发生checkpoint的时候需要处理更多的脏数据带来长时间的IO开销. 太小的话会导致产生更多的WAL文件(因为full page writes=on,CHECKPOINT后的第一次块的改变要写全块, checkpoint越频繁, 越多的数据更新要写全块导致产生更多WAL).
建议设置为shared_buffers除以单个XLOG文件的大小。
checkpoint_segments = 64这个和checkpoint_segments的效果是一样的, 只是触发的条件是时间条件.
checkpoint_timeout = 5min归档参数的修改也需要重启数据库, 所以就先打开吧.
archive_mode = on这个是归档调用的命令, 我这里用date代替, 所以归档的时候调用的是输出时间而不是拷贝wal文件.
archive_command = '/bin/date'如果要做hot standby这个必须大于0, 并且修改之后要重启数据库所以先设置为32.
max_wal_senders = 32这是个standby 数据库参数, 为了方便角色切换, 我一般是所有的数据库都把他设置为on 的.
hot_standby = on这个参数是说数据库中随机的PAGE访问的开销占seq_page_cost的多少倍 , seq_page_cost默认是1. 其他的开销都是seq_page_cost的倍数. 这些都用于基于成本的执行计划选择.
random_page_cost = 2.0和上一个参数一样, 用于基于成本的执行计划选择. 不是说会用多少cache, 它只是个度量值. 表示系统有多少内存可以作为操作系统的cache. 越大的话, 数据库越倾向使用index这种适合random访问的执行计划.
建议设置为内存的80%
effective_cache_size = 10GB下面是日志输出的配置.
log_destination = 'csvlog'
logging_collector = on
log_truncate_on_rotation = on
log_rotation_age = 1d
log_rotation_size = 10MB这个参数调整的是记录执行时间超过1秒的SQL到日志中, 一般用于跟踪哪些SQL执行时间长.
log_min_duration_statement = 1000ms记录每一次checkpoint到日志中.
log_checkpoints = on记录连接和断开连接
log_connections = on
log_disconnections = on
log_error_verbosity = verbose           # 在日志中输出代码位置记录锁等待超过1秒的操作, 一般用于排查业务逻辑上的问题.
log_lock_waits = on
deadlock_timeout = 1s记录DDL语句, 一般用于跟踪数据库中的危险操作.
log_statement = 'ddl'这个原本是1024表示跟踪的SQL在1024的地方截断, 超过1024将无法显示全SQL. 修改为2048会消耗更多的内存(基本可以忽略), 不过可以显示更长的SQL.
track_activity_query_size = 2048默认autovacuum就是打开的, log_autovacuum_min_duration = 0记录所有的autovacuum操作.
autovacuum = on
log_autovacuum_min_duration = 0这个模块用于记录数据库中的最近的1000条SQL以及这些SQL的统计信息, 如执行了多少次, 总共耗时是多少. 一般用于发现业务上最频繁调用的SQL是什么, 有针对性的进行SQL优化.
shared_preload_libraries = 'pg_stat_statements'现在的版本不需要设置custom_variable_classes
custom_variable_classes = 'pg_stat_statements'auth_delay.milliseconds = 5000          # 认证失败, 延迟多少毫秒反馈
auto_explain.log_min_duration = 5000    # 记录超过多少毫秒的SQL当时的执行计划
auto_explain.log_analyze = true
auto_explain.log_verbose = true
auto_explain.log_buffers = true
auto_explain.log_nested_statements = true
pg_stat_statements.track_utility=off
pg_stat_statements.max = 1000
pg_stat_statements.track = all其他参数值默认.
这些参数的详细解释如有疑问请参考PostgreSQL官方文档.3. 新建数据库用户digoal, 库digoal. 并使用前面的测试模型新建表以及函数, 初始化数据.下面的测试过程中只测登陆部分, 未测试退出部分, 因为登陆过程已经包含了INSERT, UPDATE, SELECT. 基本上可以反映整个调优过程了.【调优阶段1】
使用pgbench进行压力测试, 发现瓶颈并合理优化.
1. pgbench用到的登陆脚本
cat login.sql
\setrandom userid 1 20000000
select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;
insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());
update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;2. pgbench用到的退出脚本
cat logout.sql
\setrandom userid 1 20000000
insert into user_logout_rec (userid,logout_time,ip) values (:userid,now(),inet_client_addr());
update user_session set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=:userid;3. 压力测试
pgbench -M simple -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal4. 压力测试结果
transaction type: Custom query
scaling factor: 1
query mode: simple
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 62675
tps = 348.084647 (including connections establishing)
tps = 348.100337 (excluding connections establishing)
statement latencies in milliseconds:0.004577        \setrandom userid 1 2000000012.963789       select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;5.540750        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());4.457834        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;5. 瓶颈分析与优化
压力测试中查看数据库服务器的iostat -x
avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.69    0.00    0.25   24.11    0.00   74.95Device:         rrqm/s   wrqm/s   r/s   w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
cciss/c0d0        0.00     6.00  0.00  1.50     0.00    60.00    40.00     0.01    6.67   6.67   1.00
cciss/c0d0p1      0.00     6.00  0.00  1.50     0.00    60.00    40.00     0.01    6.67   6.67   1.00
cciss/c0d0p2      0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d0p3      0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d1        0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d2        0.00   638.50 10.00 217.50   160.00  6444.00    29.03   152.58  707.89   4.40 100.10
cciss/c0d3        0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d4        0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d5        0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
dm-0              0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
dm-1              0.00     0.00 10.00 866.50   160.00  6932.00     8.09   446.26  510.49   1.14 100.10
dm-2              0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
dm-3              0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
dm-4              0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
操作系统的平均IO请求等待700多毫秒, PostgreSQL数据文件所处的块设备使用率100%. 存在严重的IO性能瓶颈.使用pgfincore降低读的物理IO请求.
pgfincore的相关文章可参考如下,
《use posix_fadvise pre-cache frequency data》
http://blog.163.com/digoal@126/blog/static/163877040201062944945126/
《a powerful upgrade from pgfincore 1.0》
http://blog.163.com/digoal@126/blog/static/1638770402011630102117658/
《TOAST table with pgfincore》
http://blog.163.com/digoal@126/blog/static/16387704020120524144140/
pgfincore所起的作用类似EnterpriseDB的InfiniteCache或者熟悉Oracle的朋友可能更易于接受的KEEP BUFFER POOL.-- 载入os cache
digoal=> select reltoastrelid from pg_class where relname='user_info';reltoastrelid
---------------16424
(1 row)digoal=> select relname from pg_class where oid=16424;relname
----------------pg_toast_16421
(1 row)digoal=> \c digoal postgres
seYou are now connected to database "digoal" as user "postgres".
digoal=# select * from pgfadvise_willneed('pg_toast.pg_toast_16421');relpath                    | os_page_size | rel_os_pages | os_pages_free
----------------------------------------------+--------------+--------------+---------------pg_tblspc/16385/PG_9.1_201105231/16386/16424 |         4096 |            0 |        243865
(1 row)digoal=# select * from pgfadvise_willneed('digoal.user_info');relpath                     | os_page_size | rel_os_pages | os_pages_free
------------------------------------------------+--------------+--------------+---------------pg_tblspc/16385/PG_9.1_201105231/16386/16421   |         4096 |       262144 |        243834pg_tblspc/16385/PG_9.1_201105231/16386/16421.1 |         4096 |       262144 |        243834pg_tblspc/16385/PG_9.1_201105231/16386/16421.2 |         4096 |       244944 |        243834
(3 rows)digoal=# select * from pgfadvise_willneed('digoal.user_session');relpath                     | os_page_size | rel_os_pages | os_pages_free
------------------------------------------------+--------------+--------------+---------------pg_tblspc/16385/PG_9.1_201105231/16386/16431   |         4096 |       262144 |        243834pg_tblspc/16385/PG_9.1_201105231/16386/16431.1 |         4096 |        33640 |        243834
(2 rows)digoal=# select reltoastrelid from pg_class where relname='user_session';reltoastrelid
---------------0
(1 row)digoal=# select * from pgfadvise_willneed('digoal.pk_user_session');relpath                    | os_page_size | rel_os_pages | os_pages_free
----------------------------------------------+--------------+--------------+---------------pg_tblspc/16385/PG_9.1_201105231/16386/16438 |         4096 |       109680 |        243865
(1 row)digoal=# select * from pgfadvise_willneed('digoal.pk_user_info');relpath                    | os_page_size | rel_os_pages | os_pages_free
----------------------------------------------+--------------+--------------+---------------pg_tblspc/16385/PG_9.1_201105231/16386/16436 |         4096 |       109680 |        235567
(1 row)【调优阶段2】
1. 压力测试
pgbench -M simple -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal2. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: simple
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 264895
tps = 1471.517096 (including connections establishing)
tps = 1471.585818 (excluding connections establishing)
statement latencies in milliseconds:0.004226        \setrandom userid 1 200000000.459824        select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;2.457797        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());2.501684        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;3. 瓶颈分析与优化
SELECT语句的延时已经通过上一个优化阶段下降到了0.45毫秒, INSERT和UPDATE语句的平均耗时也从原来的5.5和4.45下降到了2.5.
原因是select的请求在内存中命中了, 因此update和insert不需要和select争抢物理io请求, 处理效率自然有一定的提高.
但是INSERT和UPDATE的语句延时还有2.5毫秒存在很大的可优化空间.
开启PostgreSQL的异步提交日志.
synchronous_commit = off
wal_writer_delay = 10ms与Oracle的异步日志差别请参考 :
《PostgreSQL and Oracle's async commit》
http://blog.163.com/digoal@126/blog/static/16387704020121229223072/【调优阶段3】
1. 压力测试
pgbench -M simple -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal2. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: simple
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 685344
tps = 3751.377919 (including connections establishing)
tps = 3751.568948 (excluding connections establishing)
statement latencies in milliseconds:0.003474        \setrandom userid 1 200000000.418716        select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;0.511601        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());1.188277        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;3. 瓶颈分析与优化
客户端连接使用simple协议, 存在一定的可优化空间.
修改协议为extended, 查看性能提升.【调优阶段4】
1. 压力测试
pgbench -M extended -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal2. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: extended
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 970981
tps = 5394.015368 (including connections establishing)
tps = 5394.215477 (excluding connections establishing)
statement latencies in milliseconds:0.003345        \setrandom userid 1 200000000.381675        select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;0.296300        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());0.792592        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;3. 瓶颈分析与优化
客户端连接使用extended协议, 存在一定的可优化空间.
修改协议为prepared, 查看性能提升多少.
参见 :
《PostgreSQL prepared statement: SPI_prepare, prepare|execute COMMAND, PL/pgsql STYLE: custom & generic plan cache》
http://blog.163.com/digoal@126/blog/static/1638770402012112452432251/【调优阶段5】
1. 压力测试
pgbench -M prepared -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal2. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 1044186
tps = 5800.589330 (including connections establishing)
tps = 5800.902491 (excluding connections establishing)
statement latencies in milliseconds:0.003465        \setrandom userid 1 200000000.319665        select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;0.266931        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());0.777822        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;3. 瓶颈分析与优化
压力测试的脚本中使用的是普通的SQL语句, 未使用初始化时用到的登陆函数和退出函数. 使用普通SQL显然比使用函数多了交互的次数以及每次发送的数据包的大小.
使用函数看看性能能提升多少.【调优阶段6】
1. 模拟用户登陆脚本
cat login.sql
\setrandom userid 1 20000000
SELECT f_user_login(:userid);2. 模拟用户退出脚本
cat logout.sql
\setrandom userid 1 20000000
SELECT f_user_logout(:userid);3. 压力测试
pgbench -M prepared -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal4. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 1616746
tps = 8981.596290 (including connections establishing)
tps = 8981.995800 (excluding connections establishing)
statement latencies in milliseconds:0.004012        \setrandom userid 1 200000000.881060        SELECT f_user_login(:userid);5. 瓶颈分析与优化
到这个时候看起来好像没什么好优化的了, 其实不然.
我们知道在整个登陆过程中用到了SELECT, UPDATE, INSERT.
其中UPDATE的表有一个PK索引, 每次更新需要修改数据表的同时还需要更新索引. 所以理论上这个更新操作表越小性能越高.
我们可以通过拆表来提升性能.
提醒,阿里云 RDS PG已经提供了分区表功能,而且比社区版本的分区表性能提升100倍,用户可以选择RDS PG试一试。
http://yq.aliyun.com/articles/113如下是社区版本的演示过程 :
拆表 :
create table user_info_0 (like user_info including all);
create table user_info_1 (like user_info including all);
create table user_info_2 (like user_info including all);
create table user_info_3 (like user_info including all);
create table user_info_4 (like user_info including all);create table user_session_0 (like user_session including all);
create table user_session_1 (like user_session including all);
create table user_session_2 (like user_session including all);
create table user_session_3 (like user_session including all);
create table user_session_4 (like user_session including all);插入初始化数据 :
insert into user_info_0 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(1,4000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;insert into user_info_1 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(4000001,8000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;insert into user_info_2 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(8000001,12000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;insert into user_info_3 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(12000001,16000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;insert into user_info_4 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(16000001,20000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;insert into user_session_0 (userid) select generate_series(1,4000000);
insert into user_session_1 (userid) select generate_series(4000001,8000000);
insert into user_session_2 (userid) select generate_series(8000001,12000000);
insert into user_session_3 (userid) select generate_series(12000001,16000000);
insert into user_session_4 (userid) select generate_series(16000001,20000000);创建索引
set work_mem='2048MB';
set maintenance_work_mem='2048MB';
alter table user_info_0 add primary key (userid);
alter table user_info_1 add primary key (userid);
alter table user_info_2 add primary key (userid);
alter table user_info_3 add primary key (userid);
alter table user_info_4 add primary key (userid);
alter table user_session_0 add primary key (userid);
alter table user_session_1 add primary key (userid);
alter table user_session_2 add primary key (userid);
alter table user_session_3 add primary key (userid);
alter table user_session_4 add primary key (userid);同样通过pgfincore把他们加载到内存中, 这里不详细描述.
新建登陆和退出函数
create or replace function f_user_login_0
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_0 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_0 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;create or replace function f_user_login_1
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_1 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_1 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;create or replace function f_user_login_2
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_2 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_2 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;create or replace function f_user_login_3
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_3 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_3 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;create or replace function f_user_login_4
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_4 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_4 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;create or replace function f_user_logout_0
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_0 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;create or replace function f_user_logout_1
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_1 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;create or replace function f_user_logout_2
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_2 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;create or replace function f_user_logout_3
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_3 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;create or replace function f_user_logout_4
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_4 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;【调优阶段7】
1. 登陆脚本
cat login*.sql
\setrandom userid 1 4000000
SELECT f_user_login_0(:userid);
\setrandom userid 4000001 8000000
SELECT f_user_login_1(:userid);
\setrandom userid 8000001 12000000
SELECT f_user_login_2(:userid);
\setrandom userid 12000001 16000000
SELECT f_user_login_3(:userid);
\setrandom userid 16000001 20000000
SELECT f_user_login_4(:userid);2. 退出脚本
cat logout*.sql
\setrandom userid 1 4000000
SELECT f_user_logout_0(:userid);
\setrandom userid 4000001 8000000
SELECT f_user_logout_1(:userid);
\setrandom userid 8000001 12000000
SELECT f_user_logout_2(:userid);
\setrandom userid 12000001 16000000
SELECT f_user_logout_3(:userid);
\setrandom userid 16000001 20000000
SELECT f_user_logout_4(:userid);3. 压力测试
pgbench -M prepared -r -c 1 -f /home/postgres/test/login0.sql -j 1 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login0 &
pgbench -M prepared -r -c 1 -f /home/postgres/test/login1.sql -j 1 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login1 &
pgbench -M prepared -r -c 2 -f /home/postgres/test/login2.sql -j 2 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login2 &
pgbench -M prepared -r -c 2 -f /home/postgres/test/login3.sql -j 2 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login3 &
pgbench -M prepared -r -c 2 -f /home/postgres/test/login4.sql -j 2 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login4 &4. 测试结果
cat log.log*
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 1
number of threads: 1
duration: 180 s
number of transactions actually processed: 233348
tps = 1281.818097 (including connections establishing)
tps = 1281.837109 (excluding connections establishing)
statement latencies in milliseconds:0.003492        \setrandom userid 1 40000000.771932        SELECT f_user_login_0(:userid);
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 1
number of threads: 1
duration: 180 s
number of transactions actually processed: 233466
tps = 1282.514774 (including connections establishing)
tps = 1282.573500 (excluding connections establishing)
statement latencies in milliseconds:0.003546        \setrandom userid 4000001 80000000.771399        SELECT f_user_login_1(:userid);
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 2
number of threads: 2
duration: 180 s
number of transactions actually processed: 475466
tps = 2612.200783 (including connections establishing)
tps = 2612.281526 (excluding connections establishing)
statement latencies in milliseconds:0.003605        \setrandom userid 8000001 120000000.757312        SELECT f_user_login_2(:userid);
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 2
number of threads: 2
duration: 180 s
number of transactions actually processed: 468904
tps = 2576.380443 (including connections establishing)
tps = 2576.488485 (excluding connections establishing)
statement latencies in milliseconds:0.003587        \setrandom userid 12000001 160000000.767869        SELECT f_user_login_3(:userid);
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 2
number of threads: 2
duration: 180 s
number of transactions actually processed: 439381
tps = 2414.347086 (including connections establishing)
tps = 2414.425600 (excluding connections establishing)
statement latencies in milliseconds:0.004431        \setrandom userid 16000001 200000000.817879        SELECT f_user_login_4(:userid);
总计 :
tps = 10167.261183 (including connections establishing)
tps = 10167.261183 (excluding connections establishing)5. 瓶颈分析与优化
到这里我们还没有关注过表空间, 其实这些表拆分后它们还在同一个表空间里面. 把它们放在不同的表空间可以扩展它们整体的IO吞吐能力.
postgres=# \db+List of tablespacesName    |  Owner   |                  Location                   |  Access privileges  | Description
------------+----------+---------------------------------------------+---------------------+-------------digoal     | postgres | /pgdata/digoal/1921/data02/pg_tbs/digoal    | postgres=C/postgres+| |          |                                             | digoal=C/postgres   | digoal_01  | postgres | /pgdata/digoal/1921/data03/pg_tbs/digoal_01 | postgres=C/postgres+| |          |                                             | digoal=C/postgres   | digoal_02  | postgres | /pgdata/digoal/1921/data04/pg_tbs/digoal_02 | postgres=C/postgres+| |          |                                             | digoal=C/postgres   | digoal_03  | postgres | /pgdata/digoal/1921/data05/pg_tbs/digoal_03 | postgres=C/postgres+| |          |                                             | digoal=C/postgres   | digoal_04  | postgres | /pgdata/digoal/1921/data06/pg_tbs/digoal_04 | postgres=C/postgres+| |          |                                             | digoal=C/postgres   |
digoal=> alter table user_info_0 set tablespace digoal_04;
ALTER TABLE
digoal=> alter table user_info_2 set tablespace digoal_01;
ALTER TABLE
digoal=> alter table user_info_3 set tablespace digoal_02;
ALTER TABLE
digoal=> alter table user_info_4 set tablespace digoal_03;digoal=> alter index user_info_0_pkey set tablespace digoal_04;
ALTER INDEX
digoal=> alter index user_info_2_pkey set tablespace digoal_01;
ALTER INDEX
digoal=> alter index user_info_3_pkey set tablespace digoal_02;
ALTER INDEX
digoal=> alter index user_info_4_pkey set tablespace digoal_03;digoal=> alter table user_session_0 set tablespace digoal_04;
ALTER TABLE
digoal=> alter table user_session_2 set tablespace digoal_01;
ALTER TABLE
digoal=> alter table user_session_3 set tablespace digoal_02;
ALTER TABLE
digoal=> alter table user_session_4 set tablespace digoal_03;digoal=> alter index user_session_0_pkey set tablespace digoal_04;
ALTER INDEX
digoal=> alter index user_session_2_pkey set tablespace digoal_01;
ALTER INDEX
digoal=> alter index user_session_3_pkey set tablespace digoal_02;
ALTER INDEX
digoal=> alter index user_session_4_pkey set tablespace digoal_03;重新把它们加载到内存.
未完待续。

图一 :

PostgreSQL 性能优化方法 - 1相关推荐

  1. 大主子表关联的性能优化方法

    [摘要] 主子表是数据库最常见的关联关系之一,最典型的包括合同和合同条款.订单和订单明细.保险保单和保单明细.银行账户和账户流水.电商用户和订单.电信账户和计费清单或流量详单.当主子表的数据量较大时, ...

  2. HBase性能优化方法总结(四):数据计算

    本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第四部分内容:数据计算相关的优化方法 ...

  3. HBase性能优化方法总结(4):读表操作

    来自:http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section3.html 本文主要是 ...

  4. HBase性能优化方法总结(3):写表操作

    本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第二部分内容:写表操作相关的优化方法 ...

  5. HBase性能优化方法总结(2):表的设计

    本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第一部分内容:表的设计相关的优化方法 ...

  6. DevExpress ChartControl大数据加载时有哪些性能优化方法

    DevExpress ChartControl加载大数据量数据时的性能优化方法有哪些? 关于图表优化,可从以下几个方面解决: 1.关闭不需要的可视化的元素(如LineMarkers, Labels等) ...

  7. 列举6个常见且实用的Web前端性能优化方法

    在如今这个信息爆炸的时代,人们的节奏总是快速的,对于一个网站的耐心毕竟是有限的可怜的,如果网站不进行优化必定会流失相当一部分的客户,带来不必要的损失.那么从Web前端的性能优化上来说有哪些常见.实用的 ...

  8. ​vSphere 性能优化方法总结

    ​vSphere 性能优化方法总结 https://mp.weixin.qq.com/s?__biz=MjM5NTk0MTM1Mw==&mid=2650635292&idx=1& ...

  9. 【前端性能优化方法与实战】

    [前端性能优化方法与实战] 性能优化概览

最新文章

  1. ffmpeg php 抠像_PHP中使用ffmpeg截取视频图片笔记
  2. 2021年用于图像处理的Python顶级库
  3. 低级键盘钩子,在WIN7以上版本的问题
  4. W32.Downedup.B顽固病毒——查杀记
  5. JDBC: Java连接MySQL
  6. 在SQL 语句批量替换数据库字符串的方法
  7. Python 中各种imread函数的区别与联系
  8. HDU - 7072 Boring data structure problem 双端队列 + 思维
  9. AtCoder Beginner Contest 178 总结
  10. antd table排序 vue_商品品牌业务之Vue编写前端页面
  11. Java毕设项目:垃圾分类(带源码和搭建过程)
  12. 远程多台前置机连接服务器上配置作业,得到作业运行历史记录
  13. Java开发QQ机器人
  14. C语言比赛评分系统报告,c语言编程:本课题模拟一个简单的比赛评分系统,选手从1号开始连续编号,选手得分分为专业素质得分和综...
  15. form-making爬坑笔记(jeecg项目替换表单设计器)
  16. 采购申请PR和采购订单PO的关系
  17. 当大叔爱上小萝莉我就爱上了正则表达式(一)
  18. 奥鹏福建师范计算机应用作业,奥鹏福建师范【计算机应用基础】在线作业一、二答案在末尾...
  19. 程序运算小数时为什么会出错?
  20. 《启示录:打造用户喜爱的产品》第一部分 人员6 招聘产品经理

热门文章

  1. 软件测试工程师怎么样面试上好的公司?
  2. 稳定性测试怎么做,这篇文章彻底讲透了
  3. python爬取b站评论_用python 抓取B站视频评论,制作词云
  4. 北京工商大学c语言复试试题,2016年北京工商大学计算机与信息工程学院C语言程序设计复试笔试仿真模拟题...
  5. 停车场管理系统linux实现,基于Linux的停车场管理系统的设计与实现
  6. Laplacian surface editing
  7. average diffusion distance
  8. VS2008下改变项目的默认属性
  9. TensorRT模型加速部署方案解析(视频/案例讲解)
  10. 基于web的通用文本标注工具MarkTool in NLP