点击上方“何俊林”,马上关注,每天早上8:50准时推送

真爱,请置顶或星标

本文转载自https://www.jianshu.com/p/fc8209499688

前言

HashMap在put的时候,插入的元素超过了容量(由负载因子决定)的范围就会触发扩容操作,就是rehash,这个会重新将原数组的内容重新hash到新的扩容数组中,在多线程的环境下,可能造成闭环链表,导致在get时会出现死循环,所以HashMap是线程不安全的。

我们来了解另一个键值存储集合HashTable,它是线程安全的,它在所有涉及到多线程操作的都加上了synchronized关键字来锁住整个table,这就意味着所有的线程都在竞争一把锁,在多线程的环境下,它是安全的,但是无疑是效率低下的。

其实HashTable有很多的优化空间,锁住整个table这么粗暴的方法可以变相的柔和点,比如在多线程的环境下,对不同的数据集进行操作时其实根本就不需要去竞争一个锁,因为他们不同hash值,不会因为rehash造成线程不安全,所以互不影响,这就是锁分离技术(分段锁技术),将锁的粒度降低,利用多个锁来控制多个小的table,这就是这篇文章的主角ConcurrentHashMap JDK1.7版本的核心思想,JDK1.8在此基础上又进行了进一步降低锁粒度。

一、ConcurrentHashMap JDK1.7的实现

在JDK1.7版本中,ConcurrentHashMap的数据结构是由一个Segment数组和多个HashEntry组成,如下图所示:

ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组。
final Segment[] segments;

Segment数组的意义就是将一个大的table分割成多个小的table来进行加锁,也就是上面的提到的锁分离技术(分段锁技术),而每一个Segment元素存储的是HashEntry数组+链表,这个和HashMap的数据存储结构一样

Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,所以,并发环境下,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。
HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。

static final class HashEntry<K,V> {final int hash;final K key;volatile V value;volatile HashEntry<K,V> next;//其他省略
}

我们说Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap差不离,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法

Segment(float lf, int threshold, HashEntry<K,V>[] tab) {this.loadFactor = lf;//负载因子this.threshold = threshold;//阈值this.table = tab;//主干数组即HashEntry数组}

我们来看下ConcurrentHashMap的构造方法

public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();//MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536if (concurrencyLevel > MAX_SEGMENTS)concurrencyLevel = MAX_SEGMENTS;//2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5int sshift = 0;//ssize 为segments数组长度,根据concurrentLevel计算得出int ssize = 1;while (ssize < concurrencyLevel) {++sshift;ssize <<= 1;}
...}

初始化方法有三个参数,如果用户不指定则会使用默认值,initialCapacity为16,loadFactor为0.75(负载因子,扩容时需要参考),concurrentLevel为16。
从上面的代码可以看出来,Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小的2的次幂。比如:默认情况下concurrentLevel是16,则ssize为16;若concurrentLevel为14,ssize为16;若concurrentLevel为17,则ssize为32。为什么Segment的数组大小一定是2的次幂?其实主要是便于通过按位与的散列算法来定位Segment的index。
put方法

public V put(K key, V value) {Segment<K,V> s;//concurrentHashMap不允许key/value为空if (value == null)throw new NullPointerException();//hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀int hash = hash(key);//返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segmentint j = (hash >>> segmentShift) & segmentMask;if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck(segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegments = ensureSegment(j);return s.put(key, hash, value, false);}

从源码看出,put的主要逻辑也就两步:1.定位segment并确保定位的Segment已初始化 2.调用Segment的put方法。

关于segmentShift和segmentMask

segmentShift和segmentMask这两个全局变量的主要作用是用来定位Segment,int j =(hash >>> segmentShift) & segmentMask。
segmentMask:段掩码,假如segments数组长度为16,则段掩码为16-1=15;segments长度为32,段掩码为32-1=31。这样得到的所有bit位都为1,可以更好地保证散列的均匀性
segmentShift:2的sshift次方等于ssize,segmentShift=32-sshift。若segments长度为16,segmentShift=32-4=28;若segments长度为32,segmentShift=32-5=27。而计算得出的hash值最大为32位,无符号右移segmentShift,则意味着只保留高几位(其余位是没用的),然后与段掩码segmentMask位运算来定位Segment。

get方法

public V get(Object key) {Segment<K,V> s; HashEntry<K,V>[] tab;int h = hash(key);long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;//先定位Segment,再定位HashEntryif ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&(tab = s.table) != null) {for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);e != null; e = e.next) {K k;if ((k = e.key) == key || (e.hash == h && key.equals(k)))return e.value;}}return null;
}

get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据。

来看下concurrentHashMap代理到Segment上的put方法,Segment中的put方法是要加锁的。只不过是锁粒度细了而已。

size操作
计算ConcurrentHashMap的元素大小是一个有趣的问题,因为他是并发操作的,就是在你计算size的时候,他还在并发的插入数据,可能会导致你计算出来的size和你实际的size有相差(在你return size的时候,插入了多个数据),要解决这个问题,JDK1.7版本用两种方案。

try {for (;;) {if (retries++ == RETRIES_BEFORE_LOCK) {for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); // force creation}sum = 0L;size = 0;overflow = false;for (int j = 0; j < segments.length; ++j) {Segment<K,V> seg = segmentAt(segments, j);if (seg != null) { sum += seg.modCount; int c = seg.count; if (c < 0 || (size += c) < 0)overflow = true;} }if (sum == last) break;last = sum; } }
finally {if (retries > RETRIES_BEFORE_LOCK) {for (int j = 0; j < segments.length; ++j)segmentAt(segments, j).unlock();}
}

第一种方案他会使用不加锁的模式去尝试多次计算ConcurrentHashMap的size,最多三次,比较前后两次计算的结果,结果一致就认为当前没有元素加入,计算的结果是准确的;
第二种方案是如果第一种方案不符合,他就会给每个Segment加上锁,然后计算ConcurrentHashMap的size返回。

二、ConcurrentHashMap JDK1.8的实现

JDK1.8的实现已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用Synchronized和CAS来操作,整个看起来就像是优化过且线程安全的HashMap,虽然在JDK1.8中还能看到Segment的数据结构,但是已经简化了属性,只是为了兼容旧版本。

在深入JDK1.8的put和get实现之前要知道一些常量设计和数据结构,这些是构成ConcurrentHashMap实现结构的基础,下面看一下基本属性:

// node数组最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认初始值,必须是2的幕数
private static final int DEFAULT_CAPACITY = 16;
//数组可能最大值,需要与toArray()相关方法关联
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//并发级别,遗留下来的,为兼容以前的版本
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
// 负载因子
private static final float LOAD_FACTOR = 0.75f;
// 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
private static final int MIN_TRANSFER_STRIDE = 16;
private static int RESIZE_STAMP_BITS = 16;
// 2^15-1,help resize的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 32-16=16,sizeCtl中记录size大小的偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
// forwarding nodes的hash值
static final int MOVED     = -1;
// 树根节点的hash值
static final int TREEBIN   = -2;
// ReservationNode的hash值
static final int RESERVED  = -3;
// 可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
//存放node的数组
transient volatile Node<K,V>[] table;
/*控制标识符,用来控制table的初始化和扩容的操作,不同的值有不同的含义*当为负数时:-1代表正在初始化,-N代表有N-1个线程正在 进行扩容*当为0时:代表当时的table还没有被初始化*当为正数时:表示初始化或者下一次进行扩容的大小*/
private transient volatile int sizeCtl;

基本属性定义了ConcurrentHashMap的一些边界以及操作时的一些控制,下面看一些内部的一些结构组成,这些是整个ConcurrentHashMap整个数据结构的核心。

Node

Node是ConcurrentHashMap存储结构的基本单元,继承于HashMap中的Entry,用于存储数据,源代码如下

static class Node<K,V> implements Map.Entry<K,V> {//链表的数据结构final int hash;final K key;//val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序volatile V val;volatile Node<K,V> next;Node(int hash, K key, V val, Node<K,V> next) {this.hash = hash;this.key = key;this.val = val;this.next = next;}public final K getKey()       { return key; }public final V getValue()     { return val; }public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }public final String toString(){ return key + "=" + val; }//不允许更新value  public final V setValue(V value) {throw new UnsupportedOperationException();}public final boolean equals(Object o) {Object k, v, u; Map.Entry<?,?> e;return ((o instanceof Map.Entry) &&(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&(v = e.getValue()) != null &&(k == key || k.equals(key)) &&(v == (u = val) || v.equals(u)));}//用于map中的get()方法,子类重写Node<K,V> find(int h, Object k) {Node<K,V> e = this;if (k != null) {do {K ek;if (e.hash == h &&((ek = e.key) == k || (ek != null && k.equals(ek))))return e;} while ((e = e.next) != null);}return null;}
}

Node数据结构很简单,从上可知,就是一个链表,但是只允许对数据进行查找,不允许进行修改。

TreeNode

TreeNode继承与Node,但是数据结构换成了二叉树结构,它是红黑树的数据的存储结构,用于红黑树中存储数据,当链表的节点数大于8时会转换成红黑树的结构,他就是通过TreeNode作为存储结构代替Node来转换成黑红树源代码如下。

static final class TreeNode<K,V> extends Node<K,V> {//树形结构的属性定义TreeNode<K,V> parent;  // red-black tree linksTreeNode<K,V> left;TreeNode<K,V> right;TreeNode<K,V> prev;    // needed to unlink next upon deletionboolean red; //标志红黑树的红节点TreeNode(int hash, K key, V val, Node<K,V> next,TreeNode<K,V> parent) {super(hash, key, val, next);this.parent = parent;}Node<K,V> find(int h, Object k) {return findTreeNode(h, k, null);}
}
TreeBin

TreeBin从字面含义中可以理解为存储树形结构的容器,而树形结构就是指TreeNode,所以TreeBin就是封装TreeNode的容器,它提供转换黑红树的一些条件和锁的控制,部分源码结构如下。

static final class TreeBin<K,V> extends Node<K,V> {//指向TreeNode列表和根节点TreeNode<K,V> root;volatile TreeNode<K,V> first;volatile Thread waiter;volatile int lockState;// 读写锁状态static final int WRITER = 1; // 获取写锁的状态static final int WAITER = 2; // 等待写锁的状态static final int READER = 4; // 增加数据时读锁的状态/*** 初始化红黑树......
}

我们先通过new ConcurrentHashMap()来进行初始化

public ConcurrentHashMap() {
}

由上你会发现ConcurrentHashMap的初始化其实是一个空实现,并没有做任何事,这里后面会讲到,这也是和其他的集合类有区别的地方,初始化操作并不是在构造函数实现的,而是在put操作中实现,当然ConcurrentHashMap还提供了其他的构造函数,有指定容量大小或者指定负载因子,跟HashMap一样,这里就不做介绍了。

put操作
public V put(K key, V value) {return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();int hash = spread(key.hashCode()); //两次hash,减少hash冲突,可以均匀分布int binCount = 0;for (Node<K,V>[] tab = table;;) { //对这个table进行迭代Node<K,V> f; int n, i, fh;//这里就是上面构造方法没有进行初始化,在这里进行判断,为null就调用initTable进行初始化,属于懒汉模式初始化if (tab == null || (n = tab.length) == 0)tab = initTable();else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//如果i位置没有数据,就直接无锁插入if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))break;                   // no lock when adding to empty bin}else if ((fh = f.hash) == MOVED)//如果在进行扩容,则先进行扩容操作tab = helpTransfer(tab, f);else {V oldVal = null;//如果以上条件都不满足,那就要进行加锁操作,也就是存在hash冲突,锁住链表或者红黑树的头结点synchronized (f) {if (tabAt(tab, i) == f) {if (fh >= 0) { //表示该节点是链表结构binCount = 1;for (Node<K,V> e = f;; ++binCount) {K ek;//这里涉及到相同的key进行put就会覆盖原先的valueif (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {  //插入链表尾部pred.next = new Node<K,V>(hash, key,value, null);break;}}}else if (f instanceof TreeBin) {//红黑树结构Node<K,V> p;binCount = 2;//红黑树结构旋转插入if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}}}if (binCount != 0) { //如果链表的长度大于8时就会进行红黑树的转换if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}}}addCount(1L, binCount);//统计size,并且检查是否需要扩容return null;
}

这个put的过程很清晰,对当前的table进行无条件自循环直到put成功,可以分成以下六步流程来概述。

  • a、如果没有初始化就先调用initTable()方法来进行初始化过程

  • b、如果没有hash冲突就直接CAS插入

  • c、如果还在进行扩容操作就先进行扩容

  • d、如果存在hash冲突,就加锁来保证线程安全,这里有两种情况,一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入,

  • e、最后一个如果该链表的数量大于阈值8,就要先转换成黑红树的结构,break再一次进入循环

  • f、如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容

现在我们来对每一步的细节进行源码分析,在第一步中,符合条件会进行初始化操作,我们来看看initTable()方法

private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;while ((tab = table) == null || tab.length == 0) {//空的table才能进入初始化操作if ((sc = sizeCtl) < 0) //sizeCtl<0表示其他线程已经在初始化了或者扩容了,挂起当前线程 Thread.yield(); // lost initialization race; just spinelse if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//CAS操作SIZECTL为-1,表示初始化状态try {if ((tab = table) == null || tab.length == 0) {int n = (sc > 0) ? sc : DEFAULT_CAPACITY;@SuppressWarnings("unchecked")Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];//初始化table = tab = nt;sc = n - (n >>> 2);//记录下次扩容的大小}} finally {sizeCtl = sc;}break;}}return tab;
}

在第二步中没有hash冲突就直接调用Unsafe的方法CAS插入该元素,进入第三步如果容器正在扩容,则会调用helpTransfer()方法帮助扩容,其实helpTransfer()方法的目的就是调用多个工作线程一起帮助进行扩容,这样的效率就会更高,而不是只有检查到要扩容的那个线程进行扩容操作,其他线程就要等待扩容操作完成才能工作

扩容过程有点复杂,这里主要涉及到多线程并发扩容,ForwardingNode的作用就是支持扩容操作,将已处理的节点和空节点置为ForwardingNode,并发处理时多个线程经过ForwardingNode就表示已经遍历了,就往后遍历,下图是多线程合作扩容的过程

介绍完扩容过程,我们再次回到put流程,在第四步中是向链表或者红黑树里加节点,到第五步,会调用treeifyBin()方法进行链表转红黑树的过程。

private final void treeifyBin(Node<K,V>[] tab, int index) {Node<K,V> b; int n, sc;if (tab != null) {//如果整个table的数量小于64,就扩容至原来的一倍,不转红黑树了//因为这个阈值扩容可以减少hash冲突,不必要去转红黑树if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1);else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {synchronized (b) {if (tabAt(tab, index) == b) {TreeNode<K,V> hd = null, tl = null;for (Node<K,V> e = b; e != null; e = e.next) {//封装成TreeNodeTreeNode<K,V> p =new TreeNode<K,V>(e.hash, e.key, e.val,null, null);if ((p.prev = tl) == null)hd = p;elsetl.next = p;tl = p;}//通过TreeBin对象对TreeNode转换成红黑树setTabAt(tab, index, new TreeBin<K,V>(hd));}}}}
}

到第六步表示已经数据加入成功了,现在调用addCount()方法计算ConcurrentHashMap的size,在原来的基础上加一,现在来看看addCount()方法。

private final void addCount(long x, int check) {CounterCell[] as; long b, s;//更新baseCount,table的数量,counterCells表示元素个数的变化if ((as = counterCells) != null ||!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {CounterCell a; long v; int m;boolean uncontended = true;//如果多个线程都在执行,则CAS失败,执行fullAddCount,全部加入countif (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null ||!(uncontended =U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {fullAddCount(x, uncontended);return;}if (check <= 1)return;s = sumCount();}//check>=0表示需要进行扩容操作if (check >= 0) {Node<K,V>[] tab, nt; int n, sc;while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&(n = tab.length) < MAXIMUM_CAPACITY) {int rs = resizeStamp(n);if (sc < 0) {if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||transferIndex <= 0)break;if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))transfer(tab, nt);}//当前线程发起库哦哦让操作,nextTable=nullelse if (U.compareAndSwapInt(this, SIZECTL, sc,(rs << RESIZE_STAMP_SHIFT) + 2))transfer(tab, null);s = sumCount();}}
}

put的流程现在已经分析完了,你可以从中发现,他在并发处理中使用的是乐观锁,当有冲突的时候才进行并发处理,而且流程步骤很清晰,但是细节设计的很复杂,毕竟多线程的场景也复杂。

get操作

我们现在要回到开始的例子中,我们对个人信息进行了新增之后,我们要获取所新增的信息,使用String name = map.get(“name”)获取新增的name信息,现在我们依旧用debug的方式来分析下ConcurrentHashMap的获取方法get()

public V get(Object key) {Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;int h = spread(key.hashCode()); //计算两次hashif ((tab = table) != null && (n = tab.length) > 0 &&(e = tabAt(tab, (n - 1) & h)) != null) {//读取首节点的Node元素if ((eh = e.hash) == h) { //如果该节点就是首节点就返回if ((ek = e.key) == key || (ek != null && key.equals(ek)))return e.val;}//hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来//查找,查找到就返回else if (eh < 0)return (p = e.find(h, key)) != null ? p.val : null;while ((e = e.next) != null) {//既不是首节点也不是ForwardingNode,那就往下遍历if (e.hash == h &&((ek = e.key) == key || (ek != null && key.equals(ek))))return e.val;}}return null;
}

ConcurrentHashMap的get操作的流程很简单,也很清晰,可以分为三个步骤来描述
a、计算hash值,定位到该table索引位置,如果是首节点符合就返回
b、如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回
c、以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null
size操作
最后我们来看下例子中最后获取size的方式int size = map.size();,现在让我们看下size()方法

public int size() {long n = sumCount();return ((n < 0L) ? 0 :(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :(int)n);
}
final long sumCount() {CounterCell[] as = counterCells; CounterCell a; //变化的数量long sum = baseCount;if (as != null) {for (int i = 0; i < as.length; ++i) {if ((a = as[i]) != null)sum += a.value;}}return sum;
}

在JDK1.8版本中,对于size的计算,在扩容和addCount()方法就已经有处理了,JDK1.7是在调用size()方法才去计算,其实在并发集合中去计算size是没有多大的意义的,因为size是实时在变的,只能计算某一刻的大小,但是某一刻太快了,人的感知是一个时间段,所以并不是很精确。

三、总结与思考

其实可以看出JDK1.8版本的ConcurrentHashMap的数据结构已经接近HashMap,相对而言,ConcurrentHashMap只是增加了同步的操作来控制并发,从JDK1.7版本的ReentrantLock+Segment+HashEntry,到JDK1.8版本中synchronized+CAS+HashEntry+红黑树,相对而言,总结如下思考:

1、JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)

2、JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了

3、JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档

4、JDK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock,我觉得有以下几点:

  • a、因为粒度降低了,在相对而言的低粒度加锁方式,synchronized并不比ReentrantLock差,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了

  • b、JVM的开发团队从来都没有放弃synchronized,而且基于JVM的synchronized优化空间更大,使用内嵌的关键字比使用API更加自然

  • c、在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存,虽然不是瓶颈,但是也是一个选择依据

我敢打赌,你对ConcurrentHashMap不了解?相关推荐

  1. 调试JDK源码-ConcurrentHashMap实现原理

    调试JDK源码-一步一步看HashMap怎么Hash和扩容 调试JDK源码-ConcurrentHashMap实现原理 调试JDK源码-HashSet实现原理 调试JDK源码-调试JDK源码-Hash ...

  2. 面试之Hashtable和ConcurrentHashMap

    那么要如何保证HashMap的线程安全呢? 方法有很多,比如使用Hashtable或者Collections.synchronizedMap,但是这两位选手都有一个共同的问题:性能.因为不管是读还是写 ...

  3. 深入研究ConcurrentHashMap 源码从7到8的变迁

    ConcurrentHashMap是线程安全且高效的HashMap 1 为什么要使用ConcurrentHashMap 线程不安全的HashMap HashMap是Java中最常用的一个Map类,性能 ...

  4. 【转】HashMap、TreeMap、Hashtable、HashSet和ConcurrentHashMap区别

    转自:http://blog.csdn.net/paincupid/article/details/47746341 一.HashMap和TreeMap区别 1.HashMap是基于散列表实现的,时间 ...

  5. Hashtable,HashMap,ConcurrentHashMap都是Map的实现类,它们在处理null值的存储上有细微的区别,下列哪些说法是正确的

    多选 Hashtable,HashMap,ConcurrentHashMap都是Map的实现类,它们在处理null值的存储上有细微的区别,下列哪些说法是正确的:答案在文末 A. Hashtable的K ...

  6. ConcurrentHashMap实现原理及源码分析

    ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对HashMap的实现原理还不甚了解,可参考我的另一篇文章HashMap实现原理及源码分析),Con ...

  7. 为什么 ConcurrentHashMap 的读操作不需要加锁?

    点击关注公众号,Java干货及时送达 作者:上帝爱吃苹果 地址:www.cnblogs.com/keeya/p/9632958.html 我们知道,ConcurrentHashmap(1.8)这个并发 ...

  8. 解读Java 8 中为并发而生的 ConcurrentHashMap

    点击上方"方志朋",选择"设为星标" 回复"666"获取新整理的面试文章 作者 | Single_Yam 来源 | cnblogs.com/ ...

  9. 面试再被问到 ConcurrentHashMap,把这篇文章甩给他!

    点击上方"方志朋",选择"设为星标" 回复"666"获取新整理的面试文章 来源:^_TONY_^ cnblogs.com/ITtangtan ...

  10. 不止JDK7的HashMap,JDK8的ConcurrentHashMap也会造成CPU 100%

    点击上方"方志朋",选择"设为星标" 回复"666"获取新整理的面试资料 作者:朱小厮 公众号:朱小厮的博客(ID:hiddenkafka) ...

最新文章

  1. sdut 2401 最大矩形面积
  2. H5-Dooring可视化搭建平台的新技能
  3. tomcat安全配置之禁用Directory Listing
  4. 【MyBatis使用】mapper.xml 调试时无法打印SQL的无奈解决方法分享(原因说明+举例)
  5. poj 1679: The Unique MST【次小生成树】
  6. WordPress美化_节日灯笼插件
  7. 字节流通向字符流的桥梁:InputStreamReader
  8. CocoaPods 基础知识--------安装 及 使用第三方库
  9. 学习用 Keras 搭建 CNN RNN 等常用神经网络
  10. 转:Ajax调用Webservice和后台方法
  11. Java 实战篇-JDK9新特性
  12. Android 颜色渲染(三) Shader颜色渲染
  13. 【图像融合】基于matlab小波变换灰色图像融合(含相关性、信噪比)【含Matlab源码 1841期】
  14. 分支的操作 - git checkout -b
  15. iphone游戏开发(转)
  16. NLP,能辅助法官判案吗? | CCF C³
  17. Matlab系列教程_基础知识_绘图(一)
  18. mysql egt_ThinkPHP常用的运算符介绍eq|neq|gt|egt|lt|elt|heq|nheq
  19. 诺兰回归,方舟渡劫——短信登录京东青龙
  20. 一个投资人必须具备的心理素质 心理素质如何培养

热门文章

  1. 面试题:逗号表达式运用
  2. 实战Python:利用python在pycharm开发终端简易计算器
  3. FFmpeg学习(1)——视频文件格式转换
  4. OpenCV_(Using GrabCut extract the foreground object) 使用 GrabCut 算法提取前景物体
  5. ORB_SLAM2探秘 第三章 LoopClosing线程
  6. 前端复习笔记(二)——CSS
  7. OWOD:开放世界目标检测,更贴近现实的检测场景 | CVPR 2021 Oral
  8. ICRA 2021| 基于精确和减少漂移的关注距离的Camera-IMU-UWB融合定位方法
  9. tensorflow线下训练SSD深度学习物体检测模型,C++线上调用模型进行识别定位(干货满满)
  10. 主引导扇区(MBR)释疑