1. 参数

1.1. 配置参数ISAM2Params

struct ISAM2Params {typedef boost::variant<ISAM2GaussNewtonParams, ISAM2DoglegParams>OptimizationParams;  ///< Either ISAM2GaussNewtonParams or///< ISAM2DoglegParamstypedef boost::variant<double, FastMap<char, Vector> >RelinearizationThreshold;  ///< Either a constant relinearization///< threshold or a per-variable-type set of///< thresholds/** Optimization parameters, this both selects the nonlinear optimization* method and specifies its parameters, either ISAM2GaussNewtonParams or* ISAM2DoglegParams.  In the former, Gauss-Newton optimization will be used* with the specified parameters, and in the latter Powell's dog-leg* algorithm will be used with the specified parameters.*/OptimizationParams optimizationParams;/** Only relinearize variables whose linear delta magnitude is greater than* this threshold (default: 0.1).  If this is a FastMap<char,Vector> instead* of a double, then the threshold is specified for each dimension of each* variable type.  This parameter then maps from a character indicating the* variable type to a Vector of thresholds for each dimension of that* variable.  For example, if Pose keys are of type TypedSymbol<'x',Pose3>,* and landmark keys are of type TypedSymbol<'l',Point3>, then appropriate* entries would be added with:* \codeFastMap<char,Vector> thresholds;thresholds['x'] = (Vector(6) << 0.1, 0.1, 0.1, 0.5, 0.5, 0.5).finished();// 0.1 rad rotation threshold, 0.5 m translation threshold thresholds['l'] =Vector3(1.0, 1.0, 1.0);                // 1.0 m landmark position thresholdparams.relinearizeThreshold = thresholds;\endcode*/RelinearizationThreshold relinearizeThreshold;int relinearizeSkip;  ///< Only relinearize any variables every///< relinearizeSkip calls to ISAM2::update (default:///< 10)bool enableRelinearization;  ///< Controls whether ISAM2 will ever relinearize///< any variables (default: true)bool evaluateNonlinearError;  ///< Whether to evaluate the nonlinear error///< before and after the update, to return in///< ISAM2Result from update()enum Factorization { CHOLESKY, QR };/** Specifies whether to use QR or CHOESKY numerical factorization (default:* CHOLESKY). Cholesky is faster but potentially numerically unstable for* poorly-conditioned problems, which can occur when uncertainty is very low* in some variables (or dimensions of variables) and very high in others.  QR* is slower but more numerically stable in poorly-conditioned problems.  We* suggest using the default of Cholesky unless gtsam sometimes throws* IndefiniteLinearSystemException when your problem's Hessian is actually* positive definite.  For positive definite problems, numerical error* accumulation can cause the problem to become numerically negative or* indefinite as solving proceeds, especially when using Cholesky.*/Factorization factorization;/** Whether to cache linear factors (default: true).* This can improve performance if linearization is expensive, but can hurt* performance if linearization is very cleap due to computation to look up* additional keys.*/bool cacheLinearizedFactors;KeyFormatterkeyFormatter;  ///< A KeyFormatter for when keys are printed during///< debugging (default: DefaultKeyFormatter)bool enableDetailedResults;  ///< Whether to compute and return///< ISAM2Result::detailedResults, this can///< increase running time (default: false)/** Check variables for relinearization in tree-order, stopping the check once* a variable does not need to be relinearized (default: false). This can* improve speed by only checking a small part of the top of the tree.* However, variables below the check cut-off can accumulate significant* deltas without triggering relinearization. This is particularly useful in* exploration scenarios where real-time performance is desired over* correctness. Use with caution.*/bool enablePartialRelinearizationCheck;/// When you will be removing many factors, e.g. when using ISAM2 as a/// fixed-lag smoother, enable this option to add factors in the first/// available factor slots, to avoid accumulating nullptr factor slots, at the/// cost of having to search for slots every time a factor is added.bool findUnusedFactorSlots;
};

1.2. 更新参数ISAM2UpdateParams

struct ISAM2UpdateParams {ISAM2UpdateParams() = default;/** Indices of factors to remove from system (default: empty) */FactorIndices removeFactorIndices;/** An optional map of keys to group labels, such that a variable can be* constrained to a particular grouping in the BayesTree */boost::optional<FastMap<Key, int>> constrainedKeys{boost::none};/** An optional set of nonlinear keys that iSAM2 will hold at a constant* linearization point, regardless of the size of the linear delta */boost::optional<FastList<Key>> noRelinKeys{boost::none};/** An optional set of nonlinear keys that iSAM2 will re-eliminate, regardless* of the size of the linear delta. This allows the provided keys to be* reordered. */boost::optional<FastList<Key>> extraReelimKeys{boost::none};/** Relinearize any variables whose delta magnitude is sufficiently large* (Params::relinearizeThreshold), regardless of the relinearization* interval (Params::relinearizeSkip). */bool force_relinearize{false};/** An optional set of new Keys that are now affected by factors,* indexed by factor indices (as returned by ISAM2::update()).* Use when working with smart factors. For example:*  - Timestamp `i`: ISAM2::update() called with a new smart factor depending*    on Keys `X(0)` and `X(1)`. It returns that the factor index for the new*    smart factor (inside ISAM2) is `13`.*  - Timestamp `i+1`: The same smart factor has been augmented to now also*    depend on Keys `X(2)`, `X(3)`. Next call to ISAM2::update() must include*    its `newAffectedKeys` field with the map `13 -> {X(2), X(3)}`.*/boost::optional<FastMap<FactorIndex, KeySet>> newAffectedKeys{boost::none};/** By default, iSAM2 uses a wildfire update scheme that stops updating when* the deltas become too small down in the tree. This flagg forces a full* solve instead. */bool forceFullSolve{false};
};

1.3. 返回参数ISAM2Result

/*** @addtogroup ISAM2* This struct is returned from ISAM2::update() and contains information about* the update that is useful for determining whether the solution is* converging, and about how much work was required for the update.  See member* variables for details and information about each entry.*/
struct ISAM2Result {/** The nonlinear error of all of the factors, \a including new factors and* variables added during the current call to ISAM2::update().  This error is* calculated using the following variable values:* \li Pre-existing variables will be evaluated by combining their* linearization point before this call to update, with their partial linear* delta, as computed by ISAM2::calculateEstimate().* \li New variables will be evaluated at their initialization points passed* into the current call to update.* \par Note: This will only be computed if* ISAM2Params::evaluateNonlinearError is set to \c true, because there is* some cost to this computation.*/boost::optional<double> errorBefore;/** The nonlinear error of all of the factors computed after the current* update, meaning that variables above the relinearization threshold* (ISAM2Params::relinearizeThreshold) have been relinearized and new* variables have undergone one linear update.  Variable values are* again computed by combining their linearization points with their* partial linear deltas, by ISAM2::calculateEstimate().* \par Note: This will only be computed if* ISAM2Params::evaluateNonlinearError is set to \c true, because there is* some cost to this computation.*/boost::optional<double> errorAfter;/** The number of variables that were relinearized because their linear* deltas exceeded the reslinearization threshold* (ISAM2Params::relinearizeThreshold), combined with any additional* variables that had to be relinearized because they were involved in* the same factor as a variable above the relinearization threshold.* On steps where no relinearization is considered* (see ISAM2Params::relinearizeSkip), this count will be zero.*/size_t variablesRelinearized;/** The number of variables that were reeliminated as parts of the Bayes'* Tree were recalculated, due to new factors.  When loop closures occur,* this count will be large as the new loop-closing factors will tend to* involve variables far away from the root, and everything up to the root* will be reeliminated.*/size_t variablesReeliminated;/** The number of factors that were included in reelimination of the Bayes'* tree. */size_t factorsRecalculated;/** The number of cliques in the Bayes' Tree */size_t cliques;/** The indices of the newly-added factors, in 1-to-1 correspondence with the* factors passed as \c newFactors to ISAM2::update().  These indices may be* used later to refer to the factors in order to remove them.*/FactorIndices newFactorsIndices;/** Unused keys, and indices for unused keys,* i.e., keys that are empty now and do not appear in the new factors.*/KeySet unusedKeys;/** keys for variables that were observed, i.e., not unused. */KeyVector observedKeys;/** Keys of variables that had factors removed. */KeySet keysWithRemovedFactors;/** All keys that were marked during the update process. */KeySet markedKeys;
}

2. 函数说明

2.1. ISAM2::marginalizeLeaves

Marginalize out variables listed in leafKeys. These keys must be leaves in the BayesTree. Throws MarginalizeNonleaf Exception if non-leaves are requested to be marginalized. Marginalization leaves a linear approximation of the marginal in the system, and the linearization points of any variables involved in this linear marginal become fixed. The set fixed variables will include any key involved with the marginalized variables in the original factors, and possibly additional ones due to fill-in.

If provided, 'marginalFactorsIndices' will be augmented with the factor graph indices of the marginal factors added during the 'marginalizeLeaves' call

If provided, 'deletedFactorsIndices' will be augmented with the factor graph indices of any factor that was removed during the 'marginalizeLeaves'

2.2. ISAM2::recalculateIncremental

2.3. ISAM2::recalculateBatch

2.4. recursiveMarkAffectedKeys

在IncrementalFixedLagSmoother.cpp这个文件中,但并不是成员函数。

用于标记一个key的子树

2.5. IncrementalFixedLagSmoother::update

2.6. ISAM2::update

2.7. BayesTree::removeSubtree

如果入参是根团,删除该团及其所有子孙团,在node_中也有删除

如果入参不是根节点,先把其父团与其的边删除

返回所有被删除的团

3. 成员变量说明

Values ISAM2::theta_

VectorValues ISAM2::delta_

VariableIndex ISAM2::variableIndex_

4. 辅助类

4.1. treeTraversalNode-inst.h

// Internal node used in DFS preorder stack
template<typename NODE, typename DATA>
struct TraversalNode {bool expanded;const boost::shared_ptr<NODE>& treeNode;DATA& parentData;typename FastList<DATA>::iterator dataPointer;TraversalNode(const boost::shared_ptr<NODE>& _treeNode, DATA& _parentData) :expanded(false), treeNode(_treeNode), parentData(_parentData) {}
};

4.2. EliminationTree.h

struct EliminationTree::Node {typedef FastVector<sharedFactor> Factors;typedef FastVector<boost::shared_ptr<Node> > Children;Key key; ///< key associated with rootFactors factors; ///< factors associated with rootChildren children; ///< sub-treessharedFactor eliminate(const boost::shared_ptr<BayesNetType>& output,const Eliminate& function,const FastVector<sharedFactor>& childrenFactors) const;void print(const std::string& str, const KeyFormatter& keyFormatter) const;
};

4.3. ClusterTree-inst.h

struct EliminationData {// Typedefstypedef typename CLUSTERTREE::sharedFactor sharedFactor;typedef typename CLUSTERTREE::FactorType FactorType;typedef typename CLUSTERTREE::FactorGraphType FactorGraphType;typedef typename CLUSTERTREE::ConditionalType ConditionalType;typedef typename CLUSTERTREE::BayesTreeType::Node BTNode;// member variablesEliminationData* const parentData;size_t myIndexInParent;FastVector<sharedFactor> childFactors;boost::shared_ptr<BTNode> bayesTreeNode;// member functions// Elimination pre-order visitor - creates the EliminationData structure for the visited node.static EliminationData EliminationPreOrderVisitor(const typename CLUSTERTREE::sharedNode& node,EliminationData& parentData) {assert(node);EliminationData myData(&parentData, node->nrChildren());myData.bayesTreeNode->problemSize_ = node->problemSize();return myData;}// ........
}

4.4. VariableIndex

The VariableIndex class computes and stores the block column structure of a factor graph.  The factor graph stores a collection of factors, each of which involves a set of variables.  In contrast, the VariableIndex is built from a factor graph prior to elimination, and stores the list of factors that involve each variable.  This information is stored as a deque of lists of factor indices.
最主要的成变量是FastMap<Key, FactorIndices> index_,用于存储key和因子的索引的对应关系

GTSAM中ISAM2和IncrementalFixedLagSmoother说明相关推荐

  1. gtsam 学习十(ISAM2 理论)

    翻译自:iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree 摘要 提出了一种新型的贝斯树处理稀疏矩阵,在转化为因子图,可以更好的 ...

  2. gtsam 学习十一(ISAM2 实践)

    来自gtam/examples/ ISAM1模板 #include <gtsam/geometry/Point2.h> #include <gtsam/geometry/Simple ...

  3. SC-A-LOAM:在A-LOAM中加入回环检测

    Thanks to LOAM, A-LOAM, and LIO-SAM code authors. The major codes in this repository are borrowed fr ...

  4. GTSAM Tutorial学习笔记

    GTSAM Tutorial学习笔记 GTSAM Tutorial学习笔记 1. 基本原理 2. Demo代码 3. LIO-SAM中部分代码分析 3.1 预积分因子图 3.2 关键帧因子图 GTSA ...

  5. loam和blam的 gtsam 安装的坑

    首先下载了https://github.com/erik-nelson/blam.git的代码,编译过程中出现了下面问题: 1. _CMake Error at laser_loop_closure/ ...

  6. GTSAM 官方教程学习

    GTSAM官方教程学习 0. 前言 1. 因子图 1.1 序 1.2 因子图 1.2.1 贝叶斯网络 1.2.2 因子图 2. 运动建模 2.1 因子图建模 2.2 创建因子图 2.3 因子图与变量 ...

  7. GTSAM 学习(一)

    GTSAM(Georgia Tech Smoothing and Mapping)是基于因子图的C++库,它可以解决slam和sfm的问题,当然它也可以解决简单或者更加复杂的估计问题. 主要由以下三个 ...

  8. isam2 优化pose graph

    gtsam里面只有一个isam2的例子,那个例子里面没有添加位姿闭环约束,主要是视觉BA.而通过闭环优化位姿的gtsam程序主要是Pose2SLAMExample.cpp等,这种用法类似g2o,不能体 ...

  9. GNU Make 使用手册(于凤昌中译版)

    GNU Make 使用手册(中译版) 翻译:于凤昌 GNU make Version 3.79 April 2000 Richard M. Stallman and Roland McGrath 1 ...

最新文章

  1. 在装有Ubuntu16.04的VMware虚拟机下安装OpenCV3.2.0
  2. Sql面试题之三(难度:简单| 含答案)
  3. Java计算器接口策略_Java 基础 接口 ——运算
  4. (转载)FPGA基础知识------PS/2基础知识
  5. 领域模型命名规约【PO,VO,POJO,BO,DTO,DO,JavaBean】
  6. 系统架构师学习笔记_第十一章(上)_连载
  7. 什么是 IP 地址?
  8. ai字体素材网站_综合网站大全,字体、设计、图片各种素材管够,资源丰富你懂得...
  9. nginx ngx_core_module(main event)
  10. Python如何从社交用户信息中寻找潜在客户?
  11. Xshell出现要继续使用此程序必须应用到最新的更新或使用新版本
  12. 从Google到Facebook再到微博,算法与数据中台大咖谈
  13. Django OAuth2 linkedin的第三方登录
  14. 金士顿8GU盘量产实录
  15. 线性代数(1):行列式和展开式
  16. python3+selenium3+ie9初体验
  17. jsd 多线程与socket网络通信
  18. 死链提交为什么不能提交 html文件,死链提交有什么用(如何处理网站死链)
  19. linux服务器抓包实例
  20. FastReport——打印和打印设置

热门文章

  1. Windows Server 2016 远程桌面会话主机授权设置
  2. ITU-R 建议书下载网址
  3. 初学python的体会心得-python学习心得:如何入门
  4. 浅谈NAT(网络地址转换)原理 + 个人的思考
  5. opencv中findContours 和drawContours画图函数
  6. 1. 【Part3】 Contour Detection and Hierarchical Image Segmentation【轮廓检测图像分割】
  7. Java8 官方jvm 标准参考 -XX 配置参数详细信息
  8. discuz安装配置
  9. How to increase the JES2 spool size
  10. 大白话5分钟带你走进人工智能-第30节集成学习之Boosting方式和Adaboost