转载

摘要:在嵌入式系统中,以太网控制器通常也是研究热点之一,MicroChip公司的ENC28J60在嵌入式系统中应用价值较高,该芯片集成了MAC控制器和PHY,使用SPI接口,适合在引脚资源比较紧张的嵌入式系统中加入以太网连接功能,本文主要介绍了MicroChip公司的ENC28J60控制器的初始化及其编程相关的注意和要点,并针对开发中可能遇到的一些问题进行了探讨。
关键字: ENC28J60编程

1.以太网数据缓冲区(8K)读写/地址控制REG的相关作用:

注意,这些REG除EPKTCNT外都为16bits,以太网数据缓冲区地址为:0000h~1FFFh

1).ERDPT(分为H/L两个)MCU读缓冲器指针:

--手册P28,MCU读取缓冲区数据时,每次实际读取的地址由该REG保存.

2).EWRPT(分为H/L两个)MCU写缓冲器指针:

--手册P29,MCU向缓冲区写入数据时,每次实际写入的地址由该REG保存.

3).ERXRDPT(分为H/L两个)接收读指针:

--手册P17,P33, 定义禁止接收硬件写入的FIFO 中的位置。 在正常操作中,接收硬件(指网络接口方向)将数据顺序写入,直到ERXRDPT 所指单元(不包括该单元)。注意,该REG与释放缓冲区的空间操作相关.

4).ERXWRPT(分为H/L两个)接收写指针:

--手册P17,P33, 定义接收硬件收到的数据写入的FIFO 中的具体位置。 在正常操作中,接收硬件(指网络接口方向)将数据顺序写入ERXWRPT所指单元。注意,该REG为”只读”,且与释放缓冲区的空间操作相关.

5).ETXST(分为H/L两个)发送缓区起始地址:

--手册P17,在整个以太网数据缓冲区中,定义待发送数据区的首地址

6).ETXND(分为H/L两个)发送缓区结束地址:

--手册P17,在整个以太网数据缓冲区中,定义待发送数据区的尾地址

7).ERXST(分为H/L两个)接收缓区起始地址:

--手册P17, 在整个以太网数据缓冲区中,定义接收硬件可以写入数据的缓冲区首地址.

8).ERXND(分为H/L两个)接收缓区结束地址:

--手册P17, 在整个以太网数据缓冲区中,定义接收硬件可以写入数据的缓冲区尾地址.

9).EPKTCNT(8bits)以太网数据包计数器:

--手册P43,P45,当硬件允许的时候,每次收满一个以太网数据包(>64bytes)时,EPKTCNT+1,最大值为255,此时不论缓冲是否还有空闲也不再接收数据.每次前移ERXRDPT(即释放接收缓冲区操作)后,EPKTCNT-1,最小值为0.

注意:在以上9个REG中,名称中带有”X”的规定的地址都是给以太网接收器使用的(即:从以太网一侧访问8K缓存),只有ERDPT和EWRPT是MCU通过SPI接口访问8K缓冲区用的.访问的关系如下图:

其中 ERXWRPT ERXRDPT可以指向同一地址,应为ENC28J60接收时会从ERXWRPT指向的地址一直写到ERXRDPT指向的地址前一个空间(即手册所谓的”不包括ERXRDPT指向的单元”).此时整个接收缓冲区全部可用.8K空间中,实际用来进行发送缓冲的空间由寄存器组ETXST和ETXND确定,实际用来进行接受缓冲的空间由寄存器组ERXST和ERXND确定.显然,8K空间中可以多余一些什么也不用的位置.

2.MIIPHY寄存器的操作:

PHY寄存器负责对PHY接口的配置,MCU不能直接从SPI接口访问这些REG,但是主控可以通过MAC组的一组特殊控制REG来访问PHY控制寄存器,MAC组中的这些特殊的控制REG即称为MII接口寄存器.

对MCU而言,不会有直接访问PHY的可能,所有的PHY操作都必须经过MII寄存器来完成.还需注意,PHY有部分为16bits,写入的时候必须先写低8bits,当写入高8bits的时候控制的设定将立即起效.

3.控制器结构和初始化过程

初始化的过程应该是:

初始化ETHREG--->初始化MACREG--->通过MII初始化PHYREG(需要查询硬件稳定)

Step1:ETH组控制寄存器初始化

1).EIE初始化

--手册P67,以太网中断允许控制

主控SPI写控制REG(WCR),发出2byte,REG地址0h1b,数据为:

0b010\11011+0bAAAAAAAA(A--8bits实际数据)

2). EIR查询

--手册P68,以太网中断状态获取

主控SPI读控制REG(RCR),发出2byte, REG地址0h1C,数据为:

0b010\11100+0bXXXXXXXX(X—为了保持SPCK发出的无效数)

读取的有效数据在SPI发送的第二个有效字节返回.

3).ESTAT查询

--手册P66,获得PHY就绪状态(以及以太网的各种错误状态)

主控SPI读控制REG(RCR),发出2byte, REG地址0h1D,数据为:

0b010\11101+0bXXXXXXXX(X—为了保持SPCK发出的无效数)

读取的有效数据在SPI发送的第二个有效字节返回.

4).ECON2初始化

--手册P16,IC节能控制,数据包指针寄存器控制

主控SPI写控制REG(WCR),发出2byte,REG地址0h1E,数据为:

0b010\11110+0bAAAAAAAA(A--8bits实际数据)

5).ECON1初始化

--手册P15,特别注意其中对BANK0~3的选择位,写不同的控制REG需要多次改变Bank0~3的选择.

--手册P16,IC节能控制,数据包指针寄存器控制

主控SPI写控制REG(WCR),发出2byte,REG地址0h1F,数据为:

0b010\11111+0bAAAAAAAA(A--8bits实际数据)

6).ERXFCON接收过滤器初始化

--手册P48,

首先需要写ECON1,选择访问Bank1,此后

主控SPI写控制REG(WCR),发出2byte,REG地址0h18,数据为:

0b010\11000+0bAAAAAAAA(A--8bits实际数据)

Step2:ETH组地址寄存器初始化

1).寄存器组ETXST和ETXND就位

--定义发送缓冲区范围

ETXSTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h04(L),0h05(H),数据为:

0b010\00100+0bAAAAAAAA(A--8bits实际数据,ETXSTL)

0b010\00101+0bAAAAAAAA(A--8bits实际数据,ETXSTH)

ETXNDL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h06(L),0h07(H),数据为:

0b010\00110+0bAAAAAAAA(A--8bits实际数据,ETXNDL)

0b010\00111+0bAAAAAAAA(A--8bits实际数据,ETXNDH)

2). 寄存器组ERXST和ERXND就位

--定义接收缓冲区范围

ERXSTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h08(L),0h09(H),数据为:

0b010\01000+0bAAAAAAAA(A--8bits实际数据,ERXSTL)

0b010\01001+0bAAAAAAAA(A--8bits实际数据,ERXSTH)

ERXNDL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h0a(L),0h0b(H),数据为:

0b010\01010+0bAAAAAAAA(A--8bits实际数据,ERXNDL)

0b010\01011+0bAAAAAAAA(A--8bits实际数据,ERXNDH)

3). ERXWRPT和 ERXRDPT就位

--注意其范围要随应用中定义的数据帧的大小变化,且每次处理完接收以后要操作ERXRDPT释放空间.

ERXWRPTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h0C(L),0h0D(H),数据为:

0b010\01100+0bAAAAAAAA(A--8bits实际数据, ERXRDPTL)

0b010\01101+0bAAAAAAAA(A--8bits实际数据, ERXRDPTH)

注意:初始化时, ERXWRPTL/H一般取等于ERXSTL/H

ERXRDPTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h0E(L),0h0F(H),数据为:

0b010\01110+0bAAAAAAAA(A--8bits实际数据, ERXRDPTL)

0b010\01111+0bAAAAAAAA(A--8bits实际数据, ERXRDPTH)

注意: ERXRDPTERXWRPT的差值应该大于1个以太网数据帧的长度,如果ERXRDPT=ERXWRPT则整个接收缓冲区可以连续使用.

4).根据MCU从以太网接收数据的需要,ERDPT就位

ERDPTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h00(L),0h01(H),数据为:

0b010\00000+0bAAAAAAAA(A--8bits实际数据,ERDPTL)

0b010\00001+0bAAAAAAAA(A--8bits实际数据,ERDPTH)

5).根据MCU向以太网发送数据的需要,EWRPT就位

EWRPTL/H

主控SPI写控制REG(WCR),发出4byte,REG地址0h02(L),0h03(H),数据为:

0b010\00010+0bAAAAAAAA(A--8bits实际数据,EWRPTL)

0b010\00011+0bAAAAAAAA(A--8bits实际数据,EWRPTH)

Step3:MAC组寄存器初始化

(注意:MAC组寄存器映射在Bank2/3,访问前需要调整ECON1中的BSEL0/1)

如果初始化发生在上电复位之后,初始化前必须查询ESTAT.CLKRDY(手册P33)

MAC寄存器的初始化顺序不重要,一般按照(手册P34)说明的顺序:

1).MACON2.MARST位清0—MAC初始化退出.

主控SPI写控制REG(WCR),发出2byte,REG地址0h01(Bank2)数据为:

0b010\00001+0bAAAAAAAA(A--8bits实际数据)

2).MACON1初始化

--MARXEN位置1使能MAC接收.

--启动全双工方式,TXPAUS和RXPAUS位置1.

主控SPI写控制REG(WCR),发出2byte,REG地址0h00(Bank2)数据为:

0b010\00000+0bAAAAAAAA(A--8bits实际数据)

3).MACON3初始化

--将PADCFG.TXCRCEN.和FULDPX位置1,使能帧自动填充,使能自动CRC生成.(要注意其中FRMLNEN位的使用).

主控SPI写控制REG(WCR),发出2byte,REG地址0h02(Bank2)数据为:

0b010\00010+0bAAAAAAAA(A--8bits实际数据)

4).MACON4一般保持默认值

5).MAMXFL(16bitsREG,分为H/L两部分)就位

--确定网络帧的最大字节数(暂定义应用中的帧长度都为64bytes).

主控SPI写控制REG(WCR),发出4byte,REG地址(Bank2)0h0A(L),0h0B(H),数据为:

0b010\01010+0bAAAAAAAA(A--8bits实际数据, MAMXFLL)

0b010\01011+0bAAAAAAAA(A--8bits实际数据, MAMXFLH)

6).MABBIPG就位

--背对背包时间间隔就位,全双工时置入值固定为15h

主控SPI写控制REG(WCR),发出2byte,REG地址0h04(Bank2)数据为:

0b010\00100+0b00010101

7).MAIPGL就位

--非背对背包时间间隔就位, 全双工时置入值固定为12h(L)和0Ch(H)

主控SPI写控制REG(WCR),发出4byte,REG地址(Bank2) 0h06(L)0h07(H)

数据为:

0b010\00110+0b00010010(MAIPGLL)

0b010\00111+0b00001100(MAIPGLH)

注意:正常使用时,应该采用全双工方式,此时MACLCON1/2可保持默认值

8).MAC地址就位(映射在Bank3)

--将6字节的MAC地址写入寄存器组:MAADR0~MAADR5.

主控SPI写控制REG(WCR),发出6byte,REG地址(Bank3) 0h00~0h05数据为:

0b010\00000+0bAAAAAAAA(A--8bits实际数据,MAADR1)

0b010\00001+0bAAAAAAAA(A--8bits实际数据,MAADR0)

0b010\00010+0bAAAAAAAA(A--8bits实际数据,MAADR3)

0b010\00011+0bAAAAAAAA(A--8bits实际数据,MAADR2)

0b010\00100+0bAAAAAAAA(A--8bits实际数据,MAADR5)

0b010\00101+0bAAAAAAAA(A--8bits实际数据,MAADR4)

Step4:PHY组寄存器初始化

注意: 如果初始化发生在上电复位之后,初始化前必须查询ESTAT.CLKRDY(手册P33)

(注意:PHY组寄存器的MII接口REG映射在Bank2,访问前需要调整ECON1中的BSEL0/1)

与PHY相关的MII寄存器共有6个分别是:

MICON—手册P21,MII控制REG

MICMD—手册P21,MII命令REG

MIREGADR—手册P19,PHY访问地址REG

MIWRL/H—手册P19,PHY写数据REG高/低,注意,该REG组必须先写入L再写入H,写入H会触发MII控制事件.

MIRDL/H—手册P19,PHY读数据REG高/低.在读之前应将MICMD的MIIRD位置1,这样可以触发PHY事件且使MISTAT.BUSY=1,当MII获得了PHY值以后,MIIRD不会自动清0.所以在查询MISTAT.BUSY=0以后要手动清0.

MISTAT—手册P22,MII状态REG,反映PHY的状态,在读/写PHY之前应该先查询此REG当MISTAT.BUSY=0时才可以进行操作.

根据手册P38,一般只需要配置3个PHY模块并且要查询PHY的工作状态

1).PHCON1的手动操作

--虽然可以通过外接LED的方式确定半双工/全双工方式,但是手工设置PHCON1.PDPXMD位的值是更加安全的方法,同时也要手工修改MACON3中的FULDPX位.

--PHY地址00h,通过MII操作时,流程在手册P19

主控SPI写控制REG(WCR),发出2byte*3,给MIREGADR,MIWRL/H 3个REG

地址(Bank2)0h14(MIREGADR),0h16(MIWRL),0h17(MIWRH),数据为:

0b010\10100+0b00000000(字节1—MIREGADR的地址,字节2—写入PHCON1的地址00h)

0b010\10110+0bAAAAAAAA(字节1—MIREGADR的地址, 字节2—写入MIWRL的8bits实际数据—L字节应该是写入PHCON1的实际值)

0b010\10111+0b00000000(字节1—MIREGADR的地址, 字节2—写入MIWRH的8bits实际数据,在这里发出的数据无效,仅触发PHY事件).

写入后,MII自动触发PHY事件,MISTAT.BUSY自动置1.

2).PHLCON的设置

--根据外结LED电路的实际结构,有可能要修改这个REG.

--PHY地址00h,通过MII操作时,流程在手册P19

主控SPI写控制REG(WCR),发出2byte*3,给MIREGADR,MIWRL/H 3个REG

地址(Bank2)0h14(MIREGADR),0h16(MIWRL),0h17(MIWRH),数据为:

0b010\10100+0b00010100(字节1—MIREGADR的地址,字节2—写入PHLCON的地址14h)

0b010\10110+0bAAAAAAAA(字节1—MIREGADR的地址, 字节2—写入MIWRL的8bits实际数据—L字节应该是写入PHLCON的实际值)

0b010\10111+0b00000000(字节1—MIREGADR的地址, 字节2—写入MIWRH的8bits实际数据,在这里发出的数据无效,仅触发PHY事件).

写入后,MII自动触发PHY事件,MISTAT.BUSY自动置1.

3).PHCON2的设置

--一般全双工状态时可以保持其默认值,但是注意其中的TXDIS位可以关闭PHY的硬件发送.

主控SPI写控制REG(WCR),发出2byte*3,给MIREGADR,MIWRL/H 3个REG

地址(Bank2)0h14(MIREGADR),0h16(MIWRL),0h17(MIWRH),数据为:

0b010\10100+0b00000000(字节1—MIREGADR的地址,字节2—写入PHCON2的地址11h)

0b010\10110+0bAAAAAAAA(字节1—MIREGADR的地址, 字节2—写入MIWRL的8bits实际数据—L字节应该是写入PHCON2的实际值)

0b010\10111+0b00000000(字节1—MIREGADR的地址, 字节2—写入MIWRH的8bits实际数据,在这里发出的数据无效,仅触发PHY事件).

写入后,MII自动触发PHY事件,MISTAT.BUSY自动置1.

特别注意:PHY寄存器不能直接访问,需要通过MII寄存器的间接操作.

4).查询MISTAT状态

--主控SPI读控制REG(RCR),发出3byte, REG地址0h0A(Bank3),数据为:

0b010\01010+0bXXXXXXXX+0bXXXXXXXX(X—为了保持SPCK发出的无效数)

读取的有效数据在SPI发送的第三个有效字节返回.

转载于:https://www.cnblogs.com/emouse/archive/2012/03/27/2420126.html

ENC28J60 驱动开发要点相关推荐

  1. Windows驱动开发要点总结一

    1 概述 驱动程序大体可分为两类三种: 第一类:传统型驱动     传统型驱动的特点就是所有的IRP都需要自己去处理,自己实现针对不同IRP的派发函数.其可以分 为以下两种:     1. Nt式驱动 ...

  2. 可观察性驱动开发,探索未知之地

    可观察性驱动开发与监控有什么不同?随着我们的分布式系统变得越来越复杂,随着我们对DevOps测试.自动化和效率的追求,筒仓的打破,为了了解代码中未知的未知,ODD作为一种超级监控而出现.本文包括Hon ...

  3. 案例驱动python编程入门-用Python进行行为驱动开发的入门教程

    为驱动开发(Behavior-Driven Development,BDD)是一种卓越的开发模式.能帮助开发者养成日清日结的好习惯,从而避免甚至杜绝"最后一分钟"的情况出现,因此对 ...

  4. 新书出版:《Android深度探索(卷1):HAL与驱动开发》

    <Android深度探索(卷1):HAL与驱动开发> [1]亚马逊 [2]当当网 [3]京东商城 [4]互动网 [5]淘宝网 [6]豆瓣网 < Android深度探索(卷1):HAL ...

  5. 关于嵌入式驱动开发,这篇文章让你了解透彻!

    01 嵌入式驱动开发到底学什么 嵌入式大体分为以下四个方向: 一.嵌入式硬件开发:熟悉电路等知识,非常熟悉各种常用元器件,掌握模拟电路和数字电路设计的开发能力.熟练掌握嵌入式硬件知识,熟悉硬件开发模式 ...

  6. 【正点原子MP157连载】第二十章 字符设备驱动开发-摘自【正点原子】STM32MP1嵌入式Linux驱动开发指南V1.7

    1)实验平台:正点原子STM32MP157开发板 2)购买链接:https://item.taobao.com/item.htm?&id=629270721801 3)全套实验源码+手册+视频 ...

  7. 嵌入式linux驱动开发实战教程,嵌入式Linux驱动开发实战视频教程

    嵌入式Linux驱动开发实战教程(内核驱动.看门狗技术.触摸屏.视频采集系统) 适合人群:高级 课时数量:109课时 用到技术:嵌入式 Linux 涉及项目:驱动开发.看门狗技术.触摸屏.视频采集 咨 ...

  8. 嵌入式 Linux 驱动开发你想知道的都在这

    最近看到公众号上写的一篇文章,关于嵌入式 Linux 驱动开发的方方面面,感觉提供不错,此处特意贴出来供大家参考借鉴. 1.嵌入式驱动开发到底学什么 嵌入式大体分为以下四个方向: 嵌入式硬件开发:熟悉 ...

  9. windows驱动开发-物理双机调试

    作者 QQ群:852283276 微信:arm80x86 微信公众号:青儿创客基地 B站:主页 https://space.bilibili.com/208826118 参考 VS2012 ddk驱动 ...

最新文章

  1. 普通话计算机考试相关信息,普通话考试常见问题有哪些
  2. 虚拟化方案应用场景及优劣
  3. R语言数据可视化 ggplot2基础3 添加几何对象
  4. 互联网晚报 | 3月15日 星期二 |​ 特斯拉Model 3高性能版和Model Y长续版再涨价;字节成都成立光合科技公司...
  5. Spring Boot2整合Shiro(1):身份认证
  6. 第1-6课:绘制箱线图、饼图和直方图
  7. 最早的动态图匹配代表性算法-邻接点树(NNT)
  8. 工作台式计算机配置单,台式电脑配置清单.doc
  9. 我们应如何迎接新式客服业到来?
  10. Elasticsearch:Apache spark 大数据集成
  11. 用java画企鹅_Fireworks绘制简笔QQ企鹅图像
  12. 2020年的发展,想转行学前端还是后端好
  13. Ubuntu Desktop LTS - 安装 64 位谷歌 Chrome 浏览器
  14. Win10系统图片打开方式恢复默认照片查看器
  15. C++:实现量化SMM Caplet α 校准测试实例
  16. 新年寄语 给自己吧
  17. 守护地球家园,福泽各国人民,地球币,加油!#地球# 。 ​​​​
  18. 考了10年公务员,如今35岁,终于死心了
  19. 友情链接交换成功后还需要些做什么?大脸猫今天与大家分享一些经验
  20. 免费学python的手机软件_别再说你在学Python,连软件都没“安全”

热门文章

  1. windows虚拟声卡直播_【韭菜爱镰刀】高性价比的录音/直播设备推荐
  2. jar导出与制作成exe在没jdk电脑下运行(图文教程+工具)
  3. 【算法】剑指 Offer 06. 从尾到头打印链表
  4. 60-100-024-使用-MySQL 表锁
  5. 【idea】 Unsupported class file major version 57
  6. 【elasticsearch】Elasticsearch : alias数据类型
  7. Windows : Win 7 FT服务器 配置
  8. 【Flink】Flink消费kafka 突然报错 Kafka09PartitionDiscoverer.getAllPartitionsForTopics
  9. Spring : @Qualifier 注解
  10. spark2-submit在CDH环境下ClassNotFoundException:org.slf4j.logger