基于PCA与LDA的数据降维实践

描述

数据降维(Dimension Reduction)是降低数据冗余、消除噪音数据的干扰、提取有效特征、提升模型的效率和准确性的有效途径, PCA(主成分分析)和LDA(线性判别分析)是机器学习和数据分析中两种常用的经典降维算法。

本任务通过两个降维案例熟悉PCA和LDA降维的原理、区别及调用方法。

源码下载

环境

  • 操作系统:Windows 10、Ubuntu18.04

  • 工具软件:Anaconda3 2019、Python3.7

  • 硬件环境:无特殊要求

  • 依赖库列表

    matplotlib    3.3.4
    scikit-learn    0.24.2
    

分析

任务1、基于PCA算法实现鸢尾花数据集降维,涉及下列三个环节:

A)加载鸢尾花(Iris)数据并进行降维

B)降维后的数据可视化

C)使用K-NN算法进行分类,对比降维前后的分类准确性

任务2、基于LDA算法实现红酒数据集降维,涉及以下四个环节:

A)加载红酒数据集

B)使用PCA和LDA两种算法对数据进行降维

C)降维结果可视化

D)降维前后的分类准确性对比

实施

1、基于PCA算法实现鸢尾花数据集降维

鸢尾花数据原有四个特征维度,运用PCA算法将特征维度降为两个,之后进行可视化并运用K-NN算法进行分类,对比降维前后的分类准确性(数据降维的目的之一是提升模型的准确性)。

1.1 加载鸢尾花特征数据,并使用PCA算法降维

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier# 加载鸢尾花数据集
iris= load_iris()
data = iris.data # 特征数据
target = iris.target # 标签数据
print(data.shape) # 查看数据维度(150, 4)# PCA降维
pca = PCA(n_components = 2).fit(data) # 利用PCA算法降成2维
new_data = pca.transform(data)
print(new_data.shape) # 查看数据维度(150,2)

结果如下:

(150, 4)
(150, 2)

可以看到,鸢尾花数据由四维(四个特征)降为两维度。

1.2 数据可视化,并使用K-NN算法对比降维前后的分类准确性

# 降维后的数据集可视化
plt.title('Iris dimensions reduction: 4 to 2')
plt.scatter(new_data[:, 0], new_data[:, 1], c=target)
plt.show()# 使用KNN算法对比降维前后分类的准确性
model = KNeighborsClassifier(3)
score = model.fit(data, target).score(data, target)
print('4-dims:', score)
score = model.fit(new_data, target).score(new_data, target)
print('2-dims:', score)

输出结果:

结果分析:

数据从4维降到2维后,可以很方便地进行可视化。从散点图中直观地看,降维后的数据较好地保留了原数据的分布信息。另外可以看到,降维后的KNN分类模型准确性有所提升,这也是数据降维的目的之一。

2、基于LDA算法实现红酒数据集降维

红酒数据集(Wine)有13个特征(即13个维度),我们分别使用PCA和LDA算法对数据集进行降维(降成2维),之后使用逻辑回归(LogisticRegression)分别在LDA算法降维前后的数据集上建立分类模型,对比同一种模型在数据集降维前后的准确性,直观感受数据降维对模型准确性的影响。

2.1 加载红酒数据集

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.datasets import load_wine# 加载红酒数据集
wine= load_wine()
data = wine.data
target = wine.target
print(data.shape) # 查看数据维度

2.2 分别使用LDA和PCA算法进行降维

# PCA降维(无类别)
pca = PCA(n_components = 2).fit(data) # 利用PCA算法降成2维
data_pca = pca.transform(data) # 降维转换
print('PCA:', data_pca.shape) # 查看数据维度# LDA降维(有类别,考虑样本标签)
lda = LinearDiscriminantAnalysis(n_components=2).fit(data, target)
data_lda = lda.transform(data)
print('LDA:', data_lda.shape)

结果如下:

(178, 13)
PCA: (178, 2)
LDA: (178, 2)

可以看到,两种算法都将红酒数据集由13维降成2维。

2.3 降维结果可视化

数据降到2维后,可以很方便地用散点图进行可视化,下面分别将两种算法降维后的红酒数据集进行可视化,对比其分布情况。

# LDA算法更适合有标签数据的降维
# 下面将两种方法降维后的数据进行可视化
fig = plt.figure(figsize=(12, 4)) # 生成画板# PCA降维结果
ax1 = fig.add_subplot(1, 2, 1) # 添加子图1
ax1.set_title('PCA')
ax1.scatter(data_pca[:, 0], data_pca[:, 1], c=target)# LDA降维结果
ax2 = fig.add_subplot(1, 2, 2) # 添加子图2
ax2.set_title('LDA')
ax2.scatter(data_lda[:, 0], data_lda[:, 1], c=target)plt.show() # 显示图像

显示结果:

可以看到,LDA降维因为考虑到了样本的类别标签信息,降维后的数据分布能够较好地将类型分开。

2.4 LDA降维前后的分类准确性对比

使用逻辑回归算法,对LDA降维前后的数据集建立分类模型,对比其准确性。

from sklearn.model_selection import  train_test_split
from sklearn.linear_model import LogisticRegression# 1、使用逻辑回归模型,在降维前的数据集上训练并评估
X_train, X_test, y_train, y_test = train_test_split(data, target, random_state=0)model = LogisticRegression().fit(X_train, y_train)
score = model.score(X_test, y_test) # 在测试集上评估分类准确性
print(score)# 2、在LDA降维后的数据集上训练并评估
X_train, X_test, y_train, y_test = train_test_split(data_lda, target, random_state=0)
model = LogisticRegression().fit(X_train, y_train)
score = model.score(X_test, y_test) # 在测试集上评估分类准确性
print(score)

结果如下:

0.9333333333333333
1.0

可以看到,使用LDA降维后的数据建模,分类准确性有所提升。

基于PCA与LDA的数据降维实践相关推荐

  1. 【机器学习】基于PCA/LDA的数据降维和可视化(二维+三维)

    基于PCA/LDA的数据降维和可视化 Introduction Project Intro File Intro Tools Intro Code&Dataset Link Process P ...

  2. PCA与LDA两种降维方法原理的简要对比

    1.PCA(主成分分析) 无监督的,选择的是投影后数据方差最大的方向.因此PCA假设方差越大,代表的信息量越大,使用主成分来表示原始数据可以去除冗余的维度,达到降维的目的. 2.LDA(线性判别分析) ...

  3. python自编码器降维_自编码器数据降维实践

    数据降维是一件困难的事情,而难点通常集中在主成分分析上.此前,我介绍过一种基于自动编码器的降维方法 .然而,在那一段时间里,我专注于如何使用自动编码作为预测器,而现在我想把它们看作是一种降维技术. 这 ...

  4. elasticsearch 数据类型_基于 MySQL Binlog 的 Elasticsearch 数据同步实践

    来源;马蜂窝 一.背景 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存 ...

  5. 基于 MySQL Binlog 的 Elasticsearch 数据同步实践

    一.为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数 ...

  6. 基于 MySQL Binlog 的 Elasticsearch 数据同步实践 原

    一.背景 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数据可以 ...

  7. 携程基于Storm的实时大数据平台实践

    来源:http://mp.weixin.qq.com/s?__biz=MzI4OTU3ODk3NQ==&mid=2247483881&idx=1&sn=04971941bf57 ...

  8. 千万数据去重_基于 Flink 的百亿数据去重实践

    在工作中经常会遇到去重的场景,例如基于 App 的用户行为日志分析系统,用户的行为日志从手机客户端上报到 Nginx 服务端,通过 Logstash.Flume 或其他工具将日志从 Nginx 写入到 ...

  9. 【PCA、LDA降维,及模型评估(SE,SP,AUC)】

    1. 采用 PCA 对男女生样本数据中的(身高.体重.鞋码.50m 成绩.肺活量) 共 5 个特征进行特征降维,并实现 LDA 算法对处理后的特征进行分类,计算 模型预测性能(包含 SE.SP.ACC ...

最新文章

  1. 深度学总结:skip-gram pytorch实现
  2. 菜鸟成长之路05/06/07
  3. java中的接口中的方法
  4. 关于Spring 声明式事务处理时,throws exception不回滚的问题
  5. SpringMVC经典系列-14自己定义SpringMVC的拦截器---【LinusZhu】
  6. 在15分钟内使用Spring Boot和Spring Security构建一个Web应用程序
  7. 带权有向无环图的最短路径(使用拓扑排序的方法)
  8. 阿里+北大 | 在梯度上做简单mask竟有如此的神奇效果
  9. 不可重复读和幻读的区别(悲观锁和乐观锁)
  10. 如何使用python 给PDF生成目录
  11. [Linux]FloppyLinux--中国石油大学(华东)计算机操作系统课程设计作业教程
  12. 如何在win10 安装ADS1.2
  13. 便携式洁面仪商城质检报告检验标准是什么
  14. 阅读笔记--现代操作系统
  15. github使用教程linux,GitHub Linux下使用方法
  16. Fiddler+Appium+Pycharm无限随机下载抖音视频
  17. Bug敏感度与软件质量关系
  18. java eclipse 简单的局域网聊天 webservice
  19. uebs游戏_UEBS Ultimate Epic Battle下载
  20. S5PV210 PWM

热门文章

  1. android全局轮询机制,Android轮询机制
  2. java 内存池_内存池技术介绍(图文并茂,非常清楚)
  3. ACM Latex模板subsubsection换行
  4. Python爬取豆瓣电影的Top250(链接、电影名、评分和相关描述等属性)
  5. EMC实验和防雷实验测试经历以及常用防雷元器件介绍和防雷设计
  6. 手机4g 信号无服务器,你的手机4G信号竟比3G还差?真相原来是……
  7. 一段路 一条路 一个终点
  8. 内部宣讲_过着双显示器的生活方式-您正在宣讲合唱团!
  9. mariadb galera 集群部署
  10. SAS 聚类分析—— K-均值聚类