sklearn中的朴素贝叶斯分类器

之前理解朴素贝叶斯中的结尾对sklearn中的朴素贝叶斯进行了简单的介绍.
此处对sklearn中的则对sklearn中的朴素贝叶斯算法进行比较详细介绍.不过手下还是对朴素贝叶斯本身进行一些补充.

朴素贝叶斯算法

朴素贝叶斯算法的数学基础都是围绕贝叶斯定理展开的,因此这一类算法都被称为朴素贝叶斯算法.

朴素贝叶斯的分类原理是通过对象的先验概率,利用贝叶斯公式计算出后验概率.即对象属于某一类的概率.
选择具有后验概率最大的类作为该对象所属的类.同时朴素–‘特征为独同分布’,
同时因为先验概率需要我们先假设一个事件分布的概率分布方式(三种),因此也就有了我们在sklearn中对应的三种朴素贝叶斯算法

  • 高斯朴素贝叶斯分类器(默认条件概率分布概率符合高斯分布)
  • 多项式朴素贝叶斯分类器(条件概率符合多项式分布)
  • 伯努利朴素贝叶斯分类器(条件概率符合二项分布)

尽管其假设过于简单,但是在很多实际情况下,朴素贝叶斯工作得很好,特别是文档分类和垃圾邮件过滤。
这些工作都要求一个小的训练集来估计必需参数。

同时相比于其他更复杂的方法,朴素贝叶斯学习器和分类器非常快。
分类条件分布的解耦意味着可以独立单独地把每个特征视为一维分布来估计。这样反过来有助于缓解维度灾难带来的问题。

最后总结其特点有以下几个

  • 属性可以离散可以连续
  • 数学基础扎实,分类效率稳定
  • 对噪音数据与缺失数据不太敏感
  • 属性如果不相关,分类效果很好;如果相关,则不低于决策树
  • 假设简单,但是在很多实际情况下表现很好
  • 速度较快,一定程度上缓解了维度灾难
%matplotlib inline
from sklearn import datasets, model_selection, naive_bayes
import matplotlib.pyplot as plt
import numpy as np
def load_data(datasets_name='iris'):if datasets_name == 'iris':data = datasets.load_iris()  # 加载 scikit-learn 自带的 iris 鸢尾花数据集-分类elif datasets_name == 'wine': # 0.18.2 没有data = datasets.load_wine()  # 加载 scikit-learn 自带的 wine 红酒起源数据集-分类elif datasets_name == 'cancer':data = datasets.load_breast_cancer()  # 加载 scikit-learn 自带的 乳腺癌数据集-分类elif datasets_name == 'digits':data = datasets.load_digits()  # 加载 scikit-learn 自带的 digits 糖尿病数据集-回归elif datasets_name == 'boston':data = datasets.load_boston()  # 加载 scikit-learn 自带的 boston 波士顿房价数据集-回归else:passreturn model_selection.train_test_split(data.data, data.target,test_size=0.25, random_state=0,stratify=data.target) # 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4

测试sklearn中的朴素贝叶斯算法,sklearn中朴素贝叶斯算法比较简单,只有三种

也正是因为朴素贝叶斯算法比较简单,下面的代码已经基本给出了sklearn中朴素贝叶斯算法的所以有关内容.
你可以运行下面的代码进行测试,同时下面也包括一定的可视化内容.

朴素贝叶斯模型可以解决整个训练集不能导入内存的大规模分类问题。 为了解决这个问题, MultinomialNB, BernoulliNB, 和 GaussianNB 实现了 partial_fit 方法,可以动态的增加数据,使用方法与其他分类器的一样,使用示例见 Out-of-core classification of text documents 。所有的朴素贝叶斯分类器都支持样本权重。

与 fit 方法不同,首次调用 partial_fit 方法需要传递一个所有期望的类标签的列表,之后只需要调用数据即可.

def test_GaussianNB(*data, show=False):X_train, X_test, y_train, y_test = datacls = naive_bayes.GaussianNB()cls.fit(X_train, y_train)# print('GaussianNB Training Score: %.2f' % cls.score(X_train, y_train))print('GaussianNB Testing Score: %.2f' % cls.score(X_test, y_test))
def test_MultinomialNB(*data, show=False):X_train, X_test, y_train, y_test = datacls = naive_bayes.MultinomialNB()cls.fit(X_train, y_train)# print('MultinomialNB Training Score: %.2f' % cls.score(X_train, y_train))print('MultinomialNB Testing Score: %.2f' % cls.score(X_test, y_test))
def test_MultinomialNB_alpha(*data, show=False):X_train, X_test, y_train, y_test = dataalphas = np.logspace(-2, 5, num=200)train_scores = []test_scores = []for alpha in alphas:cls = naive_bayes.MultinomialNB(alpha=alpha)cls.fit(X_train, y_train)train_scores.append(cls.score(X_train, y_train))test_scores.append(cls.score(X_test, y_test))if show:## 绘图:MultinomialNB 的预测性能随 alpha 参数的影响fig = plt.figure()ax = fig.add_subplot(1, 1, 1)ax.plot(alphas, train_scores, label='Training Score')ax.plot(alphas, test_scores, label='Testing Score')ax.set_xlabel(r'$\alpha$')ax.set_ylabel('score')ax.set_ylim(0, 1.0)ax.set_title('MultinomialNB')ax.set_xscale('log')plt.show()# print('MultinomialNB_alpha best train_scores %.2f' % (max(train_scores)))print('MultinomialNB_alpha best test_scores %.2f' % (max(test_scores)))
def test_BernoulliNB(*data, show=False):X_train, X_test, y_train, y_test = datacls = naive_bayes.BernoulliNB()cls.fit(X_train, y_train)# print('BernoulliNB Training Score: %.2f' % cls.score(X_train, y_train))print('BernoulliNB Testing Score: %.2f' % cls.score(X_test, y_test))
def test_BernoulliNB_alpha(*data, show=False):X_train, X_test, y_train, y_test = dataalphas = np.logspace(-2, 5, num=200)train_scores = []test_scores = []for alpha in alphas:cls = naive_bayes.BernoulliNB(alpha=alpha)cls.fit(X_train, y_train)train_scores.append(cls.score(X_train, y_train))test_scores.append(cls.score(X_test, y_test))if show:## 绘图-展示BernoulliNB 的预测性能随 alpha 参数的影响fig = plt.figure()ax = fig.add_subplot(1, 1, 1)ax.plot(alphas, train_scores, label='Training Score')ax.plot(alphas, test_scores, label='Testing Score')ax.set_xlabel(r'$\alpha$')ax.set_ylabel('score')ax.set_ylim(0, 1.0)ax.set_title('BernoulliNB')ax.set_xscale('log')ax.legend(loc='best')plt.show()# print('BernoulliNB_alpha best train_scores %.2f' % (max(train_scores)))print('BernoulliNB_alpha best test_scores %.2f' % (max(test_scores)))
def test_BernoulliNB_binarize(*data, show=False):X_train, X_test, y_train, y_test = datamin_x = min(np.min(X_train.ravel()), np.min(X_test.ravel())) - 0.1max_x = max(np.max(X_train.ravel()), np.max(X_test.ravel())) + 0.1binarizes = np.linspace(min_x, max_x, endpoint=True, num=100)train_scores = []test_scores = []for binarize in binarizes:cls = naive_bayes.BernoulliNB(binarize=binarize)cls.fit(X_train, y_train)train_scores.append(cls.score(X_train, y_train))test_scores.append(cls.score(X_test, y_test))if show:## 绘图-展示BernoulliNB 的预测性能随 binarize 参数的影响fig = plt.figure()ax = fig.add_subplot(1, 1, 1)ax.plot(binarizes, train_scores, label='Training Score')ax.plot(binarizes, test_scores, label='Testing Score')ax.set_xlabel('binarize')ax.set_ylabel('score')ax.set_ylim(0, 1.0)ax.set_xlim(min_x - 1, max_x + 1)ax.set_title('BernoulliNB')ax.legend(loc='best')plt.show()# print('BernoulliNB_binarize best train_scores %.2f' % (max(train_scores)))print('BernoulliNB_binarize best test_scores %.2f' % (max(test_scores)))
def testFuc(fuc,show = False,no_all = True):for i in ['iris', 'wine', 'cancer', 'digits', ]:print('\n====== %s ======\n' % i)          X_train, X_test, y_train, y_test = load_data(datasets_name=i)  # 产生用于分类问题的数据集if no_all:fuc(X_train, X_test, y_train, y_test,show = show) else:test_GaussianNB(X_train, X_test, y_train, y_test,show = show)  # 调用 test_GaussianNBtest_MultinomialNB(X_train,X_test,y_train,y_test,show = show) # 调用 test_MultinomialNBtest_MultinomialNB_alpha(X_train, X_test, y_train, y_test,show = show)  # 调用 test_MultinomialNB_alphatest_BernoulliNB(X_train,X_test,y_train,y_test,show = show) # 调用 test_BernoulliNBtest_BernoulliNB_alpha(X_train, X_test, y_train, y_test,show = show)  # 调用 test_BernoulliNB_alphatest_BernoulliNB_binarize(X_train, X_test, y_train, y_test,show = show)  # 调用 test_BernoulliNB_binarize

** 下面是前面我们定义的用来测试的函数**

test_GaussianNB(X_train, X_test, y_train, y_test)  # 调用 test_GaussianNB
test_MultinomialNB(X_train,X_test,y_train,y_test) # 调用 test_MultinomialNB
test_MultinomialNB_alpha(X_train, X_test, y_train, y_test)  # 调用 test_MultinomialNB_alpha
test_BernoulliNB(X_train,X_test,y_train,y_test) # 调用 test_BernoulliNB
test_BernoulliNB_alpha(X_train, X_test, y_train, y_test)  # 调用 test_BernoulliNB_alpha
test_BernoulliNB_binarize(X_train, X_test, y_train, y_test)  # 调用 test_BernoulliNB_binarize
testFuc(test_GaussianNB)
====== iris ======GaussianNB Testing Score: 0.97====== wine ======GaussianNB Testing Score: 0.96====== cancer ======GaussianNB Testing Score: 0.92====== digits ======GaussianNB Testing Score: 0.84
testFuc(test_MultinomialNB,no_all = False)
====== iris ======GaussianNB Testing Score: 0.97
MultinomialNB Testing Score: 1.00
MultinomialNB_alpha best test_scores 1.00
BernoulliNB Testing Score: 0.32
BernoulliNB_alpha best test_scores 0.32
BernoulliNB_binarize best test_scores 0.92====== wine ======GaussianNB Testing Score: 0.96
MultinomialNB Testing Score: 0.82
MultinomialNB_alpha best test_scores 0.84
BernoulliNB Testing Score: 0.40
BernoulliNB_alpha best test_scores 0.40
BernoulliNB_binarize best test_scores 0.69====== cancer ======GaussianNB Testing Score: 0.92
MultinomialNB Testing Score: 0.90
MultinomialNB_alpha best test_scores 0.91
BernoulliNB Testing Score: 0.63
BernoulliNB_alpha best test_scores 0.63
BernoulliNB_binarize best test_scores 0.91====== digits ======GaussianNB Testing Score: 0.84
MultinomialNB Testing Score: 0.90
MultinomialNB_alpha best test_scores 0.91
BernoulliNB Testing Score: 0.87
BernoulliNB_alpha best test_scores 0.87
BernoulliNB_binarize best test_scores 0.91

不同的朴素贝叶斯算法的差异在于其假设的先验概率的不同

数据的先验概率越贴近我们假设的先验概率的时候,我们的模型结果也就越准确

对于同一个算法,不同的超参数也有一定的影响,这个你可以通过改变我写的test_fun中的超参数show来进行绘图操作,查看不同超参数的区别

参考资料

对于朴素贝叶斯原理性的理解可以参考

  • 理解朴素贝叶斯
  • sklearn中文文档-朴素贝叶斯
  • 《python大战机器学习 数据科学家的一个小目标》 华校专,王正林编著

sklearn中的朴素贝叶斯算法相关推荐

  1. sklearn中的朴素贝叶斯

    1 概述 1.1 真正的概率分类器 在许多分类算法应用中,特征和标签之间的关系并非是决定性的.如想预测一个人究竟是否能在泰坦尼克号海难中生存下来,可以建一棵决策树来学习训练集.在训练中,其中一个人的特 ...

  2. 机器学习 | Sklearn中的朴素贝叶斯全解

    前期文章介绍了朴素贝叶斯理论,掌握理论后如何去使用它,是数据挖掘工作者需要掌握的实操技能,下面来看看Sklearn中都有哪些朴素贝叶斯. 朴素贝叶斯是运用训练数据学习联合概率分布 及 ,然后求得后验概 ...

  3. 机器学习朴素贝叶斯算法_机器学习中的朴素贝叶斯算法

    机器学习朴素贝叶斯算法 朴素贝叶斯算法 (Naive Bayes Algorithm) Naive Bayes is basically used for text learning. Using t ...

  4. sklearn中的朴素贝叶斯模型及其应用

    1.使用朴素贝叶斯模型对iris数据集进行花分类 尝试使用3种不同类型的朴素贝叶斯: (1)多项式型 from sklearn import datasets iris=datasets.load_i ...

  5. sklearn中的朴素贝叶斯#01

    文章目录 概述 真正的概率分类器 概述 真正的概率分类器 朴素贝叶斯是一种直接衡量标签和特征之间的概率关系的有监督学习算法,是一种专注分类的算法.朴素贝叶斯的算 法根源就是基于概率论和数理统计的贝叶斯 ...

  6. 朴素贝叶斯算法python sklearn实现_朴素贝叶斯算法优化与 sklearn 实现

    进行拉普拉斯平滑运算后,我们运行程序,仍然得出了两个测试样本均属于非侮辱类的结果,这是为什么呢? 我们查看最终计算出的 p0 和 p1 会发现,他们的结果都是 0,这又是为什么呢? 这是因为出现了另一 ...

  7. sklearn中的朴素贝叶斯#02

    文章目录 概率类模型的评估指标 布里尔分数Brier Score 概率类模型的评估指标 布里尔分数Brier Score 概率预测的准确程度被称为"校准程度",是衡量算法预测出的概 ...

  8. 【机器学习入门】(2) 朴素贝叶斯算法:原理、实例应用(文档分类预测)附python完整代码及数据集

    各位同学好,今天我向大家介绍python机器学习中的朴素贝叶斯算法.内容有:算法的基本原理:案例实战--新闻文档的分类预测. 案例简介:新闻数据有20个主题,有10万多篇文章,每篇文章对应不同的主题, ...

  9. 朴素贝叶斯算法实现英文文本分类

    目录 1. 作者介绍 2. 朴素贝叶斯算法简介及案例 2.1朴素贝叶斯算法简介 2.2文本分类器 2.3对新闻文本进行文本分类 3. Python 代码实现 3.1文本分类器 3.2 新闻文本分类 参 ...

最新文章

  1. IT 巡检内容、工具、方法 amp; Linux / AIX / Oracle / VMware 巡检表模板 | 周末送资料...
  2. 【Linux】一步一步学Linux——sudo命令(105)
  3. 13 计算机组成原理第七章 输入/输出系统 I/O方式 I/O接口
  4. spring 使用小记
  5. 因一个 Bug,Cassandra 4.0 暂停发布
  6. github每次push时自动输入用户名密码
  7. java开发业务流程图,什么是业务流程图?业务流程图如何绘制?
  8. visio2019 专业版,两种方法
  9. JMETER Beanshell
  10. 统一批量修改word页眉页脚
  11. RFID固定资产盘点系统给企业带来哪些便利?
  12. setvlet:控制台获取前端表单以及xml文件数据信息
  13. *陶瓷电容、铝电解电容、钽电容、固体电容的讲解
  14. Sybil_attack (女巫攻击)
  15. 程序猿也爱学英语,有图有真相!
  16. 台式电脑w ndows7密钥,windows7品牌机各版本oem密钥
  17. 泛融科技CEO王小彬:区块链技术创造新商业模式
  18. 11.集合之List
  19. 【Remote Development】VSCode 基于 SSH 进行远程开发
  20. 清华大学美女学霸“华智冰”是假的?--人工智能(AI)的前世今生

热门文章

  1. 关于Tomcat一闪而过无法启动问题
  2. 自我介绍——小小·程序员
  3. 医院业绩增长着力点的几个看法
  4. Word 2010 为您精确“导航”
  5. Marshal函数中文介绍C#
  6. 51 个基本的机器学习面试问题和答案
  7. 阿里云解析是什么?有什么用?
  8. Python爬虫(9)selenium爬虫后数据,存入mongodb实现增删改查
  9. FPGA多进制数字相位调制( MPSK)
  10. 一级投资机构投资人“一界君”做客|i网直播间