Kubermetes对于有状态的容器应用或者对数据需要持久化的应用,不仅需要将容器内的目录挂载到宿主机的目录或者emptyDir临时存储卷,而且需要更加可靠的存储来保存应用产生的重要数据,以便容器应用在重建之后,仍然可以使用之前的数据。不过,存储资源和计算资源(CPU/内存)的管理方式完全不同。为了能够屏蔽底层存储实现的细节,让用户方便使用,同时能让管理员方便管理, Kubernetes从v1.0版本就引入PersistentVolumePersistentVolumeClaim两个资源对象来实现对存储的管理子系统。

PersistentVolume (PV)是对底层网络共享存储的抽象,将共享存储定义为一种“资源”,比如节点(Node) 也是一种容 器应用可以“消费”的资源。PV由管理员进行创建和配置,它与共享存储的具体实现直接相关,例如GlusterFS、iSCSI、 RBD或GCB/AWS公有云提供的共享存储,通过插件式的机制完成与共享存储的对接,以供应用访问和使用。

PersistentVolumeClaim (PVC)则是用户对于存储资源的一个“申请”。就像Pod“消费”Node的资源一-样, PVC会“消费”PV资源。PVC 可以申请特定的存储空间和访问模式。

StorageClass,使用PVC“申请”到一定的存储空间仍然不足以满足应用对于存储设备的各种需求。通常应用程序都会对存储设备的特性和性能有不同的要求,包括读写速度、并发性能、数据冗余等更高的要求,Kubernetes 从v1.4版本开始引入了-一个新的资源对象StorageClass,用于标记存储资源的特性和性能。到v1.6版本时,StorageClass动态资源供应的机制得到了完善,实现了存储卷的按需创建,在共享存储的自动化管理进程中实现了重要的一步。

通过StorageClass的定义,管理员可以将存储资源定义为某种类别(Class), 正如存储设备对于自身的配置描述(Profile),例如“快速存储”“慢速存储”“有数据冗余”“无数据冗余”等。用户根据StorageClas的描述就能够直观得知各种存储资源的特性,就可以根据应用对存储资源的需求去申请存储资源了。

下面对Kubermetes的PVPVCStorageClass动态资源供应等共享存储管理机制进行详细说明。

PV 详解

PV作为存储资源,主要包括存储能力、访问模式、存储类型、回收策略、后端存储类型等关键信息的设置。下面的例子声明的PV具有如下属性: 5Gi 存储空间,访问模式为“ReadWriteOnce”,存储类型为“slow" (要求系统中已存在名为slow的StorageClass),回收策略为“Recycle",并且后端存储类型为“nfs”(设置了NFS Server的IP地址和路径):

  apiVersion: v1kind: PersistentVolumemetadata:name: pv1spec:capacity:storage: 5GiaccessModes:- ReadWriteOncepersistentVolumeReclaimPolicy: RecyclestorageClassName: slownfs:path: /tmpserver: 172.17.0.2

Kubernetes支持的PV类型如下。

  • gcePersistentDisk: GCE公有云提供的PersistentDisk。
  • AWSElasticBlockStore: AWS公有云提供的ElasticBlockStore.
  • AzureFile: Azure公有云提供的File。
  • AzureDisk: Azure 公有云提供的Disk。
  • FC ( Fibre Channel)。
  • Flocker。
  • NFS:网络文件系统。
  • iSCSI。
  • RBD (Rados Block Device); Ceph块存储。
  • CephFS。
  • Cinder: OpenStack Cinder块存储。
  • GlusterFS。
  • VsphereVolume.
  • Quobyte Volumes。
  • VMware Photon。
  • Portworx Volumes。
  • ScaleIO Volumes。
  • HostPath:宿主机目录,仅用于单机测试。

每种存储类型都有各自的特点,在使用时需要根据它们各自的参数进行设置。

1、Capacity(容量)

描述存储设备具备的能力,目前仅支持对存储空间的设置( storage= =xx),未来可能加入

2、访问模式(Access Modes)

  • ReadWriteOnce (简写为 RWO): 读写权限,并且只能被单个Node挂载。
  • ReadOnlyMany (简写为 ROX): 只读权限,允许被多个Node挂载。
  • ReadWriteMany (简写为 RWX): 读写权限,允许被多个Node挂载。

注意:即使volume支持很多种访问模式,但它同时只能使用一种访问模式。比如,GCEPersistentDisk可以被单个节点映射为ReadWriteOnce,或者多个节点映射为ReadOnlyMany,但不能同时使用这两种方式来映射。

Volume Plugin ReadWriteOnce ReadOnlyMany ReadWriteMany
AWSElasticBlockStore - -
AzureFile
AzureDisk - -
CephFS
Cinder - -
FC -
FlexVolume -
Flocker - -
GCEPersistentDisk -
Glusterfs
HostPath - -
iSCSI -
PhotonPersistentDisk - -
Quobyte
NFS
RBD -
VsphereVolume - -
PortworxVolume -
ScaleIO -

3、存储类别(Class)

PV可以设定其存储的类别(Class),通过storageClassName参数指定一个StorageClass资源对象的名称。具有特定“类别”的PV只能与请求该“类别”的PVC进行绑定。未设定“类别”的PV则只能与不请求任何“类别”的PVC进行绑定。

4、回收策略(Reclaim Policy)

目前支持如下三种回收策略。

  • 保留(Retain): 保留数据,需要手工处理。
  • 回收空间( Recycle):简单清除文件的操作(例如执行m -rf /thevolume/*命令)。
  • 删除(Delete):与PV相连的后端存储完成volume的删除操作(如AWS EBS、GCE PD、Azure Disk、OpenStack Cinder等设备的内部volume清理)。

目前,只有NFS和HostPath两种类型的存储支持“Recycle”策略; AWS EBS、GCE PD、Azure Disk和Cinder volumes支持“Delete”策略。

2. PV生命周期的各个阶段( Phase )

某个PV在生命周期中,可能处于以下4个阶段之一。

  • Available: 可用状态,还未与某个PVC绑定。
  • Bound: 已与某个PVC绑定。
  • Released: 绑定的PVC已经删除,资源已释放,但没有被集群回收。
  • Failed: 自动资源回收失败。

3. PV的挂载参数( Mount Options )

在将PV挂载到一个Node上时,根据后端存储的特点,可能需要设置额外的挂载参数,目前可以通过在PV的定义中,设置一个名为“volume.beta.kubernetes.io/mount-options"的annotation来实现。下面的例子对一个类型为gcePersistentDisk的PV设置了挂载参数“discard":

apiVersion: "v1"
kind: "PersistentVolume"
metadata :name: gce-disk-1annotations:volume.beta.kubernetes.io/mount-options: "discard" spec: capacity: storage : "10Gi” accessModes : - ”ReadWriteOnce” gcePersistentDisk: fsType: "ext4" pdName : "gce-disk-1 

并非所有类型的存储都支持设置挂载参数。从Kubernetes v1.6版本开始,以下存储类型支持设置挂载参数。

  • gcePersistentDisk。
  • AWSElasticBlockStore.
  • AzureFile。
  • AzureDisk。
  • NFS。
  • iSCSI。
  • RBD
  • (Rados Block Device): Ceph 块存储。
  • CephFS。
  • Cinder: OpenStack 块存储。
  • GlusterFS。
  • VsphereVolume.
  • Quobyte Volumes.
  • VMware Photon。

PVC详解

PVC 作为用户对存储资源的需求申请,主要包括存储空间请求、访问模式、PV选择条件和存储类别等信息的设置。下面的例子中声明的PVC具有如下属性:申请8Gi存储空间,访问模式为"ReadWriteOnce",PV选择条件为包含标签"release=stable"并且包含条件为"environment In [dev]"的标签,存储类别为"slow"(要求系统中已存在名为slow的StorageClass)。

kind: PersistentVolumeClaim
apiVersion: v1
metadata:name: myclaim
spec:accessModes:- ReadWriteOnceresources:requests:storage: 8GistorageClassName: slowselector:matchLabels:release: "stable"matchExpressions:- {key: environment, operator: In, values: [dev]} 

PVC的关键配置参数说明如下:

  • 资源请求(Resources):描述对存储资源的请求,目前仅支持request.storage的设置,即存储空间大小。
  • 访问模式(Access Modes):PVC也可以设置访问模式,用于描述用户应用对存储资源的访问权限。可以设置的三种访问模式与PV相同。
  • PV选择条件(Selector):通过Label Selector的设置,可使PVC对于系统中已存在的各种PV进行筛选。系统将根据标签选择出合适的PV与该PVC进行绑定。选择条件可以使用matchLabels和matchExpressions进行设置。如果两个条件都设置了,则Selector的逻辑是两组条件同时满足才能完成匹配。
  • 存储类别(Class):PVC在定义时可以设定需要的后端存储的"类别"(通过storageClassName字段指定),以降低对后端存储特性的详细信息的依赖。只有设置了该Class的PV才能被系统选出,并与该PVC进行绑定。

PVC也可以不设置Class需求。如果storageClassName字段的值被设置为空(storageClassName=""),则表示该PVC不要求特定的Class,系统将只选择未设定Class的PV与之匹配和绑定。PVC也可以完全不设置storageClassName字段,此时将根据系统是否启用了名为"DefaultStorageClass"的admission controller进行相应的操作。

  • 未启用DefaultStorageClass:等效于PVC设置storageClassName的值为空,即只能选择未设定Class的PV与之匹配和绑定。

  • 启用了DefaultStorageClass:要求集群管理员已定义默认的StorageClass。如果系统中不存在默认的StorageClass,则等效于不启用DefaultStorageClass的情况。如果存在默认的StorageClass,则系统将自动为PVC创建一个PV(使用默认StorageClass的后端存储),并将它们进行绑定。集群管理员设置默认StorageClass的方法为,在StorageClass的定义中加上一个annotation "storageclass.kubernetes.io/is-default-class=true"。如果管理员将多个StorageClass都定义为default,则由于不唯一,系统将无法为PVC创建相应的PV。

注意,PVC和PV都受限于namespace,PVC在选择PV时受到namespace的限制,只有相同namespace中的PV才可能与PVC绑定。Pod在引用PVC时同样受namespace的限制,只有相同namespace中的PVC才能挂载到Pod内。

当Selector和Class都进行了设置时,系统将选择两个条件同时满足的PV与之匹配。

另外,如果资源供应使用的是动态模式,即管理员没有预先定义PV,仅通过StorageClass交给系统自动完成PV的动态创建,那么PVC再设定Selector时,系统将无法为其供应任何存储资源了。

在启动动态供应模式的情况下,一旦用户删除了PVC,与之绑定的PV将根据其默认的回收策略"Delete"也会被删除。如果需要保留PV(用户数据),则在动态绑定成功后,用户需要将系统自动生成PV的回收策略从"Delete"改成"Retain"。

PV和PVC的生命周期

PV可以看作可用的存储资源,PVC则是对存储资源的需求,PV和PVC的相互关系遵循下图所示的生命周期。

1 资源供应(Provisioning)

k8s支持两种资源的供应模式:静态模式(Static)动态模式(Dynamic)。资源供应的结果就是创建好的PV。

  • 静态模式:集群管理员手工创建许多PV,在定义PV时需要将后端存储的特性进行设置。
  • 动态模式:集群管理员无须手工创建PV,而是通过StorageClass的设置对后端存储进行描述,标记为某种“类型(Class)”。此时要求PVC对存储类型进行声明,系统将自动完成PV的创建及与PVC的绑定。PVC可以声明Class为"",说明该PVC禁止使用动态模式。

2 资源绑定(Binding)

在用户定义好PVC之后,系统将根据PVC对存储资源的请求(存储空间和访问模式)在已存在的PV中选择一个满足PVC要求的PV,一旦找到,就将该PV与用户定义的PVC进行绑定,然后用户的应用就可以使用这个PVC了。如果系统中没有满足PVC要求的PV,PVC就会无限期处于Pending状态,直到等到系统管理员创建了一个符合其要求的PV。PV一旦绑定到某个PVC上,就被这个PVC独占,不能再与其他PVC进行绑定了。在这种情况下,当PVC申请的存储空间与PV的少时,整个PV的空间都会被PVC所用,可能会造成资源的浪费。如果资源供应使用的是动态模式,则系统在为PVC找到合适的StorageClass后,将自动创建一个PV并完成与PVC的绑定。

3 资源使用(Using)

Pod使用volume的定义,将PVC挂载到容器内的某个路径进行使用。volume的类型为"persistentVolumeClaim",在后面的示例中再进行详细说明。在容器应用挂载了一个PVC后,就能被持续独占使用。不过,多个Pod可以挂载同一个PVC,应用程序需要考虑多个实例共同访问同一块存储空间的问题。

4 资源释放(Releasing)

当用户对存储资源使用完毕后,用户可以删除PVC,与该PVC绑定的PV将会被标记为“已释放”,但还不能立刻与其他PVC进行绑定。通过之前PVC写入的数据可能还留在存储设备上,只有在清除之后该PV才能再次使用。

5 资源回收(Reclaimig)

对于PV,管理员可以设定回收策略(Reclaim Policy),用于设置与之绑定的PVC释放资源之后,对于遗留数据如何处理。只有PV的存储空间完成回收,才能供新的PVC绑定和使用。

下面通过两张图分别对在静态资源供应模式和动态资源供应模式下,PV、PVC、StorageClass及Pod使用PVC的原理进行说明。

在静态资源供应模式下,通过PV和PVC完成绑定,并供Pod使用的存储管理机制。

在动态资源供应模式下,通过StorageClass和PVC完成资源动态绑定(系统自动生成PV),并供Pod使用的存储管理机制。

StorageClass详解

StorageClass作为对存储资源的抽象定义,对用户设置的PVC申请屏蔽后端存储的细节。一方面减轻用户对于存储资源细节的关注,另一方面也减轻管理员手工管理PV的工作,由系统自动完成PV的创建和绑定,实现动态的资源供应。使用基于StorageClass的动态资源供应模式将逐步成为云平台的标准存储配置模式。

StorageClass的定义主要包括名称、后端存储的提供者(Provisioner)和后端存储的相关参数配置。StorageClass一旦被创建出来,就将无法修改,只能删除原StorageClass的定义重建。下面的例子中定义了一个名为“standard"的StorageClass,提供者为aws-ebs,其参数设置了一个type=gp2。

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:name: standard
provisioner: kubernetes.io/aws-ebs
parameters:type: gp2

1 StorageClass的关键配置参数

1)提供者(Provisioner)

描述存储资源的提供者,也可以看作后端存储驱动。
目前k8s支持的Provisioner都以"kubernetes.io/"为开头,用户也可以使用自定义的后端存储提供者。为了符合StorageClass的用法,自定义Provisioner需要符合存储卷的开发规范,详见该链接的说明:https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/volume-provisioning.md 。

2)参数(Parameters)

后端存储资源提供者的参数设置,不同的Provisioner包括不同的参数设置。某些参数可以不显示设定,Provisioner将使用其默认值。

3)下面介绍几种常用的Provisioner对StorageClass的定义进行详细说明

AWS EBS存储卷
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:name: slow
provisioner: kubernetes.io/aws-ebs
parameters:type: io1zone: us-east-idiopsPerGB: "10"

参数说明如下:

  • type:可选项为io1, gp2, sc1, st1, 默认值为gp2
  • zone:AWS zone的名称
  • iopsPerGB:仅用于io1类型的volume,意为每秒每GiB的I/O操作数量
  • encrypted:是否加密
  • kmsKeyId:加密时的Amazon Resource Name
GCE PD存储卷
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:name: slow
provisioner: kubernetes.io/gce-pd
parameters:type: pd-standardzone: us-centrall-a

参数说明:

  • type:可选项为pd-standard, pd-ssd, 默认值为pd-standard
  • zone:GCE zone名称
GlusterFS存储卷
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:name: slow
provisioner: kubernetes.io/glusterfs
parameters:resturl: "https://127.0.0.1:8081"clusterid: "sadfa2435hfghsrg462345"restauthenabled: "true" restuser: "admin" secretNamespace: "default" secretName: "heketi-secret" gidMin: "40000" gidMax: "50000" volumetype: "replicate:3" 

参数说明如下(详细说明请参考GlusterFS和Heketi的文档)。

  • resturl: Gluster REST服务(heketi)的URL地址,用于自动完成GlusterFSvolume的设置。
  • restauthenabled: 是否对Gluster REST服务启用安全机制。
  • restuser: 访问Gluster REST服务的用户名。
  • secretNamespace和secretName: 保存访问Gluster REST服务密码的Secret资源对象名。
  • clusterid: GlusterFS的Cluster ID
  • gidMin和gidMAX: StorageClass的GID范围,用于动态资源供应时为PV设置的GID。
  • volumetype: GlusterFS的volume类型设置,例如replicate:3(Replicate类型,3副本);disperse:4:2(Disperse类型,数据4份,冗余2份);none(Distribute类型)。
OpenStack Cinder存储卷
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:name: gold
provisioner: kubernetes.io/cinder
parameters:type: fastavailability: nova

参数说明如下:

  • type: Cinder的VolumeType, 默认值为空。
  • availability: Availability Zone, 默认值为空。

其他Provisioner的StorageClass相关参数设置请参考它们各自的配置手册。

2 设置默认的StorageClass

要在系统中设置一个默认的StorageClass,首先需要启动名为"DefaultStorageClass"admission controller, 即在kube-apiserver的命令行参数--admission-controll中增加:
--admission-control=...,DefaultStorageClass

然后,在StorageClass的定义中设置一个annotation:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:name: goldannotations:storageclass.beta.kubernetes.io/is-default-class="true"
provisioner: kubernetes.io/cinder
parameters:type: fast availability: nova 

通过kubectl create命令创建成功后,查看StorageClass列表,可以看到名为gold的StorageClass被标记为"default":

# kubectl get sc
gold (default)  kubernetes.io/cinder

动态存储管理实战:GlusterFS

本节以GlusterFS为例,从定义StorageClass、创建GlusterFS和Heketi服务、用户申请PVC到创建Pod使用存储资源,对StorageClass和动态资源分配进行详细说明,进一步剖析k8s的存储机制。

1 准备工作

首先在用于部署GlusterFS的三个节点上安装GlusterFS客户端:

yum -y install glusterfs glusterfs-fuse

GlusterFS管理服务容器需要以特权模式运行,中kube-apiserver的启动参数中确认已经打开了:

--allow-privileged=true

给要部署GlusterFS管理服务的节点打上"storagenode=glusterfs"的标签,这样可以将GlusterFS容器定向部署到安装了GlusterFS的Node上:

[k8s@kube-server harbor]$ kubectl label node kube-node1 storagenode=glusterfs
node "kube-node1" labeled
[k8s@kube-server harbor]$ kubectl label node kube-node2 storagenode=glusterfs node "kube-node2" labeled [k8s@kube-server harbor]$ kubectl label node kube-node3 storagenode=glusterfs node "kube-node3" labeled 

2 创建GlusterFS服务容器集群

GlusterFS服务容器以DaemonSet的方式进行部署,确保每台Node上都运行一个GlusterFS管理服务,glusterfs-daemonset.yaml内容如下。参照 https://github.com/gluster/gluster-kubernetes。

1)在各个Node节点的启动参数中增加以下选项,因为GlusterFS需要使用容器的特权模式运行

--allow-privileged

生效:

systemctl daemon-reload
systemctl restart kubelet
systemctl status kubelet

2)给每个运行GlusterFS的Node节点增加一块数据磁盘

注意数据盘挂载后,在系统中使用的设备描述符,需要在下一步配置中使用到。

3)编辑topology.json拓朴文件

获取一份安装资源:

git clone https://github.com/gluster/gluster-kubernetes.git

[k8s@kube-server deploy]$ pwd
/home/k8s/gluster-kubernetes/deploy
[k8s@kube-server deploy]$ ls
gk-deploy  heketi.json.template  kube-templates  ocp-templates  topology.json

至少需要3个节点,按下面格式对该文件进行更新:

[k8s@kube-server deploy]$ cat topology.json
{"clusters": [{"nodes": [ { "node": { "hostnames": { "manage": [ "kube-node1" ], "storage": [ "172.16.10.101" ] }, "zone": 1 }, "devices": [ "/dev/sdb" ] }, { "node": { "hostnames": { "manage": [ "kube-node2" ], "storage": [ "172.16.10.102" ] }, "zone": 1 }, "devices": [ "/dev/sdb" ] }, { "node": { "hostnames": { "manage": [ "kube-node3" ], "storage": [ "172.16.10.103" ] }, "zone": 1 }, "devices": [ "/dev/sdb" ] } ] } ] } 

4)在k8s上部署 GlusterFS + heketi

需要先检查下环境:

  • 至少需要3个节点
  • 每个节点上至少提供一个裸块存储设备;
  • 确保以下端口没有被占用:2222,24007, 24008, 49152~49251
  • 在系统中加载以下模块: modprobe dm_snapshot && modprobe dm_mirror && modprobe dm_thin_pool
  • 安装依赖包:yum -y install glusterfs-fuse

执行部署命令:

[k8s@kube-server deploy]$ ./gk-deploy -g

注:-g参数表示要创建出一套glusterfs集群服务。

如果一切顺利,在结束时会看到下面的输出:

....
service "heketi" created
deployment.extensions "heketi" created
Waiting for heketi pod to start ... OK
Flag --show-all has been deprecated, will be removed in an upcoming releaseheketi is now running and accessible via https://172.30.86.3:8080 . To run administrative commands you can install 'heketi-cli' and use it as follows: # heketi-cli -s https://172.30.86.3:8080 --user admin --secret '<ADMIN_KEY>' cluster list You can find it at https://github.com/heketi/heketi/releases . Alternatively, use it from within the heketi pod: # /opt/k8s/bin/kubectl -n default exec -i heketi-75dcfb7d44-vj9bk -- heketi-cli -s https://localhost:8080 --user admin --secret '<ADMIN_KEY>' cluster list For dynamic provisioning, create a StorageClass similar to this: --- apiVersion: storage.k8s.io/v1beta1 kind: StorageClass metadata: name: glusterfs-storage provisioner: kubernetes.io/glusterfs parameters: resturl: "https://172.30.86.3:8080" Deployment complete! 

查看下都创建出了哪些服务实例:

[k8s@kube-server deploy]$ kubectl get pods -o wide
NAME                        READY     STATUS    RESTARTS   AGE       IP              NODE
glusterfs-88469             1/1       Running   0 2h 172.16.10.102 kube-node2 glusterfs-lwm4n 1/1 Running 0 2h 172.16.10.103 kube-node3 glusterfs-pfgwb 1/1 Running 0 2h 172.16.10.101 kube-node1 heketi-75dcfb7d44-vj9bk 1/1 Running 0 1h 172.30.86.3 kube-node2 my-nginx-86555897f9-2kn92 1/1 Running 2 8h 172.30.49.2 kube-node1 my-nginx-86555897f9-d95t9 1/1 Running 4 2d 172.30.48.2 kube-node3 [k8s@kube-server deploy]$ kubectl get svc -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR heketi ClusterIP 10.254.42.129 <none> 8080/TCP 1h glusterfs=heketi-pod heketi-storage-endpoints ClusterIP 10.254.4.122 <none> 1/TCP 1h <none> kubernetes ClusterIP 10.254.0.1 <none> 443/TCP 7d <none> my-nginx ClusterIP 10.254.191.237 <none> 80/TCP 5d run=my-nginx [k8s@kube-server deploy]$ kubectl get deployment NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE heketi 1 1 1 1 1h my-nginx 2 2 2 2 5d [k8s@kube-server deploy]$ kubectl get secret NAME TYPE DATA AGE default-token-p5wjd kubernetes.io/service-account-token 3 7d heketi-config-secret Opaque 3 1h heketi-service-account-token-mrtsx kubernetes.io/service-account-token 3 2h kubelet-api-test-token-gdj7g kubernetes.io/service-account-token 3 6d [k8s@kube-server deploy]$ 

5)使用示例

在可以调用kubectl管理k8s集群的节点上,安装一个heketi客户端:

yum -y install heketi-client

创建个1GB的PV存储卷:

[k8s@kube-server deploy]$ export HEKETI_CLI_SERVER=https://172.30.86.3:8080
[k8s@kube-server deploy]$ heketi-cli volume create --size=1 --persistent-volume --persistent-volume-endpoint=heketi-storage-endpoints | kubectl create -f - persistentvolume "glusterfs-900fb349" created 

回到Dashboard上看看这个刚创建的存储卷:

通过heketi服务查看和管理GlusterFS集群: 查看集群列表:

[root@kube-node1 ~]# curl 10.254.42.129:8080/clusters
{"clusters":["ada54ffbeac15a5c9a7521e0c7d2f636"]} 

查看集群详情:

[root@kube-node1 ~]# curl 10.254.42.129:8080/clusters/ada54ffbeac15a5c9a7521e0c7d2f636
{"id":"ada54ffbeac15a5c9a7521e0c7d2f636","nodes":["49ac6f56ef21408bcad7c7613cd40bd8","bdf51ae46025cd4fcf134f7be36c32de","fc21262379ec3636e3eadcae15efcc94"],"volumes":["42b01b9b08af23b751b2359fb161c004","900fb349e56af275f47d523d08fdfd6e"],"block":true,"file":true,"blockvolumes":[]} 

查看节点详情:

[root@kube-node1 ~]# curl 10.254.42.129:8080/nodes/49ac6f56ef21408bcad7c7613cd40bd8
{"zone":1,"hostnames":{"manage":["kube-node3"],"storage":["172.16.10.103"]},"cluster":"ada54ffbeac15a5c9a7521e0c7d2f636","id":"49ac6f56ef21408bcad7c7613cd40bd8","state":"online","devices":[{"name":"/dev/sdb","storage":{"total":8253440,"free":5087232,"used":3166208},"id":"2f6b2f6c289a2f6bf48fbec59c0c2009","state":"online","bricks":[{"id":"2ea90ebd791a4230e927d233d1c8a7d1","path":"/var/lib/heketi/mounts/vg_2f6b2f6c289a2f6bf48fbec59c0c2009/brick_2ea90ebd791a4230e927d233d1c8a7d1/brick","device":"2f6b2f6c289a2f6bf48fbec59c0c2009","node":"49ac6f56ef21408bcad7c7613cd40bd8","volume":"42b01b9b08af23b751b2359fb161c004","size":2097152},{"id":"4c98684d878ffe7dbfc1008336460eed","path":"/var/lib/heketi/mounts/vg_2f6b2f6c289a2f6bf48fbec59c0c2009/brick_4c98684d878ffe7dbfc1008336460eed/brick","device":"2f6b2f6c289a2f6bf48fbec59c0c2009","node":"49ac6f56ef21408bcad7c7613cd40bd8","volume":"900fb349e56af275f47d523d08fdfd6e","size":1048576}]}]} 
  • state 为 online说明节点正常

6)创建一个使用GlusterFS动态存储供应服务的nginx应用

注:在本示例中的用户认证是未启用的,如果要启动用户认证服务,则可以创建一个secret,然后通过StorageClass配置参数传递给Gluster动态存储供应服务。
下面是一个存储类的示例,它将请求2GB的按需存储,用于在我们的HelloWorld应用程序中使用。

gluster-storage-class.yaml
apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:name: gluster-heketi
provisioner: kubernetes.io/glusterfs
parameters:resturl: "https://10.254.42.129:8080"restuser: "joe" restuserkey: "My Secret Life" 
  • name,StorageClass名称
  • provisioner,存储服务提供者
  • resturl,Heketi REST Url
  • restuser,因为未启用认证,所以这个参数无效
  • restuserkey,同上

创建该存储类:

[k8s@kube-server ~]$ kubectl create -f gluster-storage-class.yaml storageclass.storage.k8s.io "gluster-heketi" created [k8s@kube-server ~]$ kubectl get storageclass NAME PROVISIONER AGE gluster-heketi kubernetes.io/glusterfs 43s 

创建PersistentVolumeClaim(PVC)以请求我们的HelloWorld应用程序的存储:
我们将创建一个要求2GB存储空间的PVC,此时,Kubernetes Dynamic Provisioning Framework和Heketi将自动配置新的GlusterFS卷并生成Kubernetes PersistentVolume(PV)对象。

gluster-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: gluster1 annotations: volume.beta.kubernetes.io/storage-class: gluster-heketi spec: accessModes: - ReadWriteOnce resources: requests: storage: 2Gi 
  • annotations,Kubernetes存储类注释和存储类的名称

    [k8s@kube-server ~]$ kubectl create -f gluster-pvc.yaml
    persistentvolumeclaim "gluster1" created

可以看到PVC是绑定到一个动态供给的存储卷上的:

[k8s@kube-server ~]$ kubectl get pvc
NAME       STATUS    VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE gluster1 Bound pvc-53e824cf-7eb7-11e8-bf5c-080027395360 2Gi RWO gluster-heketi 53s [k8s@kube-server ~]$ kubectl get pv NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE glusterfs-900fb349 1Gi RWX Retain Available 2h pvc-53e824cf-7eb7-11e8-bf5c-080027395360 2Gi RWO Delete Bound default/gluster1 gluster-heketi 1m 

创建一个使用该PVC的nginx实例:

nginx-pod.yaml
apiVersion: v1
kind: Pod
metadata:name: nginx-pod1labels:name: nginx-pod1
spec:containers:- name: nginx-pod1image: nginx:1.7.9ports:- name: webcontainerPort: 80volumeMounts:- name: gluster-vol1 mountPath: /usr/share/nginx/html volumes: - name: gluster-vol1 persistentVolumeClaim: claimName: gluster1 

claimName,要使用的PVC的名称

[k8s@kube-server ~]$ kubectl create -f nginx-pod.yaml
pod "nginx-pod1" created[k8s@kube-server ~]$ kubectl get pods -o wide|grep nginx-pod nginx-pod1 1/1 Running 0 33s 172.30.86.3 kube-node2 

登录到该Pod中并创建一个网页文件:

[k8s@kube-server ~]$ kubectl exec -it nginx-pod1 /bin/bash root@nginx-pod1:/# df -h Filesystem Size Used Avail Use% Mounted on rootfs 41G 7.1G 34G 18% / overlay 41G 7.1G 34G 18% / tmpfs 64M 0 64M 0% /dev tmpfs 496M 0 496M 0% /sys/fs/cgroup /dev/mapper/centos_bogon-root 41G 7.1G 34G 18% /dev/termination-log shm 64M 0 64M 0% /dev/shm /dev/mapper/centos_bogon-root 41G 7.1G 34G 18% /etc/resolv.conf /dev/mapper/centos_bogon-root 41G 7.1G 34G 18% /etc/hostname /dev/mapper/centos_bogon-root 41G 7.1G 34G 18% /etc/hosts /dev/mapper/centos_bogon-root 41G 7.1G 34G 18% /var/cache/nginx 172.16.10.101:vol_1b6e32efd9b6f07e2b056bed2ce6cc73 2.0G 53M 2.0G 3% /usr/share/nginx/html tmpfs 496M 12K 496M 1% /run/secrets/kubernetes.io/serviceaccount tmpfs 64M 0 64M 0% /proc/kcore tmpfs 64M 0 64M 0% /proc/keys tmpfs 64M 0 64M 0% /proc/timer_list tmpfs 64M 0 64M 0% /proc/timer_stats tmpfs 64M 0 64M 0% /proc/sched_debug tmpfs 496M 0 496M 0% /proc/scsi tmpfs 496M 0 496M 0% /sys/firmware root@nginx-pod1:/# cd /usr/share/nginx/html dex.htmlnx-pod1:/usr/share/nginx/html# echo 'Hello World from GlusterFS!!!' > in root@nginx-pod1:/usr/share/nginx/html# ls index.html root@nginx-pod1:/usr/share/nginx/html# cat index.html Hello World from GlusterFS!!! 

转载于:https://www.cnblogs.com/linux20190409/p/10976322.html

20.Kubernetes共享存储相关推荐

  1. Kubernetes共享使用Ceph存储

    目录 简要概述 环境测试 结果验证 简要概述 Kubernetes pod 结合Ceph rbd块设备的使用,让Docker 数据存储在Ceph,重启Docker或k8s RC重新 调 度pod 不会 ...

  2. kubernetes云原生纪元:共享存储-PVPVC(上)

    kubernetes云原生纪元:共享存储-PV&&PVC(上) 之前我们学习的都是无状态的服务,如果有状态的服务就非常麻烦,比如有的服务会把自己文件存放到自己服务器的目录上,如果直接嵌 ...

  3. openGauss数据库共享存储特性简介

    openGauss 3.1.1是openGauss 5.0.0 release版本的Preview版本,希望广大社区伙伴和开发者基于此版本进行场景化验证,提前发现问题并反馈社区,社区将在LTS版本发布 ...

  4. Kubernetes 本地存储卷 pod volume emptyDir

    Volume 本节我们讨论 Kubernetes 的存储模型 Volume,学习如何将各种持久化存储映射到容器. 我们经常会说:容器和 Pod 是短暂的. 其含义是它们的生命周期可能很短,会被频繁地销 ...

  5. rhel6多台主机的HA集群,并实现增加仲裁盘和共享存储

    所有的服务最好设置开机启动 [root@node1-f15 ~]# chkconfig modclusterd on [root@node1-f15 ~]# chkconfig ricci on [r ...

  6. NFS为lamp提供共享存储实践

    本文旨在实现NFS为lamp环境web站点提供共享存储. 1.实验需求 (1)nfs server导出/data/application/web,在目录中提供wordpress; (2)nfs cli ...

  7. 安装部署VMware vSphere 5.5文档 (6-1) 配置IBM DS4700 共享存储

    部署VMware vSphere 5.5 ############################################################################### ...

  8. 阿里云容器网络文件系统 CNFS 1.0 发布,体验云原生时代的容器共享存储

    简介:CNFS 通过将阿里云的文件存储抽象为一个 Kubernetes 对象(CRD)进行独立管理,包括创建.删除.描述.挂载,监控及扩容等运维操作,使用户可以在享受容器使用文件存储带来的便捷的同时, ...

  9. PolarFS :一个用于共享存储云数据库的超低延迟和容错分布式文件系统

    目录 1. 简介 2. 背景 3. 架构 4. I/O 执行模型 5. 一致性模型 6. FS中层的实现 7. 设计选择和经验教训 8. 价值评估 9. 相关工作 10. 结论 PolarFS : A ...

最新文章

  1. TIOBE 1月编程语言排行榜:C语言再度「C 位」出道,Python惜败
  2. Java EE 8发生了什么? (第2部分)
  3. 北京高院宣判:微信商标案终审驳回上诉 维持原判
  4. 异步并发利器:实际项目中使用CompletionService提升系统性能的一次实践
  5. 离线安装pymysql和dbutils
  6. Python实现多变量序列堆叠式LSTM模型,并实现未来多时刻预测
  7. 图的深度优先遍历和广度优先遍历(附例题)
  8. spring Quartz基于配置文件和注解的实现
  9. vdbench 参数详解
  10. 风险偏好情绪有所改善,非美低位反弹
  11. 使用串口转USB连接树莓派
  12. 不会写SQL?ChatGPT 来帮你
  13. 不是吧,还有人不会做圣诞节头像小程序(可开通流量主,赚零花钱)
  14. 网页多次刷新出不来怎么办
  15. GRUB2配置文件grub.cfg详解(GRUB2实战手册)
  16. java回调原理,以及Callable和FutureTask通过回调机制创建可监控的线程
  17. 【数据读写】csv文件与xls/xlsx文件
  18. 手机游戏推广的五个步骤
  19. oracle 查看回收站的表,从回收站闪回表
  20. matlab字符串表示方法,MATLAB字符和字符串

热门文章

  1. 输入3.7V升压5V,3.7V转5V电路图芯片
  2. 并行Nerf逆过程解决姿态估计问题!(Arxiv 2022)
  3. springmvc+ajax上传图片
  4. 电动车平台再升级,这是小鹏、蔚来们的第二次冲锋
  5. UPF电源感知设计与验证
  6. react18 新特性 useTransition
  7. 计算指定的年月日是这一年的第几天python
  8. win10内存8G,可用5G的解决办法(亲测完美解决)
  9. SQL注入防御之参数加密
  10. Java开发面试简历这么写,提高命中率