之前的 Android插件化原理解析 系列文章揭开了Hook机制的神秘面纱,现在我们手握倚天屠龙,那么如何通过这种技术完成插件化方案呢?具体来说,插件中的Activity,Service等组件如何在Android系统上运行起来?

在Java平台要做到动态运行模块、热插拔可以使用ClassLoader技术进行动态类加载,比如广泛使用的OSGi技术。在Android上当然也可以使用动态加载技术,但是仅仅把类加载进来就足够了吗?ActivityService等组件是有生命周期的,它们统一由系统服务AMS管理;使用ClassLoader可以从插件中创建Activity对象,但是,一个没有生命周期的Activity对象有什么用?所以在Android系统上,仅仅完成动态类加载是不够的;我们需要想办法把我们加载进来的Activity等组件交给系统管理,让AMS赋予组件生命周期;这样才算是一个有血有肉的完善的插件化方案。

接下来的系列文章会讲述 DroidPlugin对于Android四大组件的处理方式,我们且看它如何采用Hook技术坑蒙拐骗把系统玩弄于股掌之中,最终赋予Activity,Service等组件生命周期,完成借尸还魂的。

首先,我们来看看DroidPlugin对于Activity组件的处理方式。

阅读本文之前,可以先clone一份 understand-plugin-framework,参考此项目的intercept-activity模块。另外,如果对于Hook技术不甚了解,请先查阅我之前的文章:

  1. Hook机制之动态代理
  2. Hook机制之Binder Hook
  3. Hook机制之AMS&PMS

AndroidManifest.xml的限制

读到这里,或许有部分读者觉得疑惑了,启动Activity不就是一个startActivity的事吗,有这么神秘兮兮的?

启动Activity确实非常简单,但是Android却有一个限制:必须在AndroidManifest.xml中显示声明使用的Activity;我相信读者肯定会遇到下面这种异常:

1
2
3
03-18 15:29:56.074  20709-20709/com.weishu.intercept_activity.app E/AndroidRuntime﹕ FATAL EXCEPTION: main
    Process: com.weishu.intercept_activity.app, PID: 20709
    android.content.ActivityNotFoundException: Unable to find explicit activity class {com.weishu.intercept_activity.app/com.weishu.intercept_activity.app.TargetActivity}; have you declared this activity in your AndroidManifest.xml?

『必须在AndroidManifest.xml中显示声明使用的Activity』这个硬性要求很大程度上限制了插件系统的发挥:假设我们需要启动一个插件的Activity,插件使用的Activity是无法预知的,这样肯定也不会在Manifest文件中声明;如果插件新添加一个Activity,主程序的AndroidManifest.xml就需要更新;既然双方都需要修改升级,何必要使用插件呢?这已经违背了动态加载的初衷:不修改插件框架而动态扩展功能。

能不能想办法绕过这个限制呢?

束手无策啊,怎么办?借刀杀人偷梁换柱无中生有以逸待劳乘火打劫瞒天过海…等等!偷梁换柱瞒天过海?貌似可以一试。

我们可以耍个障眼法:既然AndroidManifest文件中必须声明,那么我就声明一个(或者有限个)替身Activity好了,当需要启动插件的某个Activity的时候,先让系统以为启动的是AndroidManifest中声明的那个替身,暂时骗过系统;然后到合适的时候又替换回我们需要启动的真正的Activity;所谓瞒天过海,莫过如此!

现在有了方案了,但是该如何做呢?兵书又说,知己知彼百战不殆!如果连Activity的启动过程都不熟悉,怎么完成这个瞒天过海的过程?

Activity启动过程

启动Activity非常简单,一个startActivity就完事了;那么在这个简单调用的背后发生了什么呢?Look the fucking source code!

关于Activity 的启动过程,也不是三言两语能解释清楚的,如果按照源码一步一步走下来,插件化系列文章就不用写了;所以这里我就给出一个大致流程,只列出关键的调用点(以Android 6.0源码为例);如果读者希望更详细的讲解,可以参考老罗的 Android应用程序的Activity启动过程简要介绍和学习计划

首先是Activity类的startActivity方法:

1
2
3
public void startActivity(Intent intent) {    startActivity(intent, null);
}

跟着这个方法一步一步跟踪,会发现它最后在startActivityForResult里面调用了Instrument对象的execStartActivity方法;接着在这个函数里面调用了ActivityManagerNative类的startActivity方法;这个过程在前文已经反复举例讲解了,我们知道接下来会通过Binder IPC到AMS所在进程调用AMSstartActivity方法;Android系统的组件生命周期管理就是在AMS里面完成的,那么在AMS里面到底做了什么呢?

ActivityManagerService的startActivity方法如下:

1
2
3
4
5
6
7
8
public final int startActivity(IApplicationThread caller, String callingPackage,
        Intent intent, String resolvedType, IBinder resultTo,
        String resultWho, int requestCode, int startFlags,
        String profileFile, ParcelFileDescriptor profileFd, Bundle options) {    return startActivityAsUser(caller, callingPackage, intent, resolvedType, resultTo,
            resultWho, requestCode,
            startFlags, profileFile, profileFd, options, UserHandle.getCallingUserId());
}

很简单,直接调用了startActivityAsUser这个方法;接着是ActivityStackSupervisor类的startActivityMayWait方法。这个ActivityStackSupervisor类到底是个啥?如果仔细查阅,低版本的Android源码上是没有这个类的;后来AMS的代码进行了部分重构,关于Activity栈管理的部分单独提取出来成为了ActivityStackSupervisor类;好了,继续看代码。

startActivityMayWait这个方法前面对参数进行了一系列处理,我们需要知道的是,在这个方法内部对传进来的Intent进行了解析,并尝试从中取出关于启动Activity的信息。

然后这个方法调用了startActivityLocked方法;在startActivityLocked方法内部进行了一系列重要的检查:比如权限检查,Activity的exported属性检查等等;我们上文所述的,启动没有在Manifestfest中显示声明的Activity抛异常也是这里发生的:

1
2
3
4
5
if (err == ActivityManager.START_SUCCESS && aInfo == null) {    // We couldn't find the specific class specified in the Intent.
    // Also the end of the line.
    err = ActivityManager.START_CLASS_NOT_FOUND;
}

这里返回ActivityManager.START_CLASS_NOT_FOUND之后,在Instrument的execStartActivity返回之后会检查这个值,然后跑出异常:

1
2
3
4
5
6
case ActivityManager.START_CLASS_NOT_FOUND:
    if (intent instanceof Intent && ((Intent)intent).getComponent() != null)
        throw new ActivityNotFoundException(
                "Unable to find explicit activity class "
                + ((Intent)intent).getComponent().toShortString()
                + "; have you declared this activity in your AndroidManifest.xml?");

源码看到这里,我们已经确认了『必须在AndroidManifest.xml中显示声明使用的Activity』的原因;然而这个校检过程发生在AMS所在的进程system_server,我们没有办法篡改,只能另寻他路。

OK,我们继续跟踪源码;在startActivityLocked之后处理的都是Activity任务栈相关内容,这一系列ActivityStack和ActivityStackSupervisor纠缠不清的调用看下图就明白了;不明白也没关系: D 目前用处不大。

调用流程图

这一系列调用最终到达了ActivityStackSupervisor的realStartActivityLocked方法;人如其名,这个方法开始了真正的“启动Activity”:它调用了ApplicationThread的scheduleLaunchActivity方法,开始了真正的Activity对象创建以及启动过程。

这个ApplicationThread是什么,是一个线程吗?与ActivityThread有什么区别和联系?

不要被名字迷惑了,这个ApplicationThread实际上是一个Binder对象,是App所在的进程与AMS所在进程system_server通信的桥梁;在Activity启动的过程中,App进程会频繁地与AMS进程进行通信:

  1. App进程会委托AMS进程完成Activity生命周期的管理以及任务栈的管理;这个通信过程AMS是Server端,App进程通过持有AMS的client代理ActivityManagerNative完成通信过程;
  2. AMS进程完成生命周期管理以及任务栈管理后,会把控制权交给App进程,让App进程完成Activity类对象的创建,以及生命周期回调;这个通信过程也是通过Binder完成的,App所在server端的Binder对象存在于ActivityThread的内部类ApplicationThread;AMS所在client通过持有IApplicationThread的代理对象完成对于App进程的通信。

App进程与AMS进程的通信过程如图所示:

App进程内部的ApplicationThread server端内部有自己的Binder线程池,它与App主线程的通信通过Handler完成,这个Handler存在于ActivityThread类,它的名字很简单就叫H,这一点我们接下来就会讲到。

现在我们明白了这个ApplicationThread到底是个什么东西,接上文继续跟踪Activity的启动过程;我们查看ApplicationThread的scheduleLaunchActivity方法,这个方法很简单,就是包装了参数最终使用Handler发了一个消息。

正如刚刚所说,ApplicationThread所在的Binder服务端使用Handler与主线程进行通信,这里的scheduleLaunchActivity方法直接把启动Activity的任务通过一个消息转发给了主线程;我们查看Handler类对于这个消息的处理:

1
2
3
4
5
6
7
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
ActivityClientRecord r = (ActivityClientRecord)msg.obj;

r.packageInfo = getPackageInfoNoCheck(
        r.activityInfo.applicationInfo, r.compatInfo);
handleLaunchActivity(r, null);
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);

可以看到,这里直接调用了ActivityThread的handleLaunchActivity方法,在这个方法内部有一句非常重要:

1
Activity a = performLaunchActivity(r, customIntent);

绕了这么多弯,我们的Activity终于被创建出来了!继续跟踪这个performLaunchActivity方法看看发生了什么;由于这个方法较长,我就不贴代码了,读者可以自行查阅;要指出的是,这个方法做了两件很重要的事情:

  1. 使用ClassLoader加载并通过反射创建Activity对象
1
2
3
4
5
java.lang.ClassLoader cl = r.packageInfo.getClassLoader();
activity = mInstrumentation.newActivity(
        cl, component.getClassName(), r.intent);
StrictMode.incrementExpectedActivityCount(activity.getClass());
r.intent.setExtrasClassLoader(cl);
  1. 如果Application还没有创建,那么创建Application对象并回调相应的生命周期方法;
1
2
3
4
5
6
7
8
Application app = r.packageInfo.makeApplication(false, mInstrumentation);
// ... 省略

if (r.isPersistable()) {    mInstrumentation.callActivityOnCreate(activity, r.state, r.persistentState);
} else {    mInstrumentation.callActivityOnCreate(activity, r.state);
}

Activity的启动过程到这里就结束了,可能读者还是觉得迷惑:不就是调用了一系列方法吗?具体做了什么还是不太清楚,而且为什么Android要这么设计?

方法调用链再长也木有关系,有两点需要明白:

  1. 平时我们所说的Application被创建了,onCreate方法被调用了,我们或许并没有意识到我们所说的Application, Activity除了代表Android应用层通常所代表的“组件”之外,它们其实都是普通的Java对象,也是需要被构造函数构造出来的对象的;在这个过程中,我们明白了这些对象到底是如何被创建的。
  2. 为什么需要一直与AMS进行通信?哪些操作是在AMS中进行的?其实AMS正如名字所说,管理所有的“活动”,整个系统的Activity堆栈,Activity生命周期回调都是由AMS所在的系统进程system_server帮开发者完成的;Android的Framework层帮忙完成了诸如生命周期管理等繁琐复杂的过程,简化了应用层的开发。

瞒天过海——启动不在AndroidManifest.xml中声明的Activity

简要分析

通过上文的分析,我们已经对Activity的启动过程了如指掌了;就让我们干点坏事吧 :D

对与『必须在AndroidManifest.xml中显示声明使用的Activity』这个问题,上文给出了思路——瞒天过海;我们可以在AndroidManifest.xml里面声明一个替身Activity,然后在合适的时候把这个假的替换成我们真正需要启动的Activity就OK了。

那么问题来了,『合适的时候』到底是什么时候?在前文Hook机制之动态代理中我们提到过Hook过程最重要的一步是寻找Hook点;如果是在同一个进程,startActivity到Activity真正启动起来这么长的调用链,我们随便找个地方Hook掉就完事儿了;但是问题木有这么简单。

Activity启动过程中很多重要的操作(正如上文分析的『必须在AndroidManifest.xml中显式声明要启动的Activity』)都不是在App进程里面执行的,而是在AMS所在的系统进程system_server完成,由于进程隔离的存在,我们对别的进程无能为力;所以这个Hook点就需要花点心思了。

这时候Activity启动过程的知识就派上用场了;虽然整个启动过程非常复杂,但其实一张图就能总结:

简要启动过程

先从App进程调用startActivity;然后通过IPC调用进入系统进程system_server,完成Activity管理以及一些校检工作,最后又回到了APP进程完成真正的Activioty对象创建。

由于这个检验过程是在AMS进程完成的,我们对system_server进程里面的操作无能为力,只有在我们APP进程里面执行的过程才是有可能被Hook掉的,也就是第一步和第三步;具体应该怎么办呢?

既然需要一个显式声明的Activity,那就声明一个!可以在第一步假装启动一个已经在AndroidManifest.xml里面声明过的替身Activity,让这个Activity进入AMS进程接受检验;最后在第三步的时候换成我们真正需要启动的Activity;这样就成功欺骗了AMS进程,瞒天过海!

说到这里,是不是有点小激动呢?我们写个demo验证一下:『启动一个并没有在AndroidManifest.xml中显示声明的Activity』

实战过程

具体来说,我们打算实现如下功能:在MainActivity中启动一个并没有在AndroidManifest.xml中声明的TargetActivity;按照上文分析,我们需要声明一个替身Activity,我们叫它StubActivity;

那么,我们的AndroidManifest.xml如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
          package="com.weishu.intercept_activity.app">

    <application
            android:allowBackup="true"
            android:label="@string/app_name"
            android:icon="@mipmap/ic_launcher"
            >

        <activity android:name=".MainActivity">
            <intent-filter>
                <action android:name="android.intent.action.MAIN"/>
                <category android:name="android.intent.category.LAUNCHER"/>
            </intent-filter>
        </activity>

        <!-- 替身Activity, 用来欺骗AMS  -->
        <activity android:name=".StubActivity"/>

    </application>

</manifest>

OK,那么我们启动TargetActivity很简单,就是个startActivity调用的事:

1
startActivity(new Intent(MainActivity.this, TargetActivity.class));

如果你直接这么运行,肯定会直接抛出ActivityNotFoundException然后直接退出;我们接下来要做的就是让这个调用成功启动TargetActivity。

狸猫换太子——使用替身Activity绕过AMS

由于AMS进程会对Activity做显式声明验证,因此在
启动Activity的控制权转移到AMS进程之前,我们需要想办法临时把TargetActivity替换成替身StubActivity;在这之间有很长的一段调用链,我们可以轻松Hook掉;选择什么地方Hook是一个很自由的事情,但是Hook的步骤越后越可靠——Hook得越早,后面的调用就越复杂,越容易出错。

我们可以选择在进入AMS进程的入口进行Hook,具体来说也就是Hook AMS在本进程的代理对象ActivityManagerNative。如果你不知道如何Hook掉这个AMS的代理对象,请查阅我之前的文章 Hook机制之AMS&PMS

我们Hook掉ActivityManagerNative对于startActivity方法的调用,替换掉交给AMS的intent对象,将里面的TargetActivity的暂时替换成已经声明好的替身StubActivity;这种Hook方式 前文 讲述的很详细,不赘述;替换的关键代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
if ("startActivity".equals(method.getName())) {    // 只拦截这个方法
    // 替换参数, 任你所为;甚至替换原始Activity启动别的Activity偷梁换柱
    // API 23:
    // public final Activity startActivityNow(Activity parent, String id,
    // Intent intent, ActivityInfo activityInfo, IBinder token, Bundle state,
    // Activity.NonConfigurationInstances lastNonConfigurationInstances) {
    // 找到参数里面的第一个Intent 对象

    Intent raw;
    int index = 0;

    for (int i = 0; i < args.length; i++) {        if (args[i] instanceof Intent) {            index = i;
            break;
        }
    }
    raw = (Intent) args[index];

    Intent newIntent = new Intent();

    // 这里包名直接写死,如果再插件里,不同的插件有不同的包  传递插件的包名即可
    String targetPackage = "com.weishu.intercept_activity.app";

    // 这里我们把启动的Activity临时替换为 StubActivity
    ComponentName componentName = new ComponentName(targetPackage, StubActivity.class.getCanonicalName());
    newIntent.setComponent(componentName);

    // 把我们原始要启动的TargetActivity先存起来
    newIntent.putExtra(HookHelper.EXTRA_TARGET_INTENT, raw);

    // 替换掉Intent, 达到欺骗AMS的目的
    args[index] = newIntent;

    Log.d(TAG, "hook success");
    return method.invoke(mBase, args);

}

return method.invoke(mBase, args);

通过这个替换过程,在ActivityManagerNative的startActivity调用之后,system_server端收到Binder驱动的消息,开始执行ActivityManagerService里面真正的startActivity方法;这时候AMS看到的intent参数里面的组件已经是StubActivity了,因此可以成功绕过检查,这时候如果不做后面的Hook,直接调用

1
startActivity(new Intent(MainActivity.this, TargetActivity.class));

也不会出现上文的ActivityNotFoundException

借尸还魂——拦截Callback从恢复真身

行百里者半九十。现在我们的startActivity启动一个没有显式声明的Activity已经不会抛异常了,但是要真正正确地把TargetActivity启动起来,还有一些事情要做。其中最重要的一点是,我们用替身StubActivity临时换了TargetActivity,肯定需要在『合适的』时候替换回来;接下来我们就完成这个过程。

在AMS进程里面我们是没有办法换回来的,因此我们要等AMS把控制权交给App所在进程,也就是上面那个『Activity启动过程简图』的第三步。AMS进程转移到App进程也是通过Binder调用完成的,承载这个功能的Binder对象是IApplicationThread;在App进程它是Server端,在Server端接受Binder远程调用的是Binder线程池,Binder线程池通过Handler将消息转发给App的主线程;(我这里不厌其烦地叙述Binder调用过程,希望读者不要反感,其一加深印象,其二懂Binder真的很重要)我们可以在这个Handler里面将替身恢复成真身

这里不打算讲述Handler 的原理,我们简单看一下Handler是如何处理接收到的Message的,如果我们能拦截这个Message的接收过程,就有可能完成替身恢复工作;Handler类的dispathMesage如下:

1
2
3
4
5
6
7
8
9
10
11
12
public void dispatchMessage(Message msg) {    if (msg.callback != null) {        handleCallback(msg);
    } else {        if (mCallback != null) {            if (mCallback.handleMessage(msg)) {                return;
            }
        }
        handleMessage(msg);
    }
}

从这个方法可以看出来,Handler类消息分发的过程如下:

  1. 如果传递的Message本身就有callback,那么直接使用Message对象的callback方法;
  2. 如果Handler类的成员变量mCallback存在,那么首先执行这个mCallback回调;
  3. 如果mCallback的回调返回true,那么表示消息已经成功处理;直接结束。
  4. 如果mCallback的回调返回false,那么表示消息没有处理完毕,会继续使用Handler类的handleMessage方法处理消息。

那么,ActivityThread中的Handler类H是如何实现的呢?H的部分源码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public void handleMessage(Message msg) {    if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
    switch (msg.what) {        case LAUNCH_ACTIVITY: {            Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
            ActivityClientRecord r = (ActivityClientRecord)msg.obj;

            r.packageInfo = getPackageInfoNoCheck(
                    r.activityInfo.applicationInfo, r.compatInfo);
            handleLaunchActivity(r, null);
            Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        } break;
        case RELAUNCH_ACTIVITY: {            Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart");
            ActivityClientRecord r = (ActivityClientRecord)msg.obj;
            handleRelaunchActivity(r);
            Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);

// 以下略
    }
}

可以看到H类仅仅重载了handleMessage方法;通过dispathMessage的消息分发过程得知,我们可以拦截这一过程:把这个H类的mCallback替换为我们的自定义实现,这样dispathMessage就会首先使用这个自定义的mCallback,然后看情况使用H重载的handleMessage

这个Handler.Callback是一个接口,我们可以使用动态代理或者普通代理完成Hook,这里我们使用普通的静态代理方式;创建一个自定义的Callback类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/* package */ class ActivityThreadHandlerCallback implements Handler.Callback {
    Handler mBase;

    public ActivityThreadHandlerCallback(Handler base) {        mBase = base;
    }

    @Override
    public boolean handleMessage(Message msg) {
        switch (msg.what) {            // ActivityThread里面 "LAUNCH_ACTIVITY" 这个字段的值是100
            // 本来使用反射的方式获取最好, 这里为了简便直接使用硬编码
            case 100:
                handleLaunchActivity(msg);
                break;
        }

        mBase.handleMessage(msg);
        return true;
    }

    private void handleLaunchActivity(Message msg) {        // 这里简单起见,直接取出TargetActivity;

        Object obj = msg.obj;
        // 根据源码:
        // 这个对象是 ActivityClientRecord 类型
        // 我们修改它的intent字段为我们原来保存的即可.
/*        switch (msg.what) {/             case LAUNCH_ACTIVITY: {/                 Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
/                 final ActivityClientRecord r = (ActivityClientRecord) msg.obj;
/
/                 r.packageInfo = getPackageInfoNoCheck(
/                         r.activityInfo.applicationInfo, r.compatInfo);
/                 handleLaunchActivity(r, null);
*/

        try {            // 把替身恢复成真身
            Field intent = obj.getClass().getDeclaredField("intent");
            intent.setAccessible(true);
            Intent raw = (Intent) intent.get(obj);

            Intent target = raw.getParcelableExtra(HookHelper.EXTRA_TARGET_INTENT);
            raw.setComponent(target.getComponent());

        } catch (NoSuchFieldException e) {            e.printStackTrace();
        } catch (IllegalAccessException e) {            e.printStackTrace();
        }
    }
}

这个Callback类的使命很简单:把替身StubActivity恢复成真身TargetActivity;有了这个自定义的Callback之后我们需要把ActivityThread里面处理消息的Handler类H的的mCallback修改为自定义callback类的对象:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// 先获取到当前的ActivityThread对象
Class<?> activityThreadClass = Class.forName("android.app.ActivityThread");
Field currentActivityThreadField = activityThreadClass.getDeclaredField("sCurrentActivityThread");
currentActivityThreadField.setAccessible(true);
Object currentActivityThread = currentActivityThreadField.get(null);

// 由于ActivityThread一个进程只有一个,我们获取这个对象的mH
Field mHField = activityThreadClass.getDeclaredField("mH");
mHField.setAccessible(true);
Handler mH = (Handler) mHField.get(currentActivityThread);

// 设置它的回调, 根据源码:
// 我们自己给他设置一个回调,就会替代之前的回调;

//        public void dispatchMessage(Message msg) {//            if (msg.callback != null) {//                handleCallback(msg);
//            } else {//                if (mCallback != null) {//                    if (mCallback.handleMessage(msg)) {//                        return;
//                    }
//                }
//                handleMessage(msg);
//            }
//        }

Field mCallBackField = Handler.class.getDeclaredField("mCallback");
mCallBackField.setAccessible(true);

mCallBackField.set(mH, new ActivityThreadHandlerCallback(mH));

到这里,我们已经成功地绕过AMS,完成了『启动没有在AndroidManifest.xml中显式声明的Activity』的过程;瞒天过海,这种玩弄系统与股掌之中的快感你们能体会到吗?

僵尸or活人?——能正确收到生命周期回调吗

虽然我们完成了『启动没有在AndroidManifest.xml中显式声明的Activity 』,但是启动的TargetActivity是否有自己的生命周期呢,我们还需要额外的处理过程吗?

实际上TargetActivity已经是一个有血有肉的Activity了:它具有自己正常的生命周期;可以运行Demo代码验证一下。

这个过程是如何完成的呢?我们以onDestroy为例简要分析一下:

从Activity的finish方法开始跟踪,最终会通过ActivityManagerNative到AMS然后接着通过ApplicationThread到ActivityThread,然后通过H转发消息到ActivityThread的handleDestroyActivity,接着这个方法把任务交给performDestroyActivity完成。

在真正分析这个方法之前,需要说明一点的是:不知读者是否感受得到,App进程与AMS交互几乎都是这么一种模式,几个角色 ActivityManagerNative, ApplicationThread, ActivityThread以及Handler类H分工明确,读者可以按照这几个角色的功能分析AMS的任何调用过程,屡试不爽;这也是我的初衷——希望分析插件框架的过程中能帮助深入理解Android Framework。

好了继续分析performDestroyActivity,关键代码如下:

1
2
3
4
5
ActivityClientRecord r = mActivities.get(token);

// ...略

mInstrumentation.callActivityOnDestroy(r.activity);

这里通过mActivities拿到了一个ActivityClientRecord,然后直接把这个record里面的Activity交给Instrument类完成了onDestroy的调用。

在我们这个demo的场景下,r.activity是TargetActivity还是StubActivity?按理说,由于我们欺骗了AMSAMS应该只知道StubActivity的存在,它压根儿就不知道TargetActivity是什么,为什么它能正确完成对TargetActivity生命周期的回调呢?

一切的秘密在token里面。AMSActivityThread之间对于Activity的生命周期的交互,并没有直接使用Activity对象进行交互,而是使用一个token来标识,这个token是binder对象,因此可以方便地跨进程传递。Activity里面有一个成员变量mToken代表的就是它,token可以唯一地标识一个Activity对象,它在Activity的attach方法里面初始化;

AMS处理Activity的任务栈的时候,使用这个token标记Activity,因此在我们的demo里面,AMS进程里面的token对应的是StubActivity,也就是AMS还在傻乎乎地操作StubActivity(关于这一点,你可以dump出任务栈的信息,可以观察到dump出的确实是StubActivity)。但是在我们App进程里面,token对应的却是TargetActivity!因此,在ActivityThread执行回调的时候,能正确地回调到TargetActivity相应的方法。

为什么App进程里面,token对应的是TargetActivity呢?

回到代码,ActivityClientRecord是在mActivities里面取出来的,确实是根据token取;那么这个token是什么时候添加进去的呢?我们看performLaunchActivity就完成明白了:它通过classloader加载了TargetActivity,然后完成一切操作之后把这个activity添加进了mActivities!另外,在这个方法里面我们还能看到对Ativityattach方法的调用,它传递给了新创建的Activity一个token对象,而这个token是在ActivityClientRecord构造函数里面初始化的。

至此我们已经可以确认,通过这种方式启动的Activity有它自己完整而独立的生命周期!

小节

本文讲述了『启动一个并没有在AndroidManifest.xml中显示声明的Activity』的解决办法,我们成功地绕过了Android的这个限制,这个是插件Activity管理技术的基础;但是要做到启动一个插件Activity问题远没有这么简单。

首先,在Android中,Activity有不同的启动模式;我们声明了一个替身StubActivity,肯定没有满足所有的要求;因此,我们需要在AndroidManifest.xml中声明一系列的有不同launchMode的Activity,还需要完成替身与真正Activity launchMode的匹配过程;这样才能完成启动各种类型Activity的需求,关于这一点,在 DroidPlugin 的com.morgoo.droidplugin.stub包下面可以找到。

另外,每启动一个插件的Activity都需要一个StubActivity,但是AndroidManifest.xml中肯定只能声明有限个,如果一直startActivity而不finish的话,那么理论上就需要无限个StubActivity;这个问题该如何解决呢?事实上,这个问题在技术上没有好的解决办法。但是,如果你的App startActivity了十几次,而没有finish任何一个Activity,这样在Activity的回退栈里面有十几个Activity,用户难道按back十几次回到主页吗?有这种需求说明你的产品设计有问题;一个App一级页面,二级页面..到五六级的页面已经影响体验了,所以,每种LauchMode声明十个StubActivity绝对能满足需求了。

最后,在本文所述例子中,TargetActivity与StubActivity存在于同一个Apk,因此系统的ClassLoader能够成功加载并创建TargetActivity的实例。但是在实际的插件系统中,要启动的目标Activity肯定存在于一个单独的文件中,系统默认的ClassLoader无法加载插件中的Activity类——系统压根儿就不知道要加载的插件在哪,谈何加载?因此还有一个很重要的问题需要处理:

我们要完成插件系统中类的加载,这可以通过自定义ClassLoader实现。解决了『启动没有在AndroidManifest.xml中显式声明的,并且存在于外部文件中的Activity』的问题,插件系统对于Activity的管理才算得上是一个完全体。篇幅所限,欲知后事如何,请听下回分解!

原文出处: http://weishu.me/2016/03/21/understand-plugin-framework-activity-management/

Android 插件化原理解析——Activity生命周期管理相关推荐

  1. Android 插件化原理解析——Hook机制之AMSPMS

    在前面的文章中我们介绍了DroidPlugin的Hook机制,也就是代理方式和Binder Hook:插件框架通过AOP实现了插件使用和开发的透明性.在讲述DroidPlugin如何实现四大组件的插件 ...

  2. Android 插件化原理解析——Service的插件化

    在 Activity生命周期管理 以及 广播的管理 中我们详细探讨了Android系统中的Activity.BroadcastReceiver组件的工作原理以及它们的插件化方案,相信读者已经对Andr ...

  3. Android插件化原理解析——广播的管理

    在Activity生命周期管理 以及 插件加载机制 中我们详细讲述了插件化过程中对于Activity组件的处理方式,为了实现Activity的插件化我们付出了相当多的努力:那么Android系统的其他 ...

  4. Android 插件化原理解析——插件加载机制

    上文 Activity生命周期管理 中我们地完成了『启动没有在AndroidManifest.xml中显式声明的Activity』的任务:通过Hook AMS和拦截ActivityThread中H类对 ...

  5. Android插件化原理解析——概要

    2015年是Android插件化技术突飞猛进的一年,随着业务的发展各大厂商都碰到了Android Native平台的瓶颈: 从技术上讲,业务逻辑的复杂导致代码量急剧膨胀,各大厂商陆续出到65535方法 ...

  6. Android插件化原理解析——ContentProvider的插件化

    目前为止我们已经完成了Android四大组件中Activity,Service以及BroadcastReceiver的插件化,这几个组件各不相同,我们根据它们的特点定制了不同的插件化方案:那么对于Co ...

  7. Android插件化原理解析

    概述 Android插件化技术,可以实现功能模块的按需加载和动态更新,其本质是动态加载未安装的apk. 本文涉及源码为API 28 插件化原理 插件化要解决的三个核心问题: 类加载. 资源加载. 组件 ...

  8. Android插件化原理解析——Hook机制之动态代理

    使用代理机制进行API Hook进而达到方法增强是框架的常用手段,比如J2EE框架Spring通过动态代理优雅地实现了AOP编程,极大地提升了Web开发效率:同样,插件框架也广泛使用了代理机制来增强系 ...

  9. Android插件化原理解析——Hook机制之Binder Hook

    Android系统通过Binder机制给应用程序提供了一系列的系统服务,诸如ActivityManagerService,ClipboardManager, AudioManager等:这些广泛存在系 ...

最新文章

  1. 应该了解的Openstack命令
  2. 从CNN视角看在自然语言处理上的应用
  3. “两弹一星”元勋年轻时的考卷,连标点符号都找不到错
  4. java activity生命周_关于Activity的生命周期和任务栈的理解
  5. kubernetes+docker
  6. 海马扫描Linux,海马扫描-海马扫描下载 v1.2.0官方版-完美下载
  7. Alphabet高管:移动搜索为收入主要增长点 广告形式改进长期获益
  8. 线性表的顺序存储结构--数组(顺序表)、栈、队列
  9. 全面解析免费及收费SSH工具的基本特性和总结
  10. webpack v4 常用配置(以配置vue ssr的webpack为例)
  11. 远程服务器键盘变成快捷键?
  12. 机械键盘轴体(红轴、茶轴、黑轴、青轴)
  13. charging hw bq25601充电驱动笔记
  14. javascript交互性设计
  15. 节假日api接口之获取指定日期的节假日信息
  16. Unleashing Vanilla Vision Transformer with Masked Image Modeling for Object Detection
  17. redis计算经纬度距离
  18. 深入浅出matplotlib(48):使用指南的笔记
  19. day43_crud
  20. 基于肤色的人脸检测与分割

热门文章

  1. C/C++/动态链接库DLL中函数的调用约定与名称修饰
  2. iOS UIKit:UITableView
  3. L0、L1、L2范数在机器学习中的应用
  4. GPU 编程入门到精通(四)之 GPU 程序优化
  5. Ubuntu下安装Qt全部过程
  6. 多进程与多线程的区别 - jihite
  7. 【Leetcode】二分法左侧边界右侧边界模板
  8. 【编程】位运算(异或)
  9. 学习笔记(二)——直方图均衡化和匹配
  10. 机器学习大牛是如何选择回归损失函数的?