目录

1. Feature scaling 的必要性

2. 常用的Feature scaling方法有什么

3. 什么时候需要feature scaling

4. 什么情况不需要Feature


1. Feature scaling 的必要性

  • 特征间的单位(尺度)可能不同,比如身高和体重,比如摄氏度和华氏度,比如房屋面积和房间数,一个特征的变化范围可能是[1000, 10000],另一个特征的变化范围可能是[−0.1,0.2],在进行距离有关的计算时,单位的不同会导致计算结果的不同,尺度大的特征会起决定性作用,而尺度小的特征其作用可能会被忽略,为了消除特征间单位和尺度差异的影响,以对每维特征同等看待,需要对特征进行归一化。

  • 原始特征下,因尺度差异,其损失函数的等高线图可能是椭圆形,梯度方向垂直于等高线,下降会走zigzag路线,而不是指向local minimum。通过对特征进行zero-mean and unit-variance变换后,其损失函数的等高线图更接近圆形,梯度下降的方向震荡更小,收敛更快,如下图所示,图片来自Andrew Ng。

Feature Scaling from Andrew Ng

总的来说,归一化/标准化的目的是为了获得某种“无关性”——偏置无关、尺度无关、长度无关……当归一化/标准化方法背后的物理意义和几何含义与当前问题的需要相契合时,其对解决该问题就有正向作用,反之,就会起反作用。所以,“何时选择何种方法”取决于待解决的问题,即problem-dependent。

2. 常用的Feature scaling方法有什么

feature scaling的方法可以分成2类,逐行进行和逐列进行。逐行是对每一维特征操作,逐列是对每个样本操作。

具体地,常用feature scaling方法如下,来自wiki,

  • Rescaling (min-max normalization、range scaling):

将每一维特征线性映射到目标范围[a,b],即将最小值映射为a,最大值映射为b,常用目标范围为[0,1]和[−1,1],特别地,映射到[0,1]计算方式为:

  • Mean normalization:

均值映射为0,同时用最大值最小值的差对特征进行归一化,一种更常见的做法是用标准差进行归一化,如下。

  • Standardization (Z-score Normalization):

每维特征0均值1方差(zero-mean and unit-variance)。

  • Scaling to unit length:

将每个样本的特征向量除以其长度,即对样本特征向量的长度进行归一化,长度的度量常使用的是L2 norm(欧氏距离),有时也会采用L1 norm,不同度量方式的一种对比可以参见论文“CVPR2005-Histograms of Oriented Gradients for Human Detection”。

上述4种feature scaling方式,前3种为逐行操作,最后1种为逐列操作。

3. 什么时候需要feature scaling

  • 涉及或隐含距离计算的算法,比如K-means、KNN、PCA、SVM等,一般需要feature scaling,因为:

zero-mean一般可以增加样本间余弦距离或者内积结果的差异,区分力更强,假设数据集集中分布在第一象限遥远的右上角,将其平移到原点处,可以想象样本间余弦距离的差异被放大了。在模版匹配中,zero-mean可以明显提高响应结果的区分度。

就欧式距离而言,增大某个特征的尺度,相当于增加了其在距离计算中的权重,如果有明确的先验知识表明某个特征很重要,那么适当增加其权重可能有正向效果,但如果没有这样的先验,或者目的就是想知道哪些特征更重要,那么就需要先feature scaling,对各维特征等而视之。

增大尺度的同时也增大了该特征维度上的方差,PCA算法倾向于关注方差较大的特征所在的坐标轴方向,其他特征可能会被忽视,因此,在PCA前做Standardization效果可能更好,如下图所示,图片来自scikit learn-Importance of Feature Scaling,

PCA and Standardization

  • 损失函数中含有正则项时,一般需要feature scaling:对于线性模型y=wx+b而言,x的任何线性变换(平移、放缩),都可以被w和b“吸收”掉,理论上,不会影响模型的拟合能力。但是,如果损失函数中含有正则项,如λ∣∣w∣∣^2,λ为超参数,其对w的每一个参数施加同样的惩罚,但对于某一维特征xi而言,其scale越大,系数wi越小,其在正则项中的比重就会变小,相当于对wi惩罚变小,即损失函数会相对忽视那些scale增大的特征,这并不合理,所以需要feature scaling,使损失函数平等看待每一维特征。

  • 梯度下降算法,需要feature scaling。梯度下降的参数更新公式如下,

E(W)为损失函数,收敛速度取决于:参数的初始位置到local minima的距离,以及学习率η的大小。一维情况下,在local minima附近,不同学习率对梯度下降的影响如下图所示:

Gradient descent for different learning rates

多维情况下可以分解成多个上图,每个维度上分别下降,参数W为向量,但学习率只有1个,即所有参数维度共用同一个学习率(暂不考虑为每个维度都分配单独学习率的算法)。收敛意味着在每个参数维度上都取得极小值,每个参数维度上的偏导数都为0,但是每个参数维度上的下降速度是不同的,为了每个维度上都能收敛,学习率应取所有维度在当前位置合适步长中最小的那个。下面讨论feature scaling对gradient descent的作用,

1)zero center与参数初始化相配合,缩短初始参数位置与local minimum间的距离,加快收敛。模型的最终参数是未知的,所以一般随机初始化,比如从0均值的均匀分布或高斯分布中采样得到,对线性模型而言,其分界面初始位置大致在原点附近,bias经常初始化为0,则分界面直接通过原点。同时,为了收敛,学习率不会很大。而每个数据集的特征分布是不一样的,如果其分布集中且距离原点较远,比如位于第一象限遥远的右上角,分界面可能需要花费很多步骤才能“爬到”数据集所在的位置。所以,无论什么数据集,先平移到原点,再配合参数初始化,可以保证分界面一定会穿过数据集。此外,outliers常分布在数据集的外围,与分界面从外部向内挪动相比,从中心区域开始挪动可能受outliers的影响更小。

2)对于采用均方误差损失LMS的线性模型,损失函数恰为二阶,如下图所示

不同方向上的下降速度变化不同(二阶导不同,曲率不同),恰由输入的协方差矩阵决定,通过scaling改变了损失函数的形状,减小不同方向上的曲率差异。将每个维度上的下降分解来看,给定一个下降步长,如果不够小,有的维度下降的多,有的下降的少,有的还可能在上升,损失函数的整体表现可能是上升也可能是下降,就会不稳定。scaling后不同方向上的曲率相对更接近,更容易选择到合适的学习率,使下降过程相对更稳定。

3)另有从Hessian矩阵特征值以及condition number角度的理解,详见Lecun paper-Efficient BackProp中的Convergence of Gradient Descent一节,有清晰的数学描述,同时还介绍了白化的作用——解除特征间的线性相关性,使每个维度上的梯度下降可独立看待。

4)文章开篇的椭圆形和圆形等高线图,仅在采用均方误差的线性模型上适用,其他损失函数或更复杂的模型,如深度神经网络,损失函数的error surface可能很复杂,并不能简单地用椭圆和圆来刻画,所以用它来解释feature scaling对所有损失函数的梯度下降的作用,似乎过于简化,见Hinton vedio-3.2 The error surface for a linear neuron。

5) 对于损失函数不是均方误差的情况,只要权重w与输入特征x间是相乘关系,损失函数对w的偏导必然含有因子x,w的梯度下降速度就会受到特征x尺度的影响。理论上为每个参数都设置上自适应的学习率,可以吸收掉x尺度的影响,但在实践中出于计算量的考虑,往往还是所有参数共用一个学习率,此时x尺度不同可能会导致不同方向上的下降速度悬殊较大,学习率不容易选择,下降过程也可能不稳定,通过scaling可对不同方向上的下降速度有所控制,使下降过程相对更稳定。

  • 对于传统的神经网络,对输入做feature scaling也很重要,因为采用sigmoid等有饱和区的激活函数,如果输入分布范围很广,参数初始化时没有适配好,很容易直接陷入饱和区,导致梯度消失,所以,需要对输入做Standardization或映射到[0,1]、[−1,1],配合精心设计的参数初始化方法,对值域进行控制。但自从有了Batch Normalization,每次线性变换改变特征分布后,都会重新进行Normalization,似乎可以不太需要对网络的输入进行feature scaling了?但习惯上还是会做feature scaling。

4. 什么情况不需要Feature

与距离计算无关的概率模型,不需要feature scaling,比如Naive Bayes;

与距离计算无关的基于树的模型,不需要feature scaling,比如决策树、随机森林等,树中节点的选择只关注当前特征在哪里切分对分类更好,即只在意特征内部的相对大小,而与特征间的相对大小无关。

参考文献

1. 为什么要做特征归一化/标准化?_shine-lee的博客-CSDN博客_unit variance

2. wiki-Feature scaling

3.wiki-Backpropagation

4.[Hung-yi Lee pdf-Gradient Descent](<http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/Gradient Descent (v2).pdf>)

5.quora-Why does mean normalization help in gradient descent?

6.scikit learn-Importance of Feature Scaling

7.scikit learn-5.3. Preprocessing data

8.scikit learn-Compare the effect of different scalers on data with outliers

9.data school-Comparing supervised learning algorithms

10.Lecun paper-Efficient BackProp

11.Hinton vedio-3.2 The error surface for a linear neuron

12.CS231n-Neural Networks Part 2: Setting up the Data and the Loss

13.ftp-Should I normalize/standardize/rescale the data?

14.medium-Understand Data Normalization in Machine Learning

15.Normalization and Standardization

16.How and why do normalization and feature scaling work?

17.Is it a good practice to always scale/normalize data for machine learning?

18.When conducting multiple regression, when should you center your predictor variables & when should you standardize them?


关于你不知道的特征归一化/标准化相关推荐

  1. 解读:为什么要做特征归一化/标准化?

    ↑↑↑关注后"星标"Datawhale 每日干货 & 每月组队学习,不错过 Datawhale干货 作者:shine-lee,编辑:极市平台 本文解读了一项数据预处理中的重 ...

  2. 为什么要做特征归一化/标准化?

    作者:shine-lee 来源:极市平台公众号 链接:https://blog.csdn.net/blogshinelee/article/details/102875044 编辑:王萌(深度学习冲鸭 ...

  3. 为什么要进行特征归一化/标准化?

    Make sure features are on a similar scale 数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解. 什么时候需要feature scaling ...

  4. ML之FE:数据处理—特征工程之特征三化(标准化【四大数据类型(数值型/类别型/字符串型/时间型)】、归一化、向量化)简介、代码实现、案例应用之详细攻略

    ML之FE:数据处理-特征工程之特征三化(标准化[四大数据类型(数值型/类别型/字符串型/时间型)].归一化.向量化)简介.代码实现.案例应用之详细攻略 目录 真正意义的标准化与归一化 1.标准化/Z ...

  5. 2.1对 特征归一化 的一些理解

    特征归一化有很多不同的叫法,比如:特征缩放,Feature Normalization,Feature Scaling 数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲 ...

  6. CS229 1 .线性回归与特征归一化(feature scaling)

    线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题 ...

  7. 【机器学习】 - 数据预处理之数据归一化(标准化)与实战分析,正则化

    一.为什么要进行数据归一化 定义:把所有数据的特征都归到 [0,1] 之间 或  均值0方差1 的过程. 原则:样本的所有特征,在特征空间中,对样本的距离产生的影响是同级的: 问题:特征数字化后,由于 ...

  8. 卷积在计算机中实现+pool作用+数据预处理目的+特征归一化+理解BN+感受野理解与计算+梯度回传+NMS/soft NMS

    一.卷积在计算机中实现 1.卷积 将其存入内存当中再操作(按照"行先序"): 这样就造成混乱. 故需要im2col操作,将特征图转换成庞大的矩阵来进行卷积计算,利用矩阵加速来实现, ...

  9. 数据预处理之归一化/标准化/正则化/零均值化

    数据预处理之归一化/标准化/正则化/零均值化 一.标准化(Standardization) 二.归一化(Normalization) 三,中心化/零均值化 (Zero-centered) 四.正则化 ...

最新文章

  1. oracle数据库配置失败,oracle11g – Oracle 11G XE安装错误:数据库配置失败
  2. bd3.2 Python高级
  3. 2017/Province_Java_A/2、9数算式
  4. vue 工程修改浏览器title以及icon
  5. 深入理解kestrel的应用
  6. mysql root密码过期了_Mac下重置mysql的root密码
  7. windows 远程连接debian_UOS统一操作系统远程协助软件TeamViewer
  8. kubernetes之CI/CD工具jenkins第二篇,helm的使用
  9. 分享Silverlight/WPF/Windows Phone一周学习导读(4月11日-4月15日)
  10. vscode 智能打印_vscode学习(一)之vscode开发中绝对让你惊艳的插件!!!(个人在用) 持续更新。。。。...
  11. 算法:分离链表为两部分,小于某个值都在左边,大于等于某个值在右边 Partition List
  12. 算法篇(一)直接插入排序与快速排序
  13. python面试笔试题
  14. 【MATLAB深度学习工具箱】学习笔记--字符识别Character Recognition
  15. 奇妙软件3趋势破解代码
  16. C语言也能干大事第十四节(如鹏基础)
  17. FTP无法在资源管理器中打开
  18. iphone主屏幕动态壁纸_iPhone不需长按自动触发动态壁纸教程
  19. 调用微信红包接口返回(转)
  20. js 操作字符串,

热门文章

  1. Google Maps和GIS开发资源收集
  2. linux中shell命令之间与||符号
  3. ubunut 下关闭apache服务自动启动
  4. 打死都要记住!微服务架构的常用设计模式!
  5. Java 中如何模拟真正的同时并发请求?
  6. Consul与外部服务
  7. 21.C 语言与 C++在内存分配有什么区别?
  8. Android——TabLayout 默认某个选项卡选中
  9. Spring Data JPA_多表关联查询中应该注意的问题
  10. MyEclipse 破解文件 run.bat闪退