简洁的内置函数

大家好,我又回来了,今天我想和大家分享的是Python非常重要的几个内置函数:map,filter,reduce, zip。
它们都是处理序列的便捷函数。这很大程度上归功于函数式编程的世界。我们可以利用它们把一些小函数应用于一个序列的所有元素。从而节省编写显式循环的时间。

另外,这些中的每一个都是纯函数,有返回值。因此我们可以容易地将函数的返回结果用表达式来表示。

好了,又到了大白话时间,为什么用它们,就是可以简化我们的代码,更简洁高效的执行一些需要用到循环迭代为主的任务,接下来让我们一个个来看

map()

函数构造

map()函数的主要作用是可以把一个方法依次执行在一个可迭代的序列上,比如List等,具体的信息如下:

  • 基础语法:map(fun, iterable)
  • 参数:fun是map传递给定可迭代序列的每个元素的函数。iterable是一个可以迭代的序列,序列中的每一个元素都可以执行fun
  • 返回值:map object

好了,大白话就是利用map我们可以把一个函数fun 执行到序列iter的每一个元素上,用例子非常好理解~

基础用法:

下面先让我们看一个小例子,假设现在我们有一个List,包含1~5五个数字,我们想要让每一个数+1,如果不知道map这个函数之前,我们的解决方案是这样的:

numbers = [1, 2, 3, 4, 5]
for i in range(0,len(numbers)):      #对每个元素加1numbers[i]+=1
print(numbers)
Out:[2, 3, 4, 5, 6]

或者是这样的:

numbers = [1, 2, 3, 4, 5]
result = []
for n in numbers:result.append(n+1)
print(result)
Out:[2, 3, 4, 5, 6]

但是显然,无论怎么做都会涉及到写循环,这里就是map函数的用武之地了,我们可以用map函数这样实现:

def add_one(n):return n + 1numbers = [1, 2, 3, 4, 5]
result = map(add_one, numbers)
print(result)
print(type(result))
print(list(result))Out:<map object at 0x00000260F508BE80><class 'map'>[2, 3, 4, 5, 6]

这里想必聪明的你发现了map的好处,在优化精简代码的同时,某种程度上讲实现了方法和循环部分的分离,这里我们可以发现map返回就是map类,我们这里传递的序列是List,最后输出时经过类型转换也是list

在传递序列时只要这个序列是可迭代的就好,不一定非要List,比如我们换一种:

def add_one(n):return n + 1numbers = (1, 2, 3, 4, 5)     #序列为元组
result = map(add_one, numbers)
print(tuple(result))          #Out:(2, 3, 4, 5, 6)

输入的序列为同样可以迭代的元组,输出时我们也选择元组,效果一样的。

更进一步

还用刚才的例子,为了更加简洁,我们可以用lambda函数配合map使用,具体实现如下:

numbers = (1, 2, 3, 4, 5)                     # 迭代对象为tuple
result = map(lambda x: x + 1, numbers)
print(list(result))                           # 输出对象为listOut:[2, 3, 4, 5, 6]

更加简洁优雅了对吧!!这个lambad函数我之后会说,今天它不是主角哈哈,先一带而过。
让我们重新把目光转移到map上来,除了刚才的用法,还要一种情况也十分常见,让我们看下面的例子:

# List of strings
words = ['paris', 'xiaobai','love']# 把数组中每个元素变为List
test = list(map(list, words))
print(test)Out: [['p', 'a', 'r', 'i', 's'], ['x', 'i', 'a', 'o', 'b', 'a', 'i'], ['l', 'o', 'v', 'e']]

words是一个只包含字符串类型元素的list,我们用map可以实现将words的每一个元素全部转化为list类型,这里有一点一定要注意,能实现的前提一定是每个元素都是可以迭代的类型,如果出现了如int类型的元素,就会出错啦:

# List of strings
words = [18,'paris', 'xiaobai','love']# 把数组中每个元素变为List
test = list(map(list, words))
print(test)Out:TypeError: 'int' object is not iterable

大家一看错误类型相比立刻就明白啦,所以正确的使用方法一定是类似这种:

nums = [3,"23",-2]
print(list(map(float,nums)))Out: [3.0, 23.0, -2.0]

总之就是类型要注意,今天我就抛砖引玉简单介绍一下map,具体的用法大家可以自行开发哈,我也在不断学习中

filter()

函数构造

filter()方法借助于一个函数来过滤给定的序列,该函数测试序列中的每个元素是否为真。

  • 基础语法:filter(fun, iterable)
  • 参数:fun测试iterable序列中的每个元素执行结果是否为True,iterable为被过滤的可迭代序列
  • 返回值:可迭代的序列,包含元素对于fun的执行结果都为True

简而言之就是filter可以帮助我们根据给出的条件过滤一组数据并返回结果

基础用法:

让我们先看一个例子:

# 过滤元音的方法
def fun(variable):letters = ['a', 'e', 'i', 'o', 'u']if (variable in letters):return Trueelse:return False# 给定序列
sequence = ['I', 'l', 'o', 'v', 'e', 'p', 'y','t','h','o','n']# 根据条件得出结果
filtered = list(filter(fun, sequence))
print(filtered)Out:['o', 'e', 'o']

这里我们创建一个可以提取元音字母的方法fun,给定的可迭代序列为list,之后就可以用filter方法很容易的提取出结果啦,再看一个类似例子:

# 判断为正数
def positive(num):if num>0:return Trueelse:return False#判断偶数
def even(num):if num % 2==0:return Trueelse:return Falsenumbers=[1,-3,5,-20,0,9,12]positive_nums = list(filter(positive, numbers))
print(positive_nums)  # 输出正数 listeven_nums = tuple(filter(even,numbers))
print(even_nums)     #输出偶数 tupleOut:[1, 5, 9, 12](-20, 0, 12)

看到这里相比大家已经知道filter的基础用法啦, 要先有一个,能返回True或者False的方法,或者表达式作为过滤条件就行啦

更进一步

这里其实和map一样了,基本上最简洁的用法都是和lambda混在一起,比如下面我们想要把刚才的一大串代码压缩一下:

numbers = [0, 1, 2, -3, 5, -8, 13]# 提取奇数
result = filter(lambda x: x % 2, numbers)
print("Odd Numbers are :",list(result))# 提取偶数
result = filter(lambda x: x % 2 == 0, numbers)
print("Even Numbers are :",list(result))#提取正数
result = filter(lambda x: x>0, numbers)
print("Positive Numbers are :",list(result))Out:Odd Numbers are : [1, -3, 5, 13]Even Numbers are : [0, 2, -8]Positive Numbers are : [1, 2, 5, 13]

" 爽啊!爽死了!" 郭德纲看到后这么评价,lambda我平时用的不多,但是写到这里,我也觉得要好好学习它了,毕竟和其他编程语言相比,可能这中用法才是python提倡的理念之一:高效简洁,

reduce()

函数构造

Reduce是一个非常有用的函数,用于在列表上执行某些计算并返回结果。它将滚动计算应用于列表中的连续值。例如,如果要计算整数列表的累积乘,或者求和等等

  • 基础语法:reduce(function, iterable)
  • 参数:fun是连续作用于iterable每一个元素的方法,新的参数为上一次执行的结果,iterable为被过滤的可迭代序列
  • 返回值:最终的function返回结果

在Python 2中,reduce()是一个内置函数。但是,在Python 3中,它被移动到functools模块。因此,要使用前我们需要导入,这里我的环境是Python 3.6

基础用法:

先看一个求累加和的小栗子:

from functools import reduce # Python 3def do_sum(x1, x2): return x1 + x2print(reduce(do_sum, [1, 2, 3, 4]))Out:10

再看一个累积乘法的例子:

from functools import reduce # Python 3
def multiply(x, y):return x*ynumbers = [1,2,3,4]
print(reduce(multiply, numbers))Out:24

更进一步:

还是和lambda混搭,更加简洁:

from functools import reduce # Python 3
numbers = [1,2,3,4]
result_multiply = reduce((lambda x, y: x * y), numbers)
result_add = reduce((lambda x,y: x+y), numbers)print(result_multiply)
print(result_add)Out:2410

zip()

函数构造

zip()的目的是映射多个容器的相似索引,以便它们可以仅作为单个实体使用。

  • 基础语法:zip(*iterators)
  • 参数:iterators为可迭代的对象,例如list,string
  • 返回值:返回单个迭代器对象,具有来自所有容器的映射值

基础用法:

其实之前我们在讲dict的创建方法时提到过它,这里从新回顾一下:


keys = ['name','age']
values = ['xiaobai',18]
my_dict = dict(zip(keys,values))
print(my_dict)Out:{'name': 'xiaobai', 'age': 18}

zip可以支持多个对象,比如下面的例子

name = [ "xiaobai", "john", "mike", "alpha" ]
age = [ 4, 1, 3, 2 ]
marks = [ 40, 50, 60, 70 ]# using zip() to map values
mapped = list(zip(name, age, marks))
print ("The zipped result is : "mapped)Out:The zipped result is : [('xiaobai', 4, 40), ('john', 1, 50), ('mike', 3, 60), ('alpha', 2, 70)]

这里我们可以很容易的的把name,age,marks这三个list里面相同index的值映射打包在一起

更进一步:

通过上面的例子,我们发现可以很容易的以类似1对1的形式把不同对象的同一索引位置的值打包起来,那如果是解包呢?也是类似的,就是多了一个 * 而已

names, ages, marks = zip(*mapped)
print ("The name list is : ",names)
print ("The age list is : ",ages)
print ("The marks list is : ",marks)Out: The name list is :  ('xiaobai', 'john', 'mike', 'alpha')The age list is :  (4, 1, 3, 2)The marks list is :  (40, 50, 60, 70)

总结

今天主要为大家介绍了map,filter,reduce,zip四个高效的python内置函数的用法,我也是刚刚接触,了解不够深入,如果介绍的有错误或者歧义还请大家多多谅解和包容,如果有大神可以进一步补充说明一定要写个评论呀,让我们一起进步。

最后为大家讲个悲伤的故事:

Python 进阶之路 (五) map, filter, reduce, zip 一网打尽相关推荐

  1. Python 进阶之路 (九) 再立Flag, 社区最全的itertools深度解析(上)

    前言 大家好,今天想和大家分享一下我的itertools学习体验及心得,itertools是一个Python的自带库,内含多种非常实用的方法,我简单学习了一下,发现可以大大提升工作效率,在sf社区内没 ...

  2. Python 进阶之路 (十二) 尾声即是开始

    Python进阶之路总结 大家好,我的<< Python进阶之路>>到这一期就到此为止了,和 <<Python 基础起步>>不同,在掌握了一些基础知识后 ...

  3. python map filter reduce

    本文记录python中,map,filter,reduce函数的用法. 参考链接: http://www.python-course.eu/lambda.php map map(func, seq) ...

  4. js数组中forEach/some/every/map/filter/reduce的区别

    2019独角兽企业重金招聘Python工程师标准>>> // js数组中forEach/some/every/map/filter/reduce的区别// 1. foreach:就是 ...

  5. Python迭代器、生成器、map以及reduce

    文章目录 1. 迭代器(iterator) 2. map 2.1 map函数介绍 2.2 map实例 3. reduce 3.1 reduce函数介绍 3.2 reduce实例 4. 生成器(gene ...

  6. Python 进阶之路 (八) 最用心的推导式详解 (附简单实战及源码)

    什么是推导式 大家好,今天为大家带来问我最喜欢的Python推导式使用指南,让我们先来看看定义~ 推导式(comprehensions)是Python的一种独有特性,推导式是可以从一个数据序列构建另一 ...

  7. python进阶08并发之四map, apply, map_async, apply_async差异

    原创博客地址: python进阶08并发之四map, apply, map_async, apply_async差异 差异矩阵 python封装了4种常用方法,用于实现并发 其差异如下   Multi ...

  8. 基本函数input() print() map() filter() reduce()和lambda()算子-operater用法

    #输入逗号分割的两个数字--input输入的内容,默认为字符类型 x,y =input("input:").split(",") print(x,y)#输入的多 ...

  9. 毛毛Python进阶之路6——MySQL 数据库(二)

    毛毛Python进阶之路6--MySQL 数据库(二) 一.对于自增 show create table 表名; # 查看表是怎样创建的. show create table 表名\G; #将某个表旋 ...

最新文章

  1. 在VS2010平台上创建并使用dll
  2. webpack快速构建项目
  3. 【结合实例】信息增益的计算
  4. 2014年4月的北京大学微电子考研复试题-什么是小信号?
  5. uni-app实现微信小程序本地图片转为base64
  6. C语言模拟实现标准库函数之qsort() 2
  7. Github(2)-本地配置git
  8. 《布莱克智讯之声》公众号文章汇总
  9. java 布局实例,HarmonyOS Java UI之StackLayout布局示例
  10. HTML form -enctype
  11. npu算力如何计算_华为云郑叶来:多元算力驱动应用创新
  12. 13 岁自学编程,提出演进式架构的她,成 ThoughtWorks CTO!
  13. 没来得及整理的一些网站
  14. SpringBoot 一个依赖搞定 session 共享,没有比这更简单的方案了!
  15. v5服务器装系统,小白必学:宏基V5-591G内存、固态、装系统教程!
  16. 文件扫描生成PDF文件或图片,扫描效果碾压WPS及全能扫描王
  17. python开发网页视频播放器_python实现媒体播放器功能
  18. 即食水产消费品公司“不等食品”获千万元级A轮融资,险峰长青领投
  19. linux修改主机名命令
  20. 木头机器人变魔方_【转】一个木头魔方的制作过程

热门文章

  1. 数学建模可以用python吗_Python中常用的数学建模Scipy
  2. 彻底解决VS中找不到 Windows SDK 版本 8.1的错误
  3. 计算机网络实验【静态路由】
  4. android shape 按钮背景_Android UI:XML文件配置按钮等背景方案
  5. oracle ctl 递增,增加oracle的控制文件
  6. micro framework php,index.php
  7. fn:startsWith()函数
  8. linux进程map,linux内存优化一文中 查看进程mem_map 的实现
  9. exchange加mysql_Exchange 事务和Exchange 数据库回顾
  10. c语言.h和.c连接错误,conio.h链接错误问题