DS18B20 数字温度传感器实验

STM32 虽然内部自带了温度传感器,但是因为芯片温升较大等问题,与实际温度差别较大,所以,本章我们将向大家介绍如何通过 STM32 来读取外部数字温度传感器的温度,来得到较为准确的环境温度。在本章中,我们将学习使用单总线技术,通过它来实现 STM32 和外部温度传感器( DS18B20)的通信,并把从温度传感器得到的温度显示在 TFTLCD 模块上。

1 DS18B20 简介
DS18B20 是由 DALLAS 半导体公司推出的一种的“一线总线”接口的温度传感器。与传统的热敏电阻等测温元件相比,它是一种新型的体积小、适用电压宽、与微处理器接口简单的数字化温度传感器。一线总线结构具有简洁且经济的特点,可使用户轻松地组建传感器网络,从而为测量系统的构建引入全新概念,测量温度范围为-55~+125℃ ,精度为±0.5℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。它能直接读出被测温度,并且可根据实际要求通过简单的编程实现 9~l2 位的数字值读数方式。它工作在 3~5.5V 的电压范围,采用多种封装形式,从而使系统设计灵活、方便,设定分辨率及用户设定的报警温度存储在 EEPROM 中,掉电后依然保存。

ROM 中的 64 位序列号是出厂前被光记好的,它可以看作是该 DS18B20 的地址序列码,每DS18B20 的 64 位序列号均不相同。 64 位 ROM 的排列是:前 8 位是产品家族码,接着 48 位是DS18B20 的序列号,最后 8 位是前面 56 位的循环冗余校验码(CRC=X8+X5+X4+1)。 ROM 作用是使每一个 DS18B20 都各不相同,这样就可实现一根总线上挂接多个 DS18B20。
所有的单总线器件要求采用严格的信号时序,以保证数据的完整性。 DS18B20 共有 6 种信号类型:复位脉冲、应答脉冲、写 0、写 1、读 0 和读 1。所有这些信号,除了应答脉冲以外,都由主机发出同步信号。并且发送所有的命令和数据都是字节的低位在前。 这里我们简单介绍这几个信号的时序:

①、 独特的单总线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实 现微处理器与DS18B20的双向通讯。大大提高了系统的抗干扰性。

② 、测温范围 -55℃~+125℃,精度为±0.5℃。

③、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。

④、 工作电源: 3.0~5.5V/DC (可以数据线寄生电源)。

⑤ 、在使用中不需要任何外围元件。

⑥、 测量结果以9~12位数字量方式串行传送。

1)复位脉冲和应答脉冲
单总线上的所有通信都是以初始化序列开始。主机输出低电平,保持低电平时间至少 480us,,以产生复位脉冲。接着主机释放总线, 4.7K 的上拉电阻将单总线拉高,延时 15~60 us,并进入接收模式(Rx)。接着 DS18B20 拉低总线 60~240 us,以产生低电平应答脉冲,若为低电平,再延时 480 us。
2)写时序
写时序包括写 0 时序和写 1 时序。所有写时序至少需要 60us,且在 2 次独立的写时序之间至少需要 1us 的恢复时间,两种写时序均起始于主机拉低总线。写 1 时序:主机输出低电平,延时 2us,然后释放总线,延时 60us。写 0 时序:主机输出低电平,延时 60us,然后释放总线,延时 2us。
3)读时序
单总线器件仅在主机发出读时序时,才向主机传输数据,所以,在主机发出读数据命令后,必须马上产生读时序,以便从机能够传输数据。所有读时序至少需要 60us,且在 2 次独立的读时序之间至少需要 1us 的恢复时间。每个读时序都由主机发起,至少拉低总线 1us。主机在读时序期间必须释放总线,并且在时序起始后的 15us 之内采样总线状态。典型的读时序过程为:
主机输出低电平延时 2us,然后主机转入输入模式延时 12us,然后读取单总线当前的电平,然后延时 50us。
在了解了单总线时序之后,我们来看看 DS18B20 的典型温度读取过程, DS18B20 的典型温度读取过程为:复位发 SKIP ROM 命令( 0XCC) 发开始转换命令( 0X44) 延时复位发送 SKIP ROM 命令( 0XCC) 发读存储器命令( 0XBE) 连续读出两个字节数据(即温度)结束。
DS18B20封装

2.连接方式

连接在STM32上 的引脚接口(可以选择其他)连接的引脚为后面的编程用得到

单总线是一种半双工通信方式

DS18B20共有6种信号类型:复位脉冲、应答脉冲、写0、写1、读0和读1。所有这些信号,除了应答脉冲以外,都由主机发出同步信号。并且发送所有的命令和数据都是字节的低位在前。

边讲信号类型,边讲代码配置的方式,让大家了解STM32驱动18B20过程。

信号线:PG9

//IO方向设置

#define DS18B20_IO_IN()  {GPIOG->MODER&=~(3<<(9*2));GPIOG->MODER|=0<<9*2;}    //PG9输入模

#define DS18B20_IO_OUT() {GPIOG->MODER&=~(3<<(9*2));GPIOG->MODER|=1<<9*2;}     //PG9输出模

IO操作

#define    DS18B20_DQ_OUT PGout(9) //数据端口PG9

#define    DS18B20_DQ_IN  PGin(9)  //数据端口    PG9

( 1). 复位脉冲

单总线上的所有通信都是以初始化序列开始。主机输出低电平,保持低电平时间至少480 us,,以产生复位脉冲。接着主机释放总线,4.7K的上拉电阻将单总线拉高,延时15~60 us,并进入接收模式(Rx)。接着DS18B20拉低总线60~240 us,以产生低电平应答脉冲。

//复位DS18B20 void DS18B20_Rst(void)

{

DS18B20_IO_OUT(); //设置为输出模式

DS18B20_DQ_OUT=0; //拉低DQ

delay_us(750);    //拉低750us(至少480us)

DS18B20_DQ_OUT=1; //DQ=1拉高释放总线

delay_us(15);     //15US

//进入接受模式,等待应答信号。

}

② 应答信号

//等待DS18B20的回应

//返回1:未检测到DS18B20的存在    返回0:存在

u8 DS18B20_Check(void)

{

u8 retry=0;

DS18B20_IO_IN();//SET PA0 INPUT

while (DS18B20_DQ_IN&&retry<200)

{

retry++;

delay_us(1);

};

if(retry>=200)return 1;

else retry=0;

while (!DS18B20_DQ_IN&&retry<240)

{

retry++;

delay_us(1);

};

if(retry>=240)return 1;

return 0;

}

③ 写时序

写时序包括写0时序和写1时序。所有写时序至少需要60us,且在2次独立的写时序之间至少需要1us的恢复时间,两种写时序均起始于主机拉低总线。 写1时序:主机输出低电平,延时2us,然后释放总线,延时60us。 写0时序:主机输出低电平,延时60us,然后释放总线,延时2us。

/写一个字节到DS18B20 //dat:要写入的字节

void DS18B20_Write_Byte(u8 dat)

{

u8 j;

u8 testb;

DS18B20_IO_OUT();//设置PA0为输出

for (j=1;j<=8;j++)

{

testb=dat&0x01;

dat=dat>>1;

if (testb) //输出高

{

DS18B20_DQ_OUT=0;// 主机输出低电平

delay_us(2);                  //延时2us

DS18B20_DQ_OUT=1;//释放总线

delay_us(60); //延时60us

}

else //输出低

{

DS18B20_DQ_OUT=0;//主机输出低电平

delay_us(60);               //延时60us

DS18B20_DQ_OUT=1;//释放总线

delay_us(2);                  //延时2us

}

}

}

④ 读时序

单总线器件仅在主机发出读时序时,才向主机传输数据,所以,在主机发出读数据命令后,必须马上产生读时序,以便从机能够传输数据。 所有读时序至少需要60us,且在2次独立的读时序之间至少需要1us的恢复时间。每个读时序都由主机发起,至少拉低总线1us。主机在读时序期间必须释放总线,并且在时序起始后的15us之内采样总线状态。

典型的读时序过程为:主机输出低电平延时2us,然后主机转入输入模式延时12us,然后读取单总线当前的电平,然后延时50us。

典型的读时序过程为:主机输出低电平延时2us,然后主机转入输入模式延时12us,然后读取单总线当前的电平,然后延时50us。

//从DS18B20读取一个位 //返回值:1/0

u8 DS18B20_Read_Bit(void)              // read one bit

{

u8 data;

DS18B20_IO_OUT();//设置为输出

DS18B20_DQ_OUT=0; //输出低电平2us

delay_us(2);

DS18B20_DQ_OUT=1; //拉高释放总线

DS18B20_IO_IN();//设置为输入

delay_us(12);//延时12us

if(DS18B20_DQ_IN)data=1;//读取总线数据

else data=0;

delay_us(50);  //延时50us

return data;

}

读取一个字节数据

//从DS18B20读取一个字节 //返回值:读到的数据

u8 DS18B20_Read_Byte(void)    // read one byte

{

u8 i,j,dat;

dat=0;

for (i=1;i<=8;i++)

{

j=DS18B20_Read_Bit();

dat=(j<<7)|(dat>>1);

}

return dat;

}

我们来看看DS18B20的典型温度读取过程,DS18B20的典型温度读取过程为:复位发SKIP ROM命令(0XCC)发开始转换命令(0X44)延时复位发送SKIP ROM命令(0XCC)发读存储器命令(0XBE)连续读出两个字节数据(即温度)结束。

3最后最终源程序(需要把程序放在STM32F4库函数编写)

打开我们的 DS18B20 数字温度传感器实验工程可以看到我们添加了 ds18b20.c 文件以及其
头文件 ds18b20.h 文件,所有 ds18b20 驱动代码和相关定义都分布在这两个文件中。
//ds18b20.c代码

//复位 DS18B20

#include "DS18B20"
void DS18B20_Rst(void)
{
DS18B20_IO_OUT(); //SET PG11 OUTPUT
DS18B20_DQ_OUT=0; //拉低 DQ
delay_us(750); //拉低 750us
DS18B20_DQ_OUT=1; //DQ=1
delay_us(15); //15US
}
//等待 DS18B20 的回应
//返回 1:未检测到 DS18B20 的存在
//返回 0:存在
u8 DS18B20_Check(void)
{
u8 retry=0;
DS18B20_IO_IN();//SET PG11 INPUT
while (DS18B20_DQ_IN&&retry<200) { retry++; delay_us(1); };
if(retry>=200)return 1;
else retry=0;
while (!DS18B20_DQ_IN&&retry<240) {retry++; delay_us(1); };
if(retry>=240)return 1;
return 0;
}
//从 DS18B20 读取一个位
//返回值: 1/0
u8 DS18B20_Read_Bit(void)
{
u8 data;
DS18B20_IO_OUT();//SET PG11 OUTPUT
DS18B20_DQ_OUT=0;
delay_us(2);
DS18B20_DQ_OUT=1;
DS18B20_IO_IN();//SET PG11 INPUT
delay_us(12);
if(DS18B20_DQ_IN)data=1;
else data=0;
delay_us(50);
return data;
}
//从 DS18B20 读取一个字节
//返回值:读到的数据
u8 DS18B20_Read_Byte(void)
{
u8 i,j,dat;
dat=0;
for (i=1;i<=8;i++)
{
j=DS18B20_Read_Bit();
dat=(j<<7)|(dat>>1);
}
return dat;
}
//写一个字节到 DS18B20
//dat:要写入的字节
void DS18B20_Write_Byte(u8 dat)
{
u8 j;
u8 testb;
DS18B20_IO_OUT();//SET PG11 OUTPUT;
for (j=1;j<=8;j++)
{
testb=dat&0x01;
dat=dat>>1;
if (testb)
{
DS18B20_DQ_OUT=0;// Write 1
delay_us(2);
DS18B20_DQ_OUT=1;
delay_us(60);
}
else
{
DS18B20_DQ_OUT=0;// Write 0
delay_us(60);
DS18B20_DQ_OUT=1;
delay_us(2);
}
}
}
//开始温度转换
void DS18B20_Start(void)
{
DS18B20_Rst();
DS18B20_Check();
DS18B20_Write_Byte(0xcc);// skip rom
DS18B20_Write_Byte(0x44);// convert
}
//初始化 DS18B20 的 IO 口 DQ 同时检测 DS 的存在
//返回 1:不存在
//返回 0:存在
u8 DS18B20_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);//使能 GPIOG 时钟
//GPIOG9

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//普通输出模式
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//50MHz
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
GPIO_Init(GPIOG, &GPIO_InitStructure);//初始化
DS18B20_Rst();
return DS18B20_Check();
}

//从 ds18b20 得到温度值
//精度: 0.1C
//返回值:温度值 ( -550~1250)
short DS18B20_Get_Temp(void)
{
u8 temp;
u8 TL,TH;
short tem;
DS18B20_Start();// ds1820 start convert
DS18B20_Rst();
DS18B20_Check();
DS18B20_Write_Byte(0xcc);// skip rom
DS18B20_Write_Byte(0xbe);// convert
TL=DS18B20_Read_Byte(); // LSB
TH=DS18B20_Read_Byte(); // MSB
if(TH>7)
{
TH=~TH;
TL=~TL;
temp=0; //温度为负
}else temp=1; //温度为正
tem=TH; //获得高八位
tem<<=8;
tem+=TL; //获得底八位
tem=(double)tem*0.625;//转换
if(temp)return tem; //返回温度值
else return -tem;
}
该部分代码就是根据我们前面介绍的单总线操作时序来读取 DS18B20 的温度值的,DS18B20
的温度通过 DS18B20_Get_Temp 函数读取,该函数的返回值为带符号的短整型数据,返回值的
范围为-550~1250,其实就是温度值扩大了 10 倍。
主函数ds18b20.h

#include "sys.h"
#include "delay.h"
#include "usart.h"
#include "led.h"
#include "lcd.h"
#include "ds18b20.h"

int main(void)
{
u8 t=0;
short temperature;
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置系统中断优先级分组 2
delay_init(168); //初始化延时函数
uart_init(115200); //初始化串口波特率为 115200
LED_Init(); //初始化 LED
LCD_Init();
POINT_COLOR=RED;//设置字体为红色
LCD_ShowString(30,50,200,16,16,"ALIX");
LCD_ShowString(30,70,200,16,16,"DS18B20 TEST");
LCD_ShowString(30,90,200,16,16,"ALIX");
LCD_ShowString(30,110,200,16,16,"2018/7/22");
while(DS18B20_Init()) //DS18B20 初始化
{
LCD_ShowString(30,130,200,16,16,"DS18B20 Error");
delay_ms(200);
LCD_Fill(30,130,239,130+16,WHITE);
delay_ms(200);
}
LCD_ShowString(30,130,200,16,16,"DS18B20 OK");
POINT_COLOR=BLUE;//设置字体为蓝色
LCD_ShowString(30,150,200,16,16,"Temp:    . C");
while(1)
{
if(t%10==0)//每 100ms 读取一次
{
temperature=DS18B20_Get_Temp();
if(temperature<0)
{
LCD_ShowChar(30+40,150,'-',16,0); //显示负号
temperature=-temperature; //转为正数
}else LCD_ShowChar(30+40,150,' ',16,0); //去掉负号
LCD_ShowNum(30+40+8,150,temperature/10,2,16); //显示正数部分
LCD_ShowNum(30+40+32,150,temperature%10,1,16); //显示小数部分
}
delay_ms(10); t++;
if(t==20)
{
t=0; LED0=!LED0;
}
}

DS18B20 数字温度传感器实验相关推荐

  1. 【正点原子FPGA连载】第二十七章DS18B20数字温度传感器实验 -摘自【正点原子】新起点之FPGA开发指南_V2.1

    1)实验平台:正点原子新起点V2开发板 2)平台购买地址:https://detail.tmall.com/item.htm?id=609758951113 2)全套实验源码+手册+视频下载地址:ht ...

  2. 【正点原子STM32连载】第三十九章 DS18B20数字温度传感器实验 摘自【正点原子】MiniPro STM32H750 开发指南_V1.1

    1)实验平台:正点原子MiniPro H750开发板 2)平台购买地址:https://detail.tmall.com/item.htm?id=677017430560 3)全套实验源码+手册+视频 ...

  3. 【正点原子MP157连载】第二十六章 DS18B20数字温度传感器实验-摘自【正点原子】STM32MP1 M4裸机CubeIDE开发指南

    1)实验平台:正点原子STM32MP157开发板 2)购买链接:https://item.taobao.com/item.htm?&id=629270721801 3)全套实验源码+手册+视频 ...

  4. DS18B20数字温度传感器实验

    文章目录 DS18B20 技术性能特征 DS18B20封装 连接方式 信号类型 复位脉冲 应答信号 写时序 温度读取过程 实验代码 DS18B20 技术性能特征 1️⃣独特单总线接口方式 与微处理器连 ...

  5. 基于DS18B20数字温度传感器的温度计设计

    基于DS18B20数字温度传感器的温度计设计 本报告为哈尔滨工业大学电子与信息工程学院大二学期微机原理课程的课设报告.请注意,本文所述代码均在Quartus II 13.0程序内使用汇编语言运行. 一 ...

  6. Arduino基础篇(七)-- 如何使用DS18B20数字温度传感器(基于OneWire和DallasTemperature库)

    温度传感器是指能感受温度并转换成可用输出信号的传感器.按测量方式分为接触式和非接触式,按照传感器材料及电子元件分为热电阻和热电偶两类,按照工作原理分为模拟式和数字式.本篇主要介绍数字温度传感器 DS1 ...

  7. 温度传感器的c语言程序,DS18B20数字温度传感器C语言程序实例

    51单片机DS18B20数字温度传感器设计 与C程序 #include #define uchar unsigned char #define uint unsigned int #define DQ ...

  8. DS18B20数字温度传感器

    目录 一.基础知识 1.基础介绍: 2.DS18B20特点: 3.单总线时序 4.相关操作时序 5.部分ROM指令 二.相关代码 1. 使用步骤(单点总线情况) 2. 代码展示 数字温度传感器你会用了 ...

  9. DS18B20数字温度传感器及单总线协议规定

    1,DS18B20数字温度传感器的主要特点 通信采用1-Wire接口 每个DS18B20都有唯一的64位序列码储存在板载ROM中 无需外部元件 可从数据线供电,电源范围为3.0V ~ 5.5V. 可测 ...

  10. STM32与DS18B20数字温度传感器寄生供电方式的优化方案与1-wire总线程序设计

    STM32与DS18B20数字温度传感器寄生供电方式的优化方案与1-wire总线程序设计 DS18B20是常用的一种数字温度传感器,通过1-wire总线实现传感器内部寄存器的访问.传感器有两种供电方式 ...

最新文章

  1. I - Watering Flowers CodeForces - 617C
  2. MySQL 千万级数据表 partition 实战应用
  3. 《战狼2》电影观后感
  4. HTC Element Behaviors in Internet Explorer.
  5. Day 8 面向对象
  6. CNN结构:StyleAI-图片风格分类效果已成(-FasterRCNN-FCN-MaskRCNN)
  7. ASP.NET Core 3.0 使用gRPC
  8. 老婆晚上不想睡?这个操作你要会!
  9. linux怎么加route到第一行,Linux下route命令操作实例汇总(2)
  10. GB2312、GBK汉字字库偏移地址的计算
  11. ESXi6.7修改静态ip地址
  12. PreparedStatement 批处理
  13. 传智五虎是真相?受影射最重PHP学科,这几月在忙什么..?
  14. 单片机发射红外c语言程序,基于单片机的红外发射C语言程序
  15. 1恢复 群晖raid_关于RAID1阵列数据丢失的恢复
  16. 理解shallow heap 和 retained heap
  17. 撸免费的oracle cloud服务器并使用脚本自动化部署云服务器
  18. svg 五花 元辅音 助读器
  19. Project Caliper:目标是打造最佳VR手柄
  20. 好分数阅卷3.0_好分数教师版下载-好分数教师版app下载(暂未上线)_预约_飞翔下载...

热门文章

  1. 凤凰院凶真 解题报告
  2. golang程序员前景怎么样?Python、Java、go语言的优势互比
  3. 机器人领域的SCI期刊和会议
  4. R语言中常用的生物多样性指数的计算(Alpha,Beta,Gamma,功能多样性,系统发育多样性)
  5. PPT:动画出现设置
  6. 利用matlab导入数据+命令行 快速选取excel部分内容
  7. Android获取分辨率和像素密度
  8. layui switch使用详解
  9. c++语言里平方根值函数,函数式编程之函数定义与使用(以scala语言为例)
  10. 我为什么学习设计模式