VGG16总共有16层(不包括池化层),13个卷积层和3个全连接层,第一次经过64个卷积核的两次卷积后,采用一次pooling,第二次经过两次128个卷积核卷积后,采用pooling;再经过3次256个卷积核卷积后,采用pooling;再经过3次512个卷积核卷积,采用pooling;再经过3次512个卷积核卷积,采用pooling,最后经过三次全连接。

模块

各模块的涉及的层次

输入模块

224*224*3

第一个模块

conv3-64

conv3-64

maxpool

第二个模块

conv3-128

conv3-128

maxpool

第三个模块

conv3-256

conv3-256

conv3-256

maxpool

第四个模块

              conv3-512

conv3-512

conv3-512

maxpool

第五个模块

conv3-512

conv3-512

conv3-512

maxpool

第六个模块(全连接层和输出层)

FC-4096 (实际上前面需要加一个Flatten层)

FC-4096

FC-1000 (负责分类,有几个类别输出就是几)

softmax(输出层函数)

步骤理解
下面算一下每一层的像素值计算:
输入:224 * 224 * 3

conv3-64(卷积核的数量)----------------------------------------kernel size:3 stride:1 padding:1
像素:(224 + 2 * 1 – 1 * (3 - 1)- 1 )/ 1 + 1=224 ---------------------输出尺寸:224 * 224 * 64
参数: (3 * 3 * 3)* 64 =1728
conv3-64-------------------------------------------------------------kernel size:3 stride:1 padding:1
像素: (224 + 2 * 1 – 2 - 1)/ 1 + 1=224 ---------------------输出尺寸:224 * 224 * 64
参数: (3 * 3 * 64) * 64 =36864
pool2 ----------------------------------------------------------------kernel size:2 stride:2 padding:0
像素: (224 - 2)/ 2 = 112 ----------------------------------输出尺寸:112 * 112 * 64
参数: 0
conv3-128(卷积核的数量)--------------------------------------------kernel size:3 stride:1 padding:1
像素: (112 + 2 * 1 - 2 - 1) / 1 + 1 = 112 -------------------输出尺寸:112 * 112 * 128
参数: (3 * 3 * 64) * 128 =73728
conv3-128------------------------------------------------------------kernel size:3 stride:1 padding:1
像素: (112 + 2 * 1 -2 - 1) / 1 + 1 = 112 ---------------------输出尺寸:112 * 112 * 128
参数: (3 * 3 * 128) * 128 =147456
pool2------------------------------------------------------------------kernel size:2 stride:2 padding:0
像素: (112 - 2) / 2 + 1=56 ----------------------------------输出尺寸:56 * 56 * 128
参数:0
conv3-256(卷积核的数量)----------------------------------------------kernel size:3 stride:1 padding:1
像素: (56 + 2 * 1 - 2 - 1)/ 1+1=56 -----------------------------输出尺寸:56 * 56 * 256
参数:(3 * 3* 128)*256=294912
conv3-256-------------------------------------------------------------kernel size:3 stride:1 padding:1
像素: (56 + 2 * 1 - 2 - 1) / 1 + 1=56 --------------------------输出尺寸:56 * 56 * 256
参数:(3 * 3 * 256) * 256=589824
conv3-256------------------------------------------------------------ kernel size:3 stride:1 padding:1
像素: (56 + 2 * 1 - 2 - 1) / 1 + 1=56 -----------------------------输出尺寸:56 * 56 * 256
参数:(3 * 3 * 256)*256=589824
pool2------------------------------------------------------------------kernel size:2 stride:2 padding:0
像素:(56 - 2) / 2 + 1 = 28-------------------------------------输出尺寸: 28 * 28 * 256
参数:0
conv3-512(卷积核的数量)------------------------------------------kernel size:3 stride:1 padding:1
像素:(28 + 2 * 1 - 2 - 1) / 1 + 1=28 ----------------------------输出尺寸:28 * 28 * 512
参数:(3 * 3 * 256) * 512 = 1179648
conv3-512-------------------------------------------------------------kernel size:3 stride:1 padding:1
像素:(28 + 2 * 1 - 2 - 1) / 1 + 1=28 ----------------------------输出尺寸:28 * 28 * 512
参数:(3 * 3 * 512) * 512 = 2359296
conv3-512-------------------------------------------------------------kernel size:3 stride:1 padding:1
像素:(28 + 2 * 1 - 2 - 1) / 1 + 1=28 ----------------------------输出尺寸:28 * 28 * 512
参数:(3 * 3 * 512) * 512 = 2359296
pool2------------------------------------------------------------------ kernel size:2 stride:2 padding:0
像素:(28 - 2) / 2 + 1=14 -------------------------------------输出尺寸:14 * 14 * 512
参数: 0
conv3-512(卷积核的数量)----------------------------------------------kernel size:3 stride:1 padding:1
像素:(14 + 2 * 1 - 2 - 1) / 1 + 1=14 ---------------------------输出尺寸:14 * 14 * 512
参数:(3 * 3 * 512) * 512 = 2359296
conv3-512-------------------------------------------------------------kernel size:3 stride:1 padding:1
像素:(14 + 2 * 1 - 2 - 1) / 1 + 1=14 ---------------------------输出尺寸:14 * 14 * 512
参数:(3 * 3 * 512) * 512 = 2359296
conv3-512-------------------------------------------------------------kernel size:3 stride:1 padding:1
像素:(14 + 2 * 1 - 2 - 1) / 1 + 1=14 ---------------------------输出尺寸:14 * 14 * 512
参数:(3 * 3 * 512) * 512 = 2359296
pool2------------------------------------------------------------------kernel size:2 stride:2 padding:0
像素:(14 - 2) / 2 + 1=7 ----------------------------------------输出尺寸:7 * 7 * 512
参数:0
FC------------------------------------------------------------------------ 4096 neurons
像素:1 * 1 * 4096
参数:7 * 7 * 512 * 4096 = 102760448
FC------------------------------------------------------------------------ 4096 neurons
像素:1 * 1 * 4096
参数:4096 * 4096 = 16777216
FC------------------------------------------------------------------------ 1000 neurons
像素:1 * 1 * 1000
参数:4096 * 1000=4096000

因为在pytorch中默认dilation是为1的,故上式也可以简化为

Hout = (Hin + 2padding - kernel_size ) / stride +1

参数 = kernel size * in_channels * out_channels

max pooling(kernel size:2 stride:2 padding:0)不改变通道数,只会让特征图尺寸减半

卷积时卷积核的数量就是输出的通道数

BatchNorm跟输出通道数保持一致

假设从下往上数为特征层1,2,3,第3个特征层的一个1×1的感受野(F(i+1)=1)对应上一个(第二个)特征层2×2大小的感受野,第2个特征层的一个2×2的感受野(F(i+1)=2)对应上一个(第一个)特征层5×5大小的感受野。

默认步距stride=1,两个3×3的卷积核和一个5×5的卷积核得到的特征图大小是一样的,三个3×3的卷积核和一个7×7的卷积核得到的特征图大小是一样的。

net.py如下:

import torch
from torch import nn
import torch.nn.functional as F# 224 * 224 * 3
class Vgg16_net(nn.Module):def __init__(self):super(Vgg16_net, self).__init__()self.layer1 = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),  # 224 * 224 * 64nn.BatchNorm2d(64), # Batch Normalization强行将数据拉回到均值为0,方差为1的正太分布上,一方面使得数据分布一致,另一方面避免梯度消失。nn.ReLU(inplace=True),nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), # 224 * 224 * 64nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2)  # 112 * 112 * 64)self.layer2 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1), # 112 * 112 * 128nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), # 112 * 112 * 128nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.MaxPool2d(2, 2)  # 56 * 56 * 128)self.layer3 = nn.Sequential(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),  # 56 * 56 * 256nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),  # 56 * 56 * 256nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),  # 56 * 56 * 256nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.MaxPool2d(2, 2)  # 28 * 28 * 256)self.layer4 = nn.Sequential(nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1), # 28 * 28 * 512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), # 28 * 28 * 512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), # 28 * 28 * 512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.MaxPool2d(2, 2)  # 14 * 14 * 512)self.layer5 = nn.Sequential(nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), # 14 * 14 * 512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), # 14 * 14 * 512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), # 14 * 14 * 512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.MaxPool2d(2, 2)  # 7 * 7 * 512)self.conv = nn.Sequential(self.layer1,self.layer2,self.layer3,self.layer4,self.layer5)self.fc = nn.Sequential(nn.Linear(7*7*512, 512),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Linear(512, 256),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Linear(256, 10) # 十分类问题)def forward(self, x):x = self.conv(x)# 这里-1表示一个不确定的数,就是你如果不确定你想要reshape成几行,但是你很肯定要reshape成7*7*512列# 那不确定的地方就可以写成-1# 如果出现x.size(0)表示的是batchsize的值# x=x.view(x.size(0),-1)x = x.view(-1, 7*7*512)x = self.fc(x)return x

train.py如下:

import json
import sysimport torch
import torchvision
from torch import nn, optim
from tqdm import tqdmfrom net import Vgg16_net
import numpy as np
from torch.optim import lr_scheduler
import osfrom torchvision import transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoaderimport matplotlib.pyplot as plt
# import torchvision.models.vgg 可以在这里面下载预训练权重import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'ROOT_TRAIN = r'E:/cnn/AlexNet/data/train'
ROOT_TEST = r'E:/cnn/AlexNet/data/val'def main():device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print("using {} device.".format(device))data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),"val": transforms.Compose([transforms.Resize((224, 224)),  # cannot 224, must (224, 224)transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}  # 数据预处理train_dataset = ImageFolder(ROOT_TRAIN, transform=data_transform["train"]) # 加载训练集train_num = len(train_dataset) # 打印训练集有多少张图片animal_list = train_dataset.class_to_idx # 获取类别名称以及对应的索引cla_dict = dict((val, key) for key, val in animal_list.items()) # 将上面的键值对位置对调一下json_str = json.dumps(cla_dict, indent=4)  # 把类别和对应的索引写入根目录下class_indices.json文件中with open('class_indices.json', 'w') as json_file:json_file.write(json_str)batch_size = 32train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size, shuffle=True,num_workers=0)validate_dataset = ImageFolder(ROOT_TEST, transform=data_transform["val"]) # 载入测试集val_num = len(validate_dataset) # 打印测试集有多少张图片validate_loader = torch.utils.data.DataLoader(validate_dataset,batch_size=16, shuffle=False,num_workers=0)print("using {} images for training, {} images for validation.".format(train_num, val_num))  # 用于打印总的训练集数量和验证集数量# 用于查看数据集,注意改一下上面validate_loader的batch_size,batch_size等几就是一次查看几张图片,shuffle=True顺序打乱一下# test_data_iter = iter(validate_loader)# test_image, test_label = test_data_iter.next()## def imshow(img):#     img = img / 2 + 0.5  # unnormalize#     npimg = img.numpy()#     plt.imshow(np.transpose(npimg, (1, 2, 0)))#     plt.show()## print(' '.join('%5s' % cla_dict[test_label[j].item()] for j in range(4)))# imshow(utils.make_grid(test_image))net = Vgg16_net(num_classes=2) # 实例化网络,num_classes代表有几个类别# 载入预训练模型参数(如果不想使用迁移学习的方法就把下面五行注释掉,然后在resnet34()里传入参数num_classes即可,如果使用迁移学习的方法就不需要在resnet34()里传入参数num_classes)# model_weight_path = "./vgg16-pre.pth" # 预训练权重# assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)# net.load_state_dict(torch.load(model_weight_path, map_location='cpu')) # 通过torch.load载入模型预训练权重# in_channel = net.fc.in_features# net.fc = nn.Linear(in_channel, 2) # 重新赋值全连接层,这里的2指代的是类别数,训练时需要改一下# VGG加载预训练权重没有成功net.to(device) # 将网络指认到GPU或CPU上loss_function = nn.CrossEntropyLoss()# pata = list(net.parameters())optimizer = optim.Adam(net.parameters(), lr=0.0002)epochs = 1save_path = './VGGNet.pth'best_acc = 0.0train_steps = len(train_loader)for epoch in range(epochs):# trainnet.train()running_loss = 0.0train_bar = tqdm(train_loader, file=sys.stdout)for step, data in enumerate(train_bar):images, labels = dataoptimizer.zero_grad()outputs = net(images.to(device))loss = loss_function(outputs, labels.to(device))loss.backward()optimizer.step()# print statisticsrunning_loss += loss.item()train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,epochs,loss)# validatenet.eval()acc = 0.0  # accumulate accurate number / epochwith torch.no_grad():val_bar = tqdm(validate_loader, file=sys.stdout)for val_data in val_bar: # 遍历验证集val_images, val_labels = val_data # 数据分为图片和标签outputs = net(val_images.to(device)) # 将图片指认到设备上传入网络进行正向传播并得到输出predict_y = torch.max(outputs, dim=1)[1] # 求得输出预测中最有可得的类别(概率最大值)acc += torch.eq(predict_y, val_labels.to(device)).sum().item() # 将预测标签与真实标签进行比对,求得总的预测正确数量val_accurate = acc / val_num # 预测正确数量/测试集总数量print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %(epoch + 1, running_loss / train_steps, val_accurate))if val_accurate > best_acc:best_acc = val_accuratetorch.save(net.state_dict(), save_path)print('Finished Training')if __name__ == '__main__':main()

predict.py如下:

import os
import jsonimport torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as pltfrom net import Vgg16_netimport os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'def main():device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")data_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])# load imageimg_path = "./7.jpg"assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)img = Image.open(img_path)plt.imshow(img)# [N, C, H, W]img = data_transform(img)# expand batch dimensionimg = torch.unsqueeze(img, dim=0)# read class_indictjson_path = './class_indices.json'assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)with open(json_path, "r") as f:class_indict = json.load(f)# create modelmodel = Vgg16_net(num_classes=2).to(device)# load model weightsweights_path = "./VGGNet.pth"assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)model.load_state_dict(torch.load(weights_path, map_location=device))model.eval()with torch.no_grad():# predict classoutput = torch.squeeze(model(img.to(device))).cpu()predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],predict[predict_cla].numpy())plt.title(print_res)for i in range(len(predict)):print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],predict[i].numpy()))plt.show()if __name__ == '__main__':main()

REFERENCE:

[深度学习]-从零开始手把手教你利用pytorch训练VGG16网络实现自定义数据集上的图像分类(含代码及详细注释)_orangezs的博客-CSDN博客_vgg16实现图片分类

经典卷积神经网络---VGG16详解_无尽的沉默的博客-CSDN博客_vgg16

VGG16网络结构与代码相关推荐

  1. 手动搭建的VGG16网络结构训练数据和使用ResNet50微调(迁移学习)训练数据对比(图像预测+前端页面显示)

    文章目录 1.VGG16训练结果: 2.微调ResNet50之后的训练结果: 3.结果分析: 4.实验效果: (1)VGG16模型预测的结果: (2)在ResNet50微调之后预测的效果: 5.相关代 ...

  2. PredRNN++:网络结构和代码解读

    已经有很多帖子对PredRNN++的理论和改进效果进行了解读,不再赘述.直接分析结构和代码. Causal LSTM 单元 三层级联结构: 第一层(蓝色框)类似传统的LSTM结构用于更新时间状态C(t ...

  3. Darknet53网络结构及代码实现

    文章目录 一.Darknet 二.代码实现 一.Darknet Darknet是最经典的一个深层网络,结合Resnet的特点在保证对特征进行超强表达的同时又避免了网络过深带来的梯度问题,主要有Dark ...

  4. fpn网络结构及代码

    文章目录 一.fpn网络结构 二.代码 一.fpn网络结构 resnet结构组成. fpn(Feature Pyramid Networks)架构如上图所示,以resnet50作为backbone.通 ...

  5. 卷积神经网络模型之——GoogLeNet网络结构与代码实现

    文章目录 GoogLeNet网络简介 GoogLeNet网络结构 Inception之前的几层结构 Inception结构 Inception3a模块 Inception3b + MaxPool In ...

  6. 解析DeepLabv3+的网络结构及代码【Pytorch版】

    论文地址:https://arxiv.org/pdf/1802.02611.pdf 论文笔记:https://blog.csdn.net/oYeZhou/article/details/1122318 ...

  7. tensorflow2.0 Keras VGG16 VGG19 系列 代码实现

    模型介绍参看:博文 VGG16 迁移模型 先看看标准答案 import tensorflow as tf from tensorflow import kerasbase_model = keras. ...

  8. 【深度学习】VGG-16网络结构

    VGG-16,输入层224*224*3,经过两层相同的卷积,卷积filter为3*3,stride为1,filter数为64,然后经过一层pooling.接着按照相同的方式,让宽和高越来越小,而通道数 ...

  9. 【深度学习】VGG16网络结构复现 | pytorch |

    文章目录 前言 一.VGG16介绍 二.VGG16网络复现--pytorch 前言 这篇文章按道理来说应该是很简单的,但是因为一个很小的bug,让我难受了一晚上,直到现在我也没找出原因.后面我会提到这 ...

  10. vgg16 清华镜像_Caffe vgg16网络结构

    深度神经网络可视化工具集锦 TensorBoard:TensorFlow集成可视化工具 GitHub官方项目:https://github.com/tensorflow/tensorflow/tree ...

最新文章

  1. 将整数拆分为2的幂次方
  2. 华为android8适配进度,华为 荣耀 O版本(Android 8.0)适配进度公告
  3. jQuery遇到问题的小记
  4. C/C++基础知识点(四)
  5. 下面有关html5标签说法错误的有,前端面试题(2016含答案)
  6. scala集合转java_Java,Scala,Guava和Trove集合-它们可以容纳多少数据?
  7. FreeBSD重新加载rc.conf
  8. Android textAppearance的属性设置及TextView属性详解
  9. inssider序列号_inSSIDer v4.2.1.109完美注册版
  10. Ingenuous Cubrency UVA 11137
  11. 两个华为路由器实现MESH组网,WIFI信号无缝漫游
  12. wmi服务怎么关?wmi服务关闭有影响吗?
  13. Collecting package metadata (current_repodata.json): failed
  14. IMDB电影数据分析
  15. 反馈抑制器设计的技术要点
  16. 雨落江满泛涟漪 尘拂心海滤情音 相思入云寄清风
  17. Android手机号码获取问题 用APN来获取手机号
  18. APP开发学习思路指导
  19. 台式电脑插入耳机听不到声音,排除耳机问题
  20. 高效遍历HashMap的方式,你知道的有几种呢

热门文章

  1. SwiftUI iOS 精品开源之 具有货币转换功能的iOS计算器 网络后端汇率API (教程含源码)
  2. VS Code 实用快捷键
  3. 华为服务器麒麟系统,麒麟服务器
  4. GooFlow获取节点/线信息和自定义节点属性
  5. 深度学习CNN算法原理
  6. mysql创建数据库的语法_mysql创建数据库语法
  7. ARM架构及ARM指令集、Thumb指令集你了解多少?
  8. java反编译luyten使用
  9. TikZ从零开始(一)——实例之受力分析图绘制
  10. node2vec python_Node2vec和networkx