face3d: Python tools for processing 3D face

git code: https://github.com/yfeng95/face3d
paper list: PaperWithCode

该方法广泛用于基于三维人脸关键点的人脸生成、属性检测(如位姿、深度、PNCC等),能够快速实现人脸建模与渲染。推荐!!!


目录

  • face3d: Python tools for processing 3D face
  • 一、介绍
    • 1.1 目录
    • 1.2 构建
      • 1.2.1 预安装库
    • 1.3 新建工程
      • 1.3.1 源码
      • 1.3.2 编译C++文件为.so文件,用于python;如果使用numpy版本,则忽略此步。
      • 1.3.3 准备BFM数据(如果不使用3dmm可跳过此步)
        • 下载原始的BFM模型
        • 下载额外的BFM信息:
        • 下载STN中的UV坐标
      • 1.3.4 生产BFM模型
    • 1.4 运行pipeline例子
    • 2 pipeline源码解读
      • 2.0导入相关库
      • 2.1 加载网格数据(即mesh data)
      • 2.2 变换顶点(vertices)位置
      • 2.3 修改颜色/纹理(添加光照)
      • 2.4 坐标系变换:从世界坐标系到相机坐标系(映射,改变相机位置)
      • 2.5 转化为2D图像
  • 总结

相机坐标下的人脸变换

光照渲染


3DMM模型

提示:对于初学者来说,作者强烈建议按照这个顺序来运行样例,然后再看mesh_numpy中的代码和读每个文件中的注释。

一、介绍

这里尝试去实现有关三维人脸的一些基础功能,如处理网格数据mesh data、基于morphable model的人脸生成,基于单张人脸图片及其关键点的三维人脸重构,带有不同光照效果的人脸渲染等操作。
该工程大部分代码基于python,但有些功能如rasterization使用C++实现循环渲染会快很多,并使用Cython编译供python环境使用,该工具轻量而运行快。

1.1 目录

三维网络数据,是最流行的三维人脸表征方法;3DMM模型广泛用于产生和重构三维人脸。

# Since triangle mesh is the most popular representation of 3D face,
# the main part is mesh processing.
mesh/             # written in python and c++
|  cython/               # c++ files, use cython to compile
|  io.py                 # read & write obj
|  vis.py                # plot mesh
|  transform.py          # transform mesh & estimate matrix
|  light.py              # add light & estimate light(to do)
|  render.py             # obj to image using rasterization rendermesh_numpy/      # the same with mesh/, with each part written in numpy# slow but easy to learn and modify# 3DMM is one of the most popular methods to generate & reconstruct 3D face.
morphable_model/
|  morphable_model.py    # morphable model class: generate & fit
|  fit.py                # estimate shape&expression parameters. 3dmm fitting.
|  load.py               # load 3dmm data

1.2 构建

1.2.1 预安装库

Python 2 or Python 3
Python packages:numpyskimage (for reading&writing image)scipy (for loading mat)matplotlib (for show)Cython (for compiling c++ file)%可参考pip3命令行下载国内源:
pip3 install numpy -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install scikit-image -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install scipy -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install matplotlib -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install Cython -i  https://pypi.tuna.tsinghua.edu.cn/simple

1.3 新建工程

1.3.1 源码

git clone https://github.com/YadiraF/face3d
cd face3d

1.3.2 编译C++文件为.so文件,用于python;如果使用numpy版本,则忽略此步。

cd face3d/mesh/cython
python setup.py build_ext -i

1.3.3 准备BFM数据(如果不使用3dmm可跳过此步)

下载原始的BFM模型

链接:https://faces.dmi.unibas.ch/bfm/main.php?nav=1-2&id=downloads

将所有框都勾上,填写对应的信息后会收到一个下载link,将下载后的文件拷贝:

copy 01_MorphabelModel.mat to raw/

下载额外的BFM信息:

链接:3DFFA
下载【face profiling】和【3DFFA】
链接:HPEN
下载HPEN
将下载好的三个压缩包解压,分别在里面找到如下文件:

model_info.mat Model_Expression.mat Model_face_contour_trimed.mat  Model_tri_mouth.mat Modelplus_nose_hole.mat Modelplus_parallel.mat vertex_code.mat

然后在face3d/examples/Data/BFM目录下新建一个文件夹3ddfa,将上述文件拷贝进去。
3DDFA(Face Alignment Across Large Poses: A 3D Solution) HFPE(High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild)

下载STN中的UV坐标

链接:BFM_UV
点击download下载后解压,在face3d/examples/Data/BFM目录下新建一个文件夹stn,再将BFM_UV.mat复制到stn/

1.3.4 生产BFM模型

在BFM目录下创建Out文件夹
运行Matlab中的generate.m,产生的文件将会保存在 Out/
提示:一些空文件夹可能需要通过mkdir创建

1.4 运行pipeline例子

examples使用cython版本,如果使用numpy,将mesh替换为mesh_numpy即可

cd examples
python 1_pipeline.py

如果得到如下输出,并且在pipeline下有生产的照片说明运行成功

2 pipeline源码解读

提示:为了方便理解,源码解读可能会使用numpy版本;而示例使用的是cython版本。

Pipeline目的:将3D目标转化为2D图像
这里通过调用BFM提供的相关参数3DMM(平均人脸模型,形状,表情)来产生三维人脸模型,并将三维人脸模型转化为平面图像。<\font>

2.0导入相关库

''' Simple example of pipeline
3D obj(process) --> 2d image
'''
import os, sys
import numpy as np
import scipy.io as sio
from skimage import io
from time import time
import matplotlib.pyplot as pltsys.path.append('..')
import face3d
from face3d import mesh

2.1 加载网格数据(即mesh data)

网格数据包含:顶点,三角网格数据,颜色(可选),纹理(可选)。这里使用颜色来表征人脸面部的纹理

# ------------------------------ 1. load mesh data
# -- mesh data consists of: vertices, triangles, color(optinal), texture(optional)
# -- here use colors to represent the texture of face surface
C = sio.loadmat('Data/example1.mat')
vertices = C['vertices']; colors = C['colors']; triangles = C['triangles']
colors = colors/np.max(colors)

这里示例的网格数据来自.mat文件,分别获取其中的vertices、color和triangles数据,并将颜色归一化。

2.2 变换顶点(vertices)位置

改变网格对象在世界坐标系中的位置。三维物体的变换方式有:缩放(scale)、旋转、平移等操作。这里在y通道上设置scale尺度为180,旋转30°,原地平移。

# ------------------------------ 2. modify vertices(transformation. change position of obj)
# -- change the position of mesh object in world space
# scale. target size=180 for example
s = 180/(np.max(vertices[:,1]) - np.min(vertices[:,1]))
# rotate 30 degree for example
R = mesh.transform.angle2matrix([0, 30, 0])
# no translation. center of obj:[0,0]
t = [0, 0, 0]
transformed_vertices = mesh.transform.similarity_transform(vertices, s, R, t)

其中,angle2matrix的源码如下:

def angle2matrix(angles):''' get rotation matrix from three rotation angles(degree). right-handed.Args:angles: [3,]. x, y, z anglesx: pitch. positive for looking down.y: yaw. positive for looking left. z: roll. positive for tilting head right. Returns:R: [3, 3]. rotation matrix.'''x, y, z = np.deg2rad(angles[0]), np.deg2rad(angles[1]), np.deg2rad(angles[2])# xRx=np.array([[1,      0,       0],[0, cos(x),  -sin(x)],[0, sin(x),   cos(x)]])# yRy=np.array([[ cos(y), 0, sin(y)],[      0, 1,      0],[-sin(y), 0, cos(y)]])# zRz=np.array([[cos(z), -sin(z), 0],[sin(z),  cos(z), 0],[     0,       0, 1]])R=Rz.dot(Ry.dot(Rx))return R.astype(np.float32)

其作用是根据输入的角度生产旋转矩阵。
x:pitch 倾斜。正,向下看。
y: yaw 偏转。正,向左看。
z: roll 滚动。正,表示向右倾斜头部。

similarity_transform 的源码如下:

def similarity_transform(vertices, s, R, t3d):''' similarity transform. dof = 7.3D: s*R.dot(X) + tHomo: M = [[sR, t],[0^T, 1]].  M.dot(X)Args:(float32)vertices: [nver, 3]. s: [1,]. scale factor.R: [3,3]. rotation matrix.t3d: [3,]. 3d translation vector.Returns:transformed vertices: [nver, 3]'''t3d = np.squeeze(np.array(t3d, dtype = np.float32))transformed_vertices = s * vertices.dot(R.T) + t3d[np.newaxis, :]return transformed_vertices

输入三维顶点、缩放因子s、旋转角R和平移向量t3d,即可得到变换后的新坐标

2.3 修改颜色/纹理(添加光照)

添加点光源。光源位置在世界坐标系中定义

# ------------------------------ 3. modify colors/texture(add light)
# -- add point lights. light positions are defined in world space
# set lights
light_positions = np.array([[-128, -128, 300]])
light_intensities = np.array([[1, 1, 1]])
lit_colors = mesh.light.add_light(transformed_vertices, triangles, colors, light_positions, light_intensities)

其中,mesh.light.add_light定义如下

def add_light(vertices, triangles, colors, light_positions = 0, light_intensities = 0):''' Gouraud shading. add point lights.In 3d face, usually assume:1. The surface of face is Lambertian(reflect only the low frequencies of lighting)2. Lighting can be an arbitrary combination of point sources3. No specular (unless skin is oil, 23333)Ref: https://cs184.eecs.berkeley.edu/lecture/pipeline    Args:vertices: [nver, 3]triangles: [ntri, 3]light_positions: [nlight, 3] light_intensities: [nlight, 3]Returns:lit_colors: [nver, 3]'''nver = vertices.shape[0]normals = get_normal(vertices, triangles) # [nver, 3]# ambient# La = ka*Ia# diffuse# Ld = kd*(I/r^2)max(0, nxl)direction_to_lights = vertices[np.newaxis, :, :] - light_positions[:, np.newaxis, :] # [nlight, nver, 3]direction_to_lights_n = np.sqrt(np.sum(direction_to_lights**2, axis = 2)) # [nlight, nver]direction_to_lights = direction_to_lights/direction_to_lights_n[:, :, np.newaxis]normals_dot_lights = normals[np.newaxis, :, :]*direction_to_lights # [nlight, nver, 3]normals_dot_lights = np.sum(normals_dot_lights, axis = 2) # [nlight, nver]diffuse_output = colors[np.newaxis, :, :]*normals_dot_lights[:, :, np.newaxis]*light_intensities[:, np.newaxis, :]diffuse_output = np.sum(diffuse_output, axis = 0) # [nver, 3]# specular# h = (v + l)/(|v + l|) bisector# Ls = ks*(I/r^2)max(0, nxh)^p# increasing p narrows the reflectionloblit_colors = diffuse_output # only diffuse part here.lit_colors = np.minimum(np.maximum(lit_colors, 0), 1)return lit_colors

Gouraud 着色法:是用于网格中插值的着色方法,可实现边缘的连续变化。在三维人脸中,通常由以下假设:
1、人脸表面是Lambertian,即朗博表面,只会反射低频的光
2、光照可以是点光源的任意组合。
3、无镜面反射。
这些参考了https://cs184.eecs.berkeley.edu/lecture/pipeline。但是这个网站好像挂掉了
get_normal函数在源码中另有定义,这里不再赘述。
输入的参数有:顶点坐标、三角网格数据、光源位置、光线强度。经过运算后输出加入点光源后的颜色数据。这里,如果没有相关知识,默认拿来使用即可。

2.4 坐标系变换:从世界坐标系到相机坐标系(映射,改变相机位置)

将对象从世界坐标系转换为相机坐标系,即观察者角度。如果使用标准相机,可忽略。

# ------------------------------ 4. modify vertices(projection. change position of camera)
# -- transform object from world space to camera space(what the world is in the eye of observer).
# -- omit if using standard camera
camera_vertices = mesh.transform.lookat_camera(transformed_vertices, eye = [0, 0, 200], at = np.array([0, 0, 0]), up = None)
# -- project object from 3d world space into 2d image plane. orthographic or perspective projection
projected_vertices = mesh.transform.orthographic_project(camera_vertices)

其中,相机坐标系lookat_camera的定义如下:

def normalize(x):epsilon = 1e-12norm = np.sqrt(np.sum(x**2, axis = 0))norm = np.maximum(norm, epsilon)return x/norm
def lookat_camera(vertices, eye, at = None, up = None):""" 'look at' transformation: from world space to camera spacestandard camera space: camera located at the origin. looking down negative z-axis. vertical vector is y-axis.Xcam = R(X - C)Homo: [[R, -RC], [0, 1]]Args:vertices: [nver, 3] eye: [3,] the XYZ world space position of the camera.5at: [3,] a position along the center of the camera's gaze.up: [3,] up direction Returns:transformed_vertices: [nver, 3]"""if at is None:at = np.array([0, 0, 0], np.float32)if up is None:up = np.array([0, 1, 0], np.float32)eye = np.array(eye).astype(np.float32)at = np.array(at).astype(np.float32)z_aixs = -normalize(at - eye) # look forwardx_aixs = normalize(np.cross(up, z_aixs)) # look righty_axis = np.cross(z_aixs, x_aixs) # look upR = np.stack((x_aixs, y_axis, z_aixs))#, axis = 0) # 3 x 3transformed_vertices = vertices - eye # translationtransformed_vertices = transformed_vertices.dot(R.T) # rotationreturn transformed_vertices

标准相机空间设定为:相机在原点;向下看,是负Z轴;垂直向量为Y轴。
输入参数为:顶点,摄像机在世界坐标系的位置,沿着相机视线中心的位置(默认为[0,0,0]),向上方向(默认为(0,1,0))
根据输入,计算出旋转矩R,并通过Xcam=R(X-C)计算出新顶点的位置。

2.5 转化为2D图像

设置图像宽高为256

# ------------------------------ 5. render(to 2d image)
# set h, w of rendering
h = w = 256
# change to image coords for rendering
image_vertices = mesh.transform.to_image(projected_vertices, h, w)
# render
rendering =  mesh.render.render_colors(image_vertices, triangles, lit_colors, h, w)

mesh.transform.to_image部分的源码如下:

def to_image(vertices, h, w, is_perspective = False):''' change vertices to image coord system3d system: XYZ, center(0, 0, 0)2d image: x(u), y(v). center(w/2, h/2), flip y-axis. Args:vertices: [nver, 3]h: height of the renderingw : width of the renderingReturns:projected_vertices: [nver, 3]  '''image_vertices = vertices.copy()if is_perspective:# if perspective, the projected vertices are normalized to [-1, 1]. so change it to image size first.image_vertices[:,0] = image_vertices[:,0]*w/2image_vertices[:,1] = image_vertices[:,1]*h/2# move to center of imageimage_vertices[:,0] = image_vertices[:,0] + w/2image_vertices[:,1] = image_vertices[:,1] + h/2# flip vertices along y-axis.image_vertices[:,1] = h - image_vertices[:,1] - 1return image_vertices

输入参数为:顶点坐标、图像宽高、透视选项(默认为Fals),通过计算得到二维顶点坐标。

mesh.render.render_colors的源码如下:(此为numpy版本)

def render_colors(vertices, triangles, colors, h, w, c = 3):''' render mesh with colorsArgs:vertices: [nver, 3]triangles: [ntri, 3] colors: [nver, 3]h: heightw: width    Returns:image: [h, w, c]. '''assert vertices.shape[0] == colors.shape[0]# initial image = np.zeros((h, w, c))depth_buffer = np.zeros([h, w]) - 999999.for i in range(triangles.shape[0]):tri = triangles[i, :] # 3 vertex indices# the inner bounding boxumin = max(int(np.ceil(np.min(vertices[tri, 0]))), 0)umax = min(int(np.floor(np.max(vertices[tri, 0]))), w-1)vmin = max(int(np.ceil(np.min(vertices[tri, 1]))), 0)vmax = min(int(np.floor(np.max(vertices[tri, 1]))), h-1)if umax<umin or vmax<vmin:continuefor u in range(umin, umax+1):for v in range(vmin, vmax+1):if not isPointInTri([u,v], vertices[tri, :2]): continuew0, w1, w2 = get_point_weight([u, v], vertices[tri, :2])point_depth = w0*vertices[tri[0], 2] + w1*vertices[tri[1], 2] + w2*vertices[tri[2], 2]if point_depth > depth_buffer[v, u]:depth_buffer[v, u] = point_depthimage[v, u, :] = w0*colors[tri[0], :] + w1*colors[tri[1], :] + w2*colors[tri[2], :]return image

输入为顶点坐标、三角网格数据、网格颜色数据以及目标图片的长宽。
输出为目标的带纹理的二维图像数据。

# ---- show rendering
# plt.imshow(rendering)
# plt.show()
save_folder = 'results/pipeline'
if not os.path.exists(save_folder):os.mkdir(save_folder)
io.imsave('{}/rendering.jpg'.format(save_folder), rendering)
# ---- show mesh
# mesh.vis.plot_mesh(camera_vertices, triangles)
# plt.show()

这里展示二维图片效果:

也可展示出相加空间下的模型:


总结

这里主要介绍通过3DMM预定义好的模型,实现线性的人脸编辑与生成。

三维人脸实践:基于Face3D的人脸生成、渲染与三维重建 <一>相关推荐

  1. 三维人脸实践:基于Face3D的人脸生成、渲染与三维重建 <二>

    face3d: Python tools for processing 3D face git code: https://github.com/yfeng95/face3d paper list: ...

  2. 自动识别人脸html5,基于HTML5的人脸识别技术

    绍一个网站,演示了通过HTML5 + JavaScript技术实现的人脸识别,目前仅适用于Chrome浏览器,首先需要在地址栏输入about:flags,然后找到"启用MediaStream ...

  3. 图像处理(二十一)基于数据驱动的人脸卡通动画生成-Siggraph Asia 2014

    在现实生活中,我们经常会去评价一个人,长得是否漂亮.是不是帅哥美女,然而如何用五官的数据去评价一个人是否长得五官比例协调,我们却很难说出来,也就是你为什么觉得某个人长得漂亮?是因为她眼睛大,嘴巴小,还 ...

  4. 基于数据驱动的人脸卡通动画生成-Siggraph Asia 2014

    原文地址:http://blog.csdn.net/hjimce/article/details/47083321 作者:hjimce 在现实生活中,我们经常会去评价一个人,长得是否漂亮.是不是帅哥美 ...

  5. 基于GAN模型的生成人脸重构、返老还童、看见前世今生(Age Progression/Regression)

    基于GAN模型的生成人脸重构.返老还童.看见前世今生(Age Progression/Regression) 看见前世今生(Age Progression/Regression) GAN的优势是直接可 ...

  6. 科技人员在计算机前的肖像,基于计算机视觉的人脸肖像画生成研究

    摘要: 通过计算机处理进行人脸肖像画生成是计算机视觉的研究方向之一,该技术在科普展览领域有了广泛使用,并且其中使用的计算机视觉相关的研究技术在工业生产和日常生活中也都有广泛应用.本文介绍了一种基于计算 ...

  7. 【Caffe实践】基于Caffe的人脸识别实现

    from: http://blog.csdn.net/chenriwei2/article/details/49500687 导言 深度学习深似海.尤其是在图像人脸识别领域,最近几年的顶会和顶刊常常会 ...

  8. MDFR:基于人脸图像复原和人脸转正联合模型的人脸识别方法

    AI 科技评论报道 编辑 | 陈大鑫 在现实生活中,许多因素可能会影响人脸识别系统的识别性能,例如大姿势,不良光照,低分辨率,模糊和噪声等.为了应对这些挑战,之前的人脸识别方法通常先把低质量的人脸图像 ...

  9. 【阿里云课程】如何基于GAN完成人脸图像超分辨任务

    大家好,继续更新有三AI与阿里天池联合推出的深度学习系列课程,本次更新内容为实践课中的一节,这也是本课程系列最后的一个实践课,介绍如下: GAN超分辨实践 本次课程是阿里天池联合有三AI推出的深度学习 ...

最新文章

  1. java 中的printStackTrace()方法
  2. linux如何更改服务器时间格式,Linux中date命令,格式化输出,时间设置
  3. Linux 的进程状态
  4. SAP Analytics Cloud里根据数据的经纬度绘制地图
  5. lucene使用3.0.3_Apache Lucene 5.0.0即将发布!
  6. 记一次MySQL手工注入
  7. 再见 Postman!Apifox 才是 YYDS!
  8. CSS经典书写技巧之(二)
  9. Compile LLVM+CLANG 4.0.1 for RHEL6
  10. 使用arcgis、matlab与R语言GD包进行地理探测器 批量运行,并导出探测结果
  11. 操作无法完成因为其中的文件夹或文件已在另一个程序中打开
  12. C#中汉字按照首字拼音排序
  13. 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)
  14. Swin-Transformer 详解
  15. 华为云618年中钜惠,服务器免费领三个月
  16. Python对表格操作
  17. 旺季选品逻辑:用数据思维找到潜力爆款
  18. 如何下载Android Market上未对中国开放的应用
  19. (附源码)基于JSP的养老院信息管理系统的设计与实现 毕业设计211141
  20. 浅谈exp与expdp的区别

热门文章

  1. JavaScript创建数组
  2. 《开讲啦》观后感(互联网)
  3. 【毕业设计】如何利用Python实现人脸识别?
  4. 多啦A梦的圆手现实版:通用圆形机械手
  5. 16进制 转为图片 php_ImageMagick(图片处理软件) 分享
  6. bmp文件存储,并用进制画图
  7. Android高仿雅虎天气(两)---代码结构分析
  8. MacW资讯:【Mac小白必看】如何查看Mac电脑配置信息?
  9. 1920+1080+android三星手机,三星I9500狂泄 1080P高清大屏机激斗
  10. MAPI的一些问题解答